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Abstract

Noble gases are biologically and chemically inert, making them excellent
tracers for physical processes. There are 5 stable noble gases: He, Ne, Ar,
Kr, and Xe, with a range of physicochemical properties; the diffusivities
of the noble gases in seawater differ by approximately a factor of 5 and
the solubilities of the noble gases in seawater differ by approximately a
factor of 10. This broad range in physicochemical characteristics leads to
differing response to physical forcing. Thus, measurements of multiple
noble gases made concurrently allow quantification of many physical
processes. In seawater studies, noble gas measurements have been used
to investigate air-sea gas exchange, allowing explicit separation of the
bubble component from the diffusive gas exchange component, and to
study equilibration during deep water formation. Argon has been used to
quantify diapycnal mixing and the heavier noble gases could be useful in
such studies as well. Helium, Ne, and Ar have yielded insights on ocean-
cryospheric processes such as sea ice formation and basal melting of
glaciers. The isotope 3 He has been used extensively in studies of ocean
circulation, and also for quantifying ocean-lithospheric interactions.
Additionally, noble gases can be combined with biologically active
gases, such as O2 or N2, in order to quantify rates of biological
production and denitrification.

1 Introduction

Dissolved noble gases are ideal in situ tracers for
physical processes in the ocean because they are
biologically and chemically inert and thus
respond solely to physical forcing. Additionally,

there are five stable noble gases with a range of
solubilities and molecular diffusivities in seawa-
ter (Fig. 1). The diffusivities in seawater of the
noble gases differ by a factor of seven with helium
being the most diffusive (Jahne et al. 1987). The
solubilities differ by more than an order of mag-
nitude, with xenon being the most soluble (Smith
and Kennedy 1983; Wood and Caputi 1966). The
solubilities of the heavier noble gases (Ar, Kr, and
Xe) have a strong, non-linear dependence on
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temperature whereas the solubility of the lighter
ones (He, Ne) are relatively insensitive to tem-
perature (Hamme and Emerson 2004b; Smith and
Kennedy 1983; Weiss 1971; Weiss and Kyser
1978; Wood and Caputi 1966). Additionally,
during sea ice formation or melting, the lighter
gases are favorably partitioned into ice whereas
the heavier gases remain preferentially in the
water (e.g. Hood et al. 1998). This broad range in
physicochemical characteristics leads to signifi-
cantly different responses to physical forcing
(Fig. 2). Thus, measurements of multiple noble
gases made concurrently in seawater allow one to
diagnose and quantify physical processes, such as
air-sea gas exchange, diapycnal mixing, and
subsurface basal glacial melting.

The main source of noble gases to the ocean is
from the atmosphere through the process of air-sea
gas exchange. The noble gases are usually close to
being in equilibrium with the atmosphere,
according to Henry Laws constants, although rapid
warming or cooling, ice formation or melting, and
bubble injection can lead to departures from

equilibrium. Additionally, He has two additional
sources. 4He is produced by nuclear reactions in
rocks, primarily in the Uranium series. Some of this
4He enters the ocean through water-rock processes.
Additionally 3He is produced by radioactive decay
from atmospheric tritium.

Noble gas measurements can be combined
with dissolved biologically active gases, such as
O2 or N2, to yield quantitative insights into
biogeochemical processes. O2 and N2 can be
used as geochemical tracers for quantifying rates
of important biological processes such as net
community production and denitrification.
However, physical processes such as air-sea gas
exchange and thermal forcing affect O2 and N2,
making direct interpretation of those gas records
difficult. Argon has a very similar solubility and
diffusivity to O2, and thus can serve as an abiotic
analogue to O2. Thus, the difference between O2

and Ar can serve as a tracer for biological pro-
ductivity. Additionally, Ar can be used in con-
junction with nitrogen to construct basin-scale
estimates of denitrification.
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Fig. 1 a Molecular diffusivities of the noble gases,
oxygen, and nitrogen as a function of temperature, as
calculated from the diffusivity values of Jahne et al.
(1987) and Wise and Houghton (1966). b Solubilities of
the five noble gases, nitrogen, and oxygen in seawater as

a function of temperature. Solubility values for He are
from a modified version of Weiss (1971), Ne, Ar, and N2

solubilities are from Hamme and Emerson (2004b), Kr
solubility is from Weiss and Kyser (1978) and Xe
solubility is from Wood and Caputi (1966)
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2 Analytical Methods

2.1 Sample Collection

The standard protocol for measuring noble gases
in seawater is to collect a sample of seawater,
extract the gases from the water, and measure
the gases on a mass spectrometer. Water sam-
ples are generally drawn on the deck of the ship
from Niskin bottles mounted on a CTD rosette
system. It is important to draw the samples soon
after the rosette is retrieved, and immediately
after the Niskin is vented for sampling, as
exchange with the head-space created from
drawing water from the Niskin will compromise
the integrity of the dissolved gases (Takahashi
et al. 1988). Samples of seawater can be trans-
ferred to copper tubes (Weiss 1968; Young and
Lupton 1983), stainless steel cylinders (Lott and
Jenkins 1998), or pre-evacuated custom-made
glass bottles (Emerson et al. 1999) for storage
(although the last is not suitable for helium
studies). In all cases, great care must be taken
when sampling to avoid bubbles entering the
sample containers. This can be achieved by
presoaking any transfer tubing that is used,
tapping on walls of sample containers as the

sample is drawn, keeping the temperature of
sample containers similar to temperature of the
water (i.e. avoid letting the containers sit in the
sun before collecting samples since the gases in
the seawater may exsolve due to warming on
contact with the container), and carefully
watching for any bubbles in tubing, neck of
bottle, etc.

The lighter noble gases are more diffusive
than the heavier ones and are not well contained
by o-rings. If samples are collected in stainless
steel cylinders, which have o-rings in the plug
valves at the end of the cylinders, it is best to
extract the gases from the samples into alumi-
nosilicate glass bulbs within 24–48 h of collec-
tion (Lott 2001). If samples are stored in
custom-made glass bottles, which contain
Louers-Houpert valves that have o-rings, it is
best to use valves with two o-rings, to fill the
necks with CO2 to decrease the loss of gas
across the valves, and to analyze the samples
within at most two months of sample collection
(Hamme and Emerson 2004a). In contrast,
samples are well preserved in copper tubes for
indefinitely long periods.

In the case of stainless steel cylinders, sub-
sequent to sample collection, usually at-sea or in
an onshore laboratory, gases are extracted from
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Fig. 2 Schematic depicting the effect of different physical
processes on saturation anomalies of He and Xe. Because of
the differences in solubilities and diffusivities of the noble

gases, different physical processes have differing effects on
the gases, allowing the gases to be powerful tools for
separating and quantifying physical processes
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the water by essentially boiling the water in a
high-vacuum system and transferring the
released gas to *25 cc aluminosilicate glass
ampoules that can then be flame-sealed and
stored. In the laboratory, these ampoules are
attached to the mass spectrometer sample pro-
cessing system using o-ring seals and the sample
is introduced by mechanically snapping the end
of the glass flame-seal (Lott and Jenkins 1998).
In the case of crimped or clamped copper tube
samples, a similar extraction procedure can be
used on-shore, but after introduction to the
evacuated sample line, samples are stirred at
room temperature and the aluminosilicate glass
ampoules are chilled with liquid nitrogen.
Alternatively, some research groups directly
attach copper tube samples to the mass spec-
trometer and extract ‘‘in-line’’ (Beyerle et al.
2000; Sano and Takahata 2005). For the custom-
made glass bottles, no extraction is necessary; the
gas partitions between the headspace in the bottle
and the water (90–99 % in the headspace,
depending on the gas) at a known temperature and
the water is drained by vacuum filtration prior to
analysis (Emerson et al. 1999).

2.2 Sample Analysis

The noble gases are typically analyzed by quad-
rupole mass spectrometry (QMS) or magnetic
sector mass spectrometry. Some methods analyze
for only one or two noble gases (Emerson et al.
1999; Hamme and Emerson 2004a) whereas
other systems are set up to analyze for all five
noble gases from a single sample (Beyerle et al.
2000; Sano and Takahata 2005; Stanley et al.
2009a). The analysis can be conducted by peak
height comparison with a standard or by isotope
dilution. If the measurements are conducted on an
isotope ratio mass spectrometer, then one gas
concentration, often Ar, is determined by isotope
dilution and the other gases are determined by
ratios to that one gas (Hamme and Severinghaus
2007; Severinghaus et al. 2003). The noble gases
are commonly chemically purified, often by use
of getters, then condensed onto a charcoal and a
stainless steel cryogenic trap at 8 K (Stanley et al.
2009a), onto two charcoal traps with one at liquid

N2 temperature (77 K) and the other at dry ice/
acetone temperature (196 K) (Sano and Takahata
2005), or onto a trap at liquid He temperature
(4 K) (Hamme and Severinghaus 2007; Sever-
inghaus et al. 2003) Methods that measure all five
gases from a single sample have precision of 0.3–
1.0 % using a magnetic sector instrument
(Beyerle et al. 2000) to 0.1–0.2 % using a series
of two automated cryogenic traps and a QMS
(Stanley et al. 2009a) and to 0.15–0.17 % for Ar,
Kr and Xe only using an isotope ratio mass
spectrometer (Hamme and Severinghaus 2007;
Severinghaus et al. 2003). Many of the methods
also measure a number of different isotopes of
each of the noble gases.

When analyzing a sample for a suite of noble
gases, one must consider ‘‘matrix effects’’ (also
referred to as ‘‘chemical slope’’) of one noble
gas on another, either within the mass spec-
trometer itself (due to issues such as collisions,
competition for ionization, etc.), or within the
cryogenic trapping systems used for separating
the noble gases. Additionally, the presence of
other gases in the instrument such as methane,
hydrogen, and nitrogen, have been shown to
affect noble gas analysis (Stanley et al. 2009a).

High precision helium isotopic analysis is
usually performed on a branch tube magnetic
sector mass spectrometer using simultaneous
collection of the two isotopes. Helium can be
readily separated from other gases by chemical
gettering and cryogenic separation (Lott and
Jenkins 1984, 1998). Because of the large iso-
tope ratio (4He/3He*106) 4He is measured with
a faraday cup and electrometer while 3He is
measured by pulse counting with an electron
multiplier. With a stable system, the ultimate
limitation to the precision of the measurement is
3He ion counting statistics. For a ‘‘typical’’
50–100 g water sample with approximately
atmospheric helium isotope ratio, a precision of
0.15 % is commonly achieved.

2.3 Solubilities in Water
and Seawater

When exposed to the atmosphere, the noble
gases dissolved in seawater will tend to come to
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equilibrium concentrations. For each noble gas,
these solubility concentrations are a function of
temperature, salinity, and pressure. Physical
processes such as bubble injection, rapid tem-
perature changes, and ice formation/destruction
serve to drive gas concentrations away from
solubility equilibrium (Fig. 2), so it is the satu-
ration anomalies (deviations from solubility
equilibrium) that are the important observables.
Determinations of solubility equilibrium con-
centrations as a function of temperature and
salinity have been made in the laboratory
(Hamme and Emerson 2004b; Smith and
Kennedy 1983; Weiss 1971; Weiss and Kyser
1978; Wood and Caputi 1966), but with varying
degrees of accuracy (e.g. Hamme and Emerson
2004b; Hamme and Severinghaus 2007). The
size of noted discrepancies (and hence uncer-
tainties in saturation anomalies) are often sig-
nificant compared to the effects observed,
especially for Xe, and hence limit the quantita-
tive strength of interpretation. It is hoped that the
current expansion of interest in oceanic noble
gas abundances will motivate a new effort to
refine these measurements to at least the quality
of the current measurement capability.

3 Air-Sea Gas Exchange

One of the very fruitful applications of noble
gases is the determination of air-sea gas
exchange fluxes. Air-sea gas exchange is a cru-
cial part of the biogeochemical cycle of climat-
ically important gases (CO2, DMS, N2O).
Additionally, accurate knowledge of air-sea gas
exchange fluxes is imperative when using gases
as tracers for biogeochemical processes. Air-sea
gas exchange fluxes are very difficult to measure
directly and thus most researchers use parame-
terizations that yield air-sea gas exchange fluxes
in terms of easily measured variables such as
wind speed. Noble gases are potentially power-
ful tools for diagnosing air-sea exchange pro-
cesses, since their distributions are controlled by
purely physical and physicochemical mecha-
nisms. Molecular diffusivity, which varies by a
factor of seven over the suite of noble gases,

plays an important role both in diffusive air-sea
gas exchange and in bubble injection processes.
Solubility, and in particular its dependence on
temperature, which varies by more than an order
of magnitude over the suite of noble gases, is an
important driver for gas exchange when signifi-
cant heat transfer occurs, either during radiative
warming in the summer months, or in water
mass formation processes during the winter.
Thus the contrasting behaviors of noble gases
are useful diagnostics of a potentially complex
interplay between different processes in the
oceanic environment.

3.1 Separating Bubble Component
from Diffusive Gas Exchange

Wave action at the sea surface forms bubbles
(most visibly in ‘‘white caps’’) that can be
carried downward many meters in the water
column by vertical water motions and turbulence
(e.g. Thorpe 1984). Increasing hydrostatic pres-
sure with depth tends to force the bubbles to
partially or completely dissolve, tending to
enhance dissolved gas concentrations. Helium
and Ne are the least soluble noble gases and
therefore are most sensitive to bubble processes.
Argon, Kr and Xe are the most soluble noble
gases with a strong temperature dependence to
solubility and are thus more sensitive to diffu-
sive gas exchange. Initial work used a time-
series of only two noble gases, He and Ar
(Spitzer and Jenkins 1989) or Ne, Ar, and N2

(Hamme and Emerson 2006) to separate diffu-
sive gas exchange from bubble processes. In
both studies, bubble processes were further
separated into two end-members (Fuchs et al.
1987; Jenkins 1988b): (1) some bubbles, typi-
cally small ones, that dissolve completely and
therefore inject air of atmospheric abundances
and (2) other bubbles, typically larger ones, that
are injected, partially dissolve, and then rise
back to the surface, therefore fractionating the
noble gases according to permeation rate.
Hamme and Emerson (2006) found at the Sta-
tion ALOHA in the subtropical Pacific that
bubble flux was important for Ar—and therefore
by extension for O2—and that the ratio of
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completely to partially trapped bubble fluxes is
between 1:1 and 2:1.

Including all five noble gases (He, Ne, Ar, Kr
and Xe) increases the power of noble gases for
constraining air-sea gas exchange rates (Stanley
et al. 2006; Stanley et al. 2009b), yielding con-
straints on the diffusive part of gas exchange to
±10 % and the bubble component to ±15 %. A
three-year time-series of all five noble gases in
the Sargasso Sea (subtropical North Atlantic)
illustrates the difference in response of the noble
gases to physical forcing (Fig. 3). Helium and
Ne are supersaturated by several percent in the
upper 150 m and show relatively little seasonal
variation, due to a first order balance between
bubble injection and diffusive gas exchange. In
contrast, Ar, Kr and Xe show a strong seasonal
cycle, with large saturation anomalies in the
summer, particularly below the mixed layer,
produced by seasonal warming. By combining
inverse modeling with the noble gas data,
Stanley et al. (2009b) produced a parameteriza-
tion of air-sea gas exchange that explicitly
includes bubble processes, is based on an inter-
mediate and relevant time scale, and has tighter
constraints than many existing parameteriza-
tions. They too found that bubble injection is
important for all noble gases, even the more
soluble ones such as Xe, and by extension is
likely to be important for CO2 in high wind
speed events. Additionally, they found that
completely trapped bubbles, i.e. ‘‘injected’’ ones
were much more important than partially trap-
ped ones, i.e. ‘‘exchanged’’ ones, with com-
pletely trapped bubbles comprising [90 % of
the bubble flux in most cases.

Numerical modeling must be combined with
the noble gas data in order to constrain air-sea
gas exchange. Bulk mixed layer models (PWP),
which have been modified for use with the noble
gases (Hamme and Emerson 2006; Spitzer and
Jenkins 1989; Stanley et al. 2006; Stanley et al.
2009b) are used in the studies mentioned above.
Additionally, Ito et al. (2011) have included Ne
and Ar into the off-line ECCO model (MIT-
GCM) in order to examine gas exchange and
diapycnal diffusivity in the Pacific Ocean.

Additionally, the noble gas 3He has been used
in conjunction with the gas SF6 to quantify air-
sea gas exchange (Ho et al. 2006, 2011;
Nightingale et al. 2000; Salter et al. 2011; Smith
et al. 2011; Watson et al. 1991). This approach
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Fig. 3 Saturation anomalies of the five noble gases,
calculated from in situ temperature and salinity, in the
upper 160 m of the Sargasso Sea, as measured in a three
year time-series at the Bermuda Atlantic Time-Series
study site. Because the noble gases track physical
processes and have a wide range of solubilities and
molecular diffusivities, measurements of all five noble
gases provide tight constraints on air-sea gas exchange
rates. The white dots correspond to sample depths and the
thin white line denotes the mixed layer depth. Figure
modified from Stanley et al. (2009b)
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yields parameterizations of air-sea gas exchange
on time-scales of several days and does not
distinguish between bubble-mediated and diffu-
sive gas exchange. The approach rests on the
fact that 3He and SF6, both inert gases, have very
different gas transfer rates, with 3He being
exchanged quickly and SF6 being exchanged
much more slowly. A known mixture of 3He and
SF6 is deliberately injected into a patch of water.
The patch is followed and the decline in gas
concentration is measured over several days; the
change in the ratio of the gases is used to
quantify air-sea gas exchange. Several parame-
terizations determined by this dual tracer
approach are widely used (Ho et al. 2006;
Nightingale et al. 2000).

3.2 High Latitude Ventilation

Air-sea gas exchange processes are important in
setting gas concentrations during water mass
formation in the high latitudes. Water in the high
latitudes is rapidly cooled, leading to an under-
saturation of some gases, and there has long been
the question of the extent to which gases reach
equilibrium before the water is subducted. This
question is particularly important for evaluating
the strength of the solubility pump of CO2. Noble
gases can be used to determine the degree to
which gases reach equilibrium. Hamme and
Severinghaus (2007) used noble and inert gas
concentrations (Ne, Ar, Kr, Xe, and N2) in the
intermediate and deep waters at Station ALOHA
in the subtropical North Pacific and a time-
dependent model of deep convection in the
Labrador Sea to examine the relative importance
of bubble injection, gas exchange due to cooling,
and sea level pressure for setting deep ocean
concentrations of gases. The difference in physi-
cochemical properties of the noble gases allowed
separation of the processes. Deep water Ne satu-
ration anomalies are positive (i.e. supersaturated)
due to the influence of bubbles and the relative
insensitivity to rapid cooling (Fig. 4). In contrast,
deep water Ar, Kr and Xe saturation anomalies are
negative (i.e. undersaturated) due to rapid cool-
ing. It is clear that it is rapid cooling, and not sea
level pressure, that causes these undersaturations

because sea level pressure variations would affect
all gases equally but the undersaturation is
stronger for Kr and Xe than for Ar.

Noble gas measurements have also been used
in conjunction with three box and seven box
models, to examine the extent at which high
latitude waters reach equilibrium before venti-
lation. Nicholson et al. (2010) used profiles of
Ar, Kr, as well as Ar isotopes from the northwest
Pacific, subtropical North Pacific, and tropical
Atlantic oceans to estimate the size of the high
latitude ventilation area. They showed that the
area for high latitude ventilation is much smaller
than the area of enhanced preformed nutrients,
suggesting that the CO2 solubility pump is
weaker than box models previously predicted.
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4 Diapycnal Mixing

Noble gases are powerful tools for constrain-
ing diapycnal mixing rates in the ocean inte-
rior. Constraining diapycnal mixing rates is
important for understanding the transport of
heat and nutrients in the ocean. As Bieri et al.
(1966) first suggested, noble gas measurements
can be used to estimate basin-scale diapycnal
diffusivity coefficients. Models of different
complexity, ranging from simple theoretical
schematics and box models (Henning et al.
2006; Ito and Deutsch 2006; Ito et al. 2007) to
GCMs (Henning et al. 2006; Ito et al. 2011)
have been used to show the effects of dia-
pycnal diffusivity on Ar saturation. Including
other noble gases in the analysis would likely
offer better constraints on diapycnal diffusivity
since Kr and Xe have stronger temperature
dependence to solubility and a smaller contri-
bution from bubbles.

The basic premise behind this approach is that
because of the curvature in the dependence of
solubility of the heavier noble gases (Ar, Kr, Xe)
on temperature, mixing between water of two
different temperatures leads to a positive satura-
tion anomaly (Fig. 5). The magnitude of this
saturation anomaly depends on the temperature
difference of the waters being mixed. The behav-
ior of noble gases is conservative in the ocean
interior. Thus the observed saturation anomaly of
a noble gas in the ocean interior can be considered
a sum of two components: (1) a preformed com-
ponent based on gas exchange, bubble injection,
and sea level pressure variations when the water
was subducted and (2) a mixing component that is
the product of noble gas solubility, mixing ratio of
low latitude surface waters, and temperature
gradients (Ito and Deutsch 2006). Therefore
measurements of noble gas saturation anomalies
along a transport path from an outcrop to the
ocean interior can be used to constrain the dia-
pycnal diffusivity rate. Ito et al. (2007) used Ar
data from the North Pacific in order to estimate a
diapycnal diffusivity rate of 0.35 ± 0.21 9

10-4 m2 s-1. However, uncertainties arise from
interannual variability in air-sea fluxes at the

outcrop, bubble effects, strong thermal gradients
and sparse sampling.

Modeling studies have shown that this method
is most promising for the subtropical gyres
(Henning et al. 2006; Ito et al. 2011) and indeed
the only study actually using data to determine
the mixing rates was in the subtropical gyres
(Ito et al. 2007). The approach does not work well
if the advective time scale is shorter than the
diffusive time scale, for example in the equatorial
regions, in the strong Western boundary currents
(i.e. Kuroshio or Gulf Stream), or in the unven-
tilated shadow zones (Gehrie et al. 2006; Henning
et al. 2006; Ito et al. 2011).

5 Ocean-Cryospheric interaction

The interaction of the ocean with the cryosphere,
either by seasonal sea ice formation and destruc-
tion, or the subsurface melting of grounded gla-
ciers, plays an important role in modifying the
density properties of seawater and hence in the
formation of deepwater. The presence of a separate
phase, namely ice, creates a potential for affecting
the dissolved gas composition of seawater. The
creation and destruction of sea ice, for example,
may serve to differentially enhance or deplete
gases according to their respective solubilities in
the ice lattice (Fig. 2). The noble gases are poten-
tially unambiguous tools for detecting and quan-
tifying the relative contributions of these processes
because of their conservative nature in seawater.
We mention three different applications, two of
which have been at least partially exploited, and
one that may hold promise in the future.

5.1 Sea Ice Formation
and Destruction

In polar regions, rapid extraction of heat can form
sea ice, a process that increases the density of the
remaining seawater by increasing salinity due to
brine rejection. This contributes to the formation
of deep and bottom waters and potentially to the
planetary scale overturning circulation. The for-
mation of ice serves to fractionate gases based on
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their atomic or molecular size: the ice lattice can
accommodate only the smaller species while it
rejects the larger ones. This was observed in ice
covered stratified Antarctic lakes (Hood et al.
1998) where several fold supersaturation in Ar
was observed coincident with a several fold un-
dersaturation of He and Ne. This was argued to be
the result of the fact that He and Ne were more
soluble in ice than in water, while Ar (and by
inference Kr and Xe) were much less soluble in
ice than in water.

Laboratory experiments confirmed this dif-
ferential solubility effect in fresh water and
seawater for He, Ne, and Ar (Postlethwaite
2002; Runham 2001) and a time-series in a
coastal salt water lagoon on Hokkaido
(Postlethwaite 2002) showed similar effects. A
subsequent noble gas study in the Japan/East Sea
by Postlethwaite et al. (2005), combined with
oxygen isotopes, provided some evidence of the
contribution of sea ice formation in the Tatarskiy
Strait to bottom water formation in that basin.

5.2 Basal Melting of Glaciers

The formation of glacial ice is a complex pro-
cess that results in the entrapment of air bubbles.
Glaciers near the coast often flow toward and
into the sea where they extend outward. Contact
between relatively warmer seawater and the
underside of floating ice shelves results in
melting of the ice and release of ice-entrapped
bubbles at elevated hydrostatic pressure. This in

turn leads to large observed excesses of He
(Schlosser 1986; Schlosser et al. 1990;
Weppernig et al. 1996) and likely other noble
gases. The injection of these gases has a slightly
different signature than the injection of air
bubbles from air-sea gas exchange because the
melting of the glacial ice also changes the
salinity and temperature of the water (Fig. 2).
Schlosser and co-workers (Schlosser 1986;
Schlosser et al. 1990; Weppernig et al. 1996)
pointed to dissolved He excesses in polar waters
as resulting from the sea-water induced melting
of the ice shelf at high hydrostatic pressure: a
signature of the forced dissolution of atmo-
spheric gases occluded in the ice during melting
at depth (Gow and Williamson 1975; Martinerie
et al. 1992). In combination with other tracer
information (particularly stable isotopes) they
very effectively used this to constrain the role of
sub-glacial melt-water in the formation of
Weddell Sea bottom water.

More recently, this approach has been
extended into the southeast Pacific to include
Ne, and applied to estimate the volume flux of
melt-water from the western Antarctic shelves to
be of order 7 mSv (Hohmann et al. 2002).
A He–Ne simulation based on a regional cou-
pled ice-ocean circulation model has been pub-
lished (Rodehacke et al. 2007) that reveals not
only the diagnostic potential of He and Ne, but
also that they not surprisingly serve to ‘‘low-pass
filter’’ seasonal/regional variability on the time-
scales near the flushing time of the sub-shelf ice

(a) (b)

Fig. 5 Cartoons depicting the effect of diapycnal mixing
on argon saturation state. a Because of the non-linearity of
the solubility temperature dependence of Ar (solid line,
curvature exaggerated for clarity), mixing of two water
masses (filled circles) produces Ar saturation anomalies
above a conservative mixing line (dash line). b Diapycnal

mixing increases the Ar saturation anomaly whereas
horizontal ventilation brings the Ar saturation anomaly
toward its surface value. The relative strength of diapyc-
nal mixing vs. horizontal ventilation determines the
gradient of the Ar saturation anomaly along an isopycnal
surface. Figure reproduced from Ito et al. (2007)
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cavern; viz., 2–3 years. He and Ne data, along
with the stable isotopic ratio of water
(H2

18O/H2
16O), have been used on the Ross Ice

Shelf to estimate the concentration of glacial
meltwater in that environment (Loose et al.
2009). By combining the meltwater concentra-
tion with age estimates calculated by CFC transit
time distribution curves, Loose et al. (2009)
calculated a basal melting rate for the ice shelf.

One challenge, however, with the interpreta-
tion of He and Ne anomalies alone is that air
injection associated with air bubbles produced
by surface waves and forced into solution
hydrostatically can generate saturation anoma-
lies in approximately the same ratio as that
inferred from glacial melt: 0.78 vs. 0.76
respectively. Although the authors in the above
studies make convincing arguments based on the
spatial distribution of the anomalies such that the
effects are safely attributed to glacial melting,
there still exists the potential for an underlying
residual ambiguity. The Ar/Ne and Ar/He ratios
of the gases trapped in glacial ice are approxi-
mately half the atmospheric ratio (Huber et al.
2006). Therefore, measurement of Ar (and also
Kr and Xe) anomalies in seawater offers an
opportunity to resolve this ambiguity and obtain
a more accurate assessment of glacial melt input.

5.3 Underplating of Floating Ice
Shelves

Basal melting of ice shelves produces colder and
less saline water at depth that, because it is more
buoyant than surrounding seawater, tends to flow
upward under the shelf, entraining surrounding
waters. This Ice Shelf Water (ISW), as it
decompresses, becomes supercooled and forms
frazil ice crystals that underplate the shelf
(Smedsrud and Jenkins 2004). This process
results in accretion of large amounts of submarine
ice on the base of the shelf (Holland et al. 2007).
The formation of marine ice may result in strong
fractionation favoring the larger atomic diameter
gases (Ar, Kr, and Xe) relative to He (and pos-
sibly Ne) in the residual ISW. In principle,

measurement of the suite of noble gases in ISW
emerging from under, for example, the Ronne Ice
Shelf could provide valuable constraints on the
magnitude of such processes.

6 Ocean Circulation

Tritium (3H) decays with a 12.31 year half-life
(MacMahon 2006) to 3He, a stable, noble gas
isotope. The primary source of 3H to the con-
temporary ocean is from 3H created by the
atmospheric thermonuclear bomb tests in the
1960s. Thus, the 3H/3He system is most useful
for dating water that has been at the surface
within the last 50 years. When the water is at the
surface, excess 3He, i.e. 3He concentration above
the solubility value, is almost completely lost
due to gas exchange with the atmosphere. 3He is
measured as the 3He/4He isotope ratio (R)
anomaly of the sample (X) relative to the
atmospheric standard (A), defined as

d 3He ¼ 100
RX

RA
� 1

� �

When in equilibrium with air, seawater is
depleted in 3He since it is slightly less soluble
than 4He (Benson and Krause 1980; Weiss
1970), with d3He * -1.7 %. As water des-
cends from the surface layer and ages, excess
3He builds up and 3H correspondingly decreases.
The sum of 3He and 3H, f, acts as a dye-like,
stable tracer that responds to mixing and dilution
and thus is useful for studying ocean circulation
and thermocline ventilation (Jenkins 1987, 1991,
1998). Additionally, 3He (u) and 3H (#) con-
centrations can be combined with the radioactive
decay equation to calculate the tritium-3He age,
s, of the water, a measure of time since a water
parcel left the surface (Jenkins 1977; Jenkins
1987; Jenkins, et al. 1972) according to

s ¼ 1
k

log 1 þ u
#

� �

where k is the radioactive decay constant for 3H.
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Figure 6 depicts the distribution of tritium-3He
age in years on a constant density anomaly hori-
zon (r0 = 26.5 kg m-3) in the Pacific, largely
based on World Ocean Circulation Experiment
(WOCE) stations taken during the late 1980s and
early 1990s. We plot properties on a potential
density horizon because the ocean is density
stratified and water tends to move along these
horizons. This horizon corresponds to the
approximate base of the directly ventilated layer
in the North Pacific and the main thermocline in
the South Pacific (Huang and Qiu 1994, 1998).
It lies at a depth of about 200 m in the tropics,
deepens to about 500–600 m in the western sub-
tropics, and shoals to the ocean surface in the high
latitudes. The distribution of tritium-3He ages is a
semi-quantitative representation of the ventila-
tion time-scales of this horizon (see discussion
below) and bears a general resemblance to other
ventilation tracer age distributions such as
CFC-ages (Doney et al. 1997; Warner et al. 1996).
Note the penetration of younger waters emanating
from the high latitude southeast South Pacific and
northwest North Pacific, and the fact that the mid-
latitude contour lines show an imprint of the large-
scale anticyclonic gyre circulation. The age dis-
tributions are also characterized by intense,
poorly ventilated shadow zones (Luyten et al.
1983) in the eastern equatorial and subequatorial
Pacific. These regions coincide with very low
tritium values (and hence weak ventilation) and
zonally extended, high nutrient plumes that
straddle the equator.

It is possible that the tritium-3He age
distributions shown in Fig. 6 may be influenced
by an additional source of non-atmospheric 3He,
namely volcanic 3He released from sea-floor
spreading centers (see Sect. 7). However, despite
the relatively large volcanic 3He plumes evident in
Pacific deep water, there are several reasons to
suspect that volcanic 3He does not strongly
influence the shallow tritiugenic 3He distributions
in the subtropical and tropical regions. The first
stems from the recognition that abyssal waters are
more slowly ventilated than the shallow, wind-
driven circulation. The deep waters overturn on
century-to-millennium time-scales while the

shallow thermocline is ventilated on decadal time-
scales. Thus, the abyssal volcanic 3He plumes are
larger due to longer accumulation times.

Second, it is known from hydrography, trac-
ers, and inverse models that the circulation and
exchange of shallow and deep waters in the
Pacific are not strongly linked (e.g., Wijffels,
et al. 1996; Wijffels, et al. 2001), with the bulk
of Pacific deep waters (and hence the volcanic
3He signature) being exported to the Antarctic
Circumpolar circulation (Well, et al. 2003).
Third, the meridional distribution of excess 3He
in the Pacific is dominated in the vertical by a
minimum at a potential density anomaly level of
approximately 26.8–27.0 kg m-3 (Jenkins 1996)
suggesting little upward transport of volcanic
3He into the thermocline from below. This can
be seen in the meridional distribution of this
isotope in the Pacific (along 135�W, Fig. 7).
In the upper part of the northern subtropical
water column, the 3He distribution has a char-
acteristic tritiugenic maximum in the thermo-
cline (at about 500 m depth near 30�N) that
shoals southward into the tropics. This maxi-
mum, also seen in Atlantic waters (see Jenkins
1988b) bears a striking relationship with the
observed tritium distribution (see Fig. 8),
tracking the tritium plume penetration south-
ward into the tropics. Note the hemispheric
asymmetry in the tritium distributions (and the
consequent asymmetry in the tritiugenic 3He)
due to the dominant northern hemispheric
delivery of this isotope due to the bomb tests
(Doney, et al. 1992; Weiss and Roether 1980). A
3He minimum lies below the tritiugenic 3He
maximum, separating the ventilated (and triti-
ated) shallow waters from the deeper volcanic
3He contaminated waters. The depth of this
minimum (* 800 m) corresponds to the zero in
vertical velocity observed in Wijffels’ (2001)
inverse calculations.

Finally, one needs to consider the compara-
tive magnitudes of the volcanic and tritiugenic
3He fluxes. The global volcanic 3He flux has
been estimated to be between 500 and 1,000 mol
y-1 (Bianchi et al. 2010; Farley et al. 1995),
corresponding to an average flux of
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Fig. 6 The distribution of
tritium-3He age (in years)
on the 26.5 kg m-3

potential density anomaly
horizon in the Pacific, as
measured during the World
Ocean Circulation
Experiment (1989–1995).
Grey dots indicate sampling
locations. The depth of this
horizon ranges from the
near surface in high latitude
regions to in excess of
600 m in the western
subtropics, and shoals to
100–200 m in the tropics
(see map in upper right of
figure)
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approximately 3 9 104 atoms m-2 s-1. We can
compare this to a basin-wide tritium deposition
of *900 MCi by 1972 (Weiss and Roether
1980), leading to tritiugenic 3He production rate
of 1.5 9 105 atoms m-2 s-1, or about 5 times
larger than the volcanic 3He flux.

Mixing further complicates the tritium-3He age.
This can be seen by considering the time-dependent
advection–diffusion equation for the age-tracer:

os
ot
¼ r jrsð Þ � ~u � rs þ 1

þ j
r#
#
þrf

f

� �
� rs

[see Jenkins (1987) for a derivation] where j is
the turbulent diffusivity tensor (largely aligned
along isopycnal surfaces), 0 is the tritium
concentration and f is the sum of tritium and 3He
concentrations. The equation closely resembles
that of an ideal age tracer (one that is advected
and diffused) except for the last composite

‘‘non-linear’’ term, largely driven by the fact that
tritium (and hence tritiugenic 3He) is a transient
tracer. The form of this last term and the typical
signs of the 0 and f gradients leads to an
augmented ‘‘pseudo-velocity’’ that tends to lower
the tritium-3He age relative to that of an ideal
ventilation age (Jenkins 1987).

In directly subducted shallow water regimes
such as the shallow thermocline in the eastern
subtropical gyres, the non-linear contribution to
the age is relatively small (Jenkins 1998; Robbins
and Jenkins 1998). However, it can be quite
significant for indirectly ventilated regions and
deeper in the thermocline (Jenkins 1991, 1998).
Using an appropriately designed experiment, i.e.,
by documenting the three dimensional distribu-
tion of these (and other) properties, these terms
can be adequately evaluated and robust results
can be gained (Jenkins 1998). Moreover, they can
be crudely accounted for using box models
(Jenkins 1980) or transit time distribution models
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(Stanley et al. 2012). Estimates of s can then be
combined with oxygen distributions to calculate
oxygen utilization rates, a measure of export
production (see Sect. 8.3).

The distributions of 3He and 3H in the upper
thermocline have been used to investigate ther-
mocline ventilation and shallow ocean circula-
tion in the Northern hemisphere (Jenkins 1998,
2008; Robbins et al. 2000). Jenkins (1998) used
a 13 year time-series of 3H and 3He in the Sar-
gasso sea, in combination with measurements of
salinity and oxygen, to calculate absolute
velocities (given by the 3H and 3He data com-
bined with geostrophy), isopycnal diffusivities,
and oxygen consumption rates. The dilution of
the inventory of tritium in the thermocline sug-
gested that the gyre could be considered to have
two regions: a western one with cross streamline
mixing and an eastern one that is principally
advectively ventilated. 3He and 3H have also
been used to study the ventilation of the lower
subtropical thermocline, showing that the
Azores current forms a barrier for the southward
invasion of mass from isopycnal surface out-
crops with only diffusive ventilation across the
front for lower thermocline waters (Robbins
et al. 2000). More recently, in the East/Japan
sea, a time-series of 3He, 3H, and CFC data, used
in conjunction with a multi-box model, were
used to estimate time-changing water mass for-
mation rates and vertical exchange (Jenkins
2008). Jenkins found that there was an approx-
imate order of magnitude decrease in deep water
formation rates since the 1960s, accompanied by
a shift from sea ice/brine rejection processes to
shallow, open ocean convection as the dominant
mode of deep and bottom water ventilation.

7 Ocean-Lithosphere
Interactions

It has been known for more than a century that the
residence time of helium in the atmosphere
against loss to outer space is of the order of a few
million years or less (Bryan 1901; Cook 1902;
Stoney 1905)—much shorter than the age of the

earth—and it was supposed that the present day
atmospheric inventory of the more abundant
isotope 4He was supported by the degassing of
radiogenically produced 4He from the decay of U
and Th series isotopes in the solid earth (Turekian
1959). The residence time of the rarer isotope 3He
in the atmosphere is even shorter (Axford
1968)—less than a million years—and there was
a mystery as to how even its meager atmospheric
inventory was supported. Production from the
decay of cosmic ray produced tritium (Craig and
Lal 1961) is at least an order of magnitude too
small, as is the lithogenic production by
6Liðn; aÞ3H ! 3He reactions (Andrews 1985).
The neutrons for the latter are produced by ther-
malization of fast neutrons induced by ða; nÞ
reactions in rocks, where the a particles are pro-
duced by decay of U and Th series radionuclides.

The discovery of excess 3He in Pacific deep
waters (Clarke et al. 1969) led to the realization
that this isotope was primordial (inherited during
the formation of the earth) and emanating from
volcanic activity on the seafloor. This conclu-
sion was briefly contested (Fairhall 1970) but
shown to be quantitatively sound (Craig and
Clarke 1970). The hypothesis was further borne
out by subsequent observations near hydrother-
mal vents (Jenkins et al. 1978, 1980; Lupton
et al. 1980; Sakai et al. 1987) and in basaltic
glasses from the sea floor (Kurz and Jenkins
1981; Kurz et al. 1983; Lupton and Craig 1975).
It also led to the first firm quantification of the
present day degassing rate for the earth. Based
on radiocarbon chronometry of abyssal waters,
the global 3He degassing rate was estimated to
be of the order of 500–1,000 mol y-1 (Craig and
Clarke 1970) a rate later refined by more
sophisticated modeling (Bianchi et al. 2010;
Dutay et al. 2004; Farley et al. 1995).

The injection of primordial 3He into the deep
waters occurs at mid-ocean ridges, i.e. sites of
active mantle upwelling, and at mantle plume
hot spots (e.g. Hawaii and Iceland). The injec-
tion of buoyant, very hot (*350 �C) water
drives vertical plumes which extend hundreds of
meters in the water column and are character-
ized by massive entrainment of surrounding
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waters (McDougall 1990; Speer and Rona
1989). Such activity results in clearly discernible
horizontal plumes of 3He that extend from
hundreds to even tens of thousands of kilometers
(see Fig. 9), tracing deep circulation on basin
and global scales. The observation by Lupton
and Craig (1981) of a westward emanating 3He
plume at *15�S in the Pacific apparently run-
ning counter to the presumed cyclonic abyssal
flow (Stommel and Aarons 1960) prompted
Stommel (1982) to point out that these deep
plumes are actively driven by the injection of
buoyant water at depth, thus influencing the
large scale abyssal circulation (Speer 1989).

Substantial excesses of this isotope were
observed at active hydrothermal sites (e.g. Jen-
kins et al. 1978). As a stable conservative tracer,
excess 3He anomalies are visible for tens of
thousands of kilometers (Fig. 9). Combining the
observed correlation of 3He and heat in active
submarine systems with the known global 3He
flux permits estimates of global convective
hydrothermal heat fluxes (Jenkins et al. 1978)
although such estimates are limited by local
decoupling of the two properties and variations
over space and time (Lupton et al. 1989).
Nonetheless, use of the 3He flux gauge for esti-
mating the hydrothermal input of Fe into the
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abyssal Pacific provides useful constraints (Bo-
yle and Jenkins 2008) and can be used to esti-
mate global hydrothermal Fe fluxes (Tagliabue
et al. 2010).

Because of its persistence in subsurface
waters, 3He excesses can be widely distributed
in the ocean, far from its sources. For example,
3He injected into deep waters in the Pacific can
be traced into the Antarctic Circumpolar Current
(Garabato et al. 2007; Well et al. 2003) and into
the Atlantic Ocean (Jenkins and Clarke 1976;
Ruth et al. 2000), where slow seafloor spreading
rates result in more modest volcanic 3He injec-
tions. Ruth et al. (2000) have used optimum
multiparameter analysis (Tomczak 1981) to
separate a local hydrothermal plume signature in
the South Atlantic from background contribu-
tions from waters of Pacific origin.

Finally, it should be recognized that isotopic
ratio of ‘‘terrigenic’’ helium shows substantial
variations due to significant variations in the
‘‘mantle’’ helium isotope ratio (Kurz et al. 1982;
Kurz et al. 1983), as well as the contribution of
radiogenic 4He due to a-day of U and Th series
isotopes and lithogenic helium due to
6Liðn; aÞ3H ! 3He reactions (Andrews 1985;
Morrison and Pine 1955). It should be possible in
principle to evaluate the two contributions by
using the saturation anomaly of He in seawater,
but the latter is complicated by a variable atmo-
spheric excess driven by surface bubble injection
processes (see earlier sections). A variety of
schemes have been suggested and used, pio-
neered first by Bieri and others (Bieri et al. 1964,
1966, 1967; Roether et al. 1998; Well et al. 2001).

8 Biogeochemical Processes

The noble gases, being biologically and chemi-
cally inert, cannot give direct information, by
themselves, about biological processes in the
ocean. However, they can be very useful if
combined with biologically active species since
the noble gases can constrain physical processes,
allowing the biological and physical components
to be separated when considering the behavior of
the biologically active gas. Gases are useful

tracers of biological production for several rea-
sons. First, the measurements are made in situ,
requiring no manipulation of the biological
communities, and thus avoiding so called bottle
effects (Harrison and Harris 1986; Peterson
1980; Scarratt et al. 2006) that radiotracer bottle
incubations may include. Second, the gas tracer
based estimates integrate over larger temporal
and spatial scales than bottle incubations. For the
O2/Ar pair (Sect. 8.1), the time scale is approx-
imately one to two weeks, depending on the
depth of the mixed layer and the magnitude of the
gas transfer velocity. For the helium flux gauge
technique (Sect. 8.2), the integration occurs over
the temporal scale of months to a year and the
spatial scale reflects the gyre. For the 3H/3He
derived apparent oxygen utilization rates (Sect.
8.3), the temporal scale is several years and the
spatial scale reflects the gyre to basin. These long
temporal and spatial scales allows the gas tracers
to give an integrated view of production, rather
than a ‘‘snapshot’’ as may be given by radiotracer
bottle incubations, and makes them more likely
to catch episodic events such as production
stimulated by eddies (McGillicuddy et al. 2007)
or storms (Lomas et al. 2009). The different gas
tracer systems quantify net community produc-
tion, new production, and export production, all
of which should be equal over long temporal and
spatial scales (Eppley and Peterson 1979).

8.1 Oxygen and Argon for Net
Community Production

Most of the research in the area of using noble
gases to quantify biological production has
centered around O2 and Ar. O2 is produced by
photosynthesis and consumed by respiration,
making it reflective of net community produc-
tion. However, O2 also responds to physical
processes such as thermal warming, gas
exchange, and mixing. Ar has similar physico-
chemical properties to O2 (Fig. 1), namely
nearly identical molecular diffusivity in water
and *10 % difference in solubility. These
similarities make Ar an ideal abiotic analogue
for O2. In particular, Ar serves as a good ana-
logue for effects due to warming/cooling and to
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bubble injection. However, Ar is not a good
analogue for vertical fluxes across the mixed
layer, since Ar and O2 are decoupled below the
mixed layer and especially below the euphotic
zone, with O2 decreasing much faster due to
remineralization of organic matter. If the O2 and
Ar measurements are interpreted in the frame-
work of a physical model, such as a one-dimen-
sional mixed layer model, the vertical fluxes can
be accounted for (Hamme and Emerson 2006;
Howard et al. 2010; Spitzer and Jenkins 1989).
Including other noble gases, such as He, Ne, Kr
and Xe in the model can lead to improved con-
straints on net community production estimates
from the O2/Ar mass balance (Stanley 2007).
However, if only mixed layer measurements of
O2 and Ar are made, then assumptions need to be
invoked of steady state production, stable mixed
layer depths, and negligible transport of O2

across base of mixed layer. In regions with a lot
of vertical mixing/local upwelling such as in
large areas of the Southern Ocean, these
assumptions, particularly the latter one, fail; a
recent modeling study shows that measurements
of O2/Ar made in mixed layer only and without
any corrections for O2 fluxes tends to underesti-
mate net community production by 5–35 %
(Jonsson et al).

The utility of the O2/Ar pair was first recog-
nized in the late 1980s (Craig and Hayward
1987; Spitzer and Jenkins 1989). These studies
estimated net community production rates from
either profiles of O2 and Ar made at discrete
locations in the Pacific (Craig and Hayward
1987; Emerson et al. 1991) or from seasonal
cycles of oxygen and argon made at a single
location in the subtropical North Atlantic
(Spitzer and Jenkins 1989). Throughout the next
two decades, O2 and Ar were used to calculate
net community production rates throughout the
world’s oceans, including in the Southern Ocean
(Cassar et al. 2007; Hendricks et al. 2004; Reuer
et al. 2007), Equatorial Pacific (Hendricks et al.
2005; Stanley et al. 2010 ), subtropical Pacific
(Juranek and Quay 2005; Quay et al. 2010), and
North Pacific (Howard et al. 2010).

A recent exciting advance is the development
of small mass spectrometers that can be taken to

sea to measure O2/Ar continuously in the
underway water of a research vessel (Cassar
et al. 2009; Kaiser et al. 2005; Tortell 2005).
Either a membrane inlet system (Kaiser et al.
2005; Tortell 2005) (in the case of a Membrane
Inlet Mass Spectrometer or MIMS) or an equil-
ibrator contact cartridge (in the case of an
Equilibrator Inlet Mass Spectrometer or EIMS)
(Cassar et al. 2009; Hamme et al. 2012; Stanley
et al. 2010) are used in conjunction with a
quadrupole mass spectrometer to produce
records of net community production with sub-
mesoscale resolution. The unprecedented reso-
lution of these NCP records reveals previously
unseen variability in NCP, with NCP changing
by an order of magnitude on scales as small as
tens of kilometers (Fig. 10) (Stanley et al. 2010).
Furthermore, in the Western Equatorial Pacific,
there is a significant but weak correlation of
NCP with temperature and salinity (R2 = 0.18
and 0.33 respectively) with some regions being
more strongly correlated and some regions being
anticorrelated (Stanley et al. 2010). It is likely
that the variations in NCP are related to sub-
mesoscale physical processes such as conver-
gence and divergence zones although such a link
has not been shown definitively.

8.2 The Helium Flux Gauge for New
Production

New production can be estimated from the
upward flux of 3He in an approach dubbed the
‘‘Helium Flux Gauge’’ (Jenkins 1988a; Jenkins
and Doney 2003). As described in Sect. 6, 3He is
the daughter of 3H. Excess 3He is correlated with
nitrate in the thermocline because as water ages,
it gains in nitrate due to continuing reminerali-
zation and gains in 3He due to decay of 3H.
When this water is mixed into the euphotic zone,
it supplies the nutrients needed for new pro-
duction and also carries an excess 3He signal.
Measurements of 3He in the mixed layer can be
combined with a gas exchange relationship to
calculate the air-sea flux of excess 3He to the
atmosphere. It is imperative that the gas
exchange relationship explicitly includes
bubbles, since the bubble flux can be a large
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component of the helium flux. This excess 3He
flux out of the mixed layer must be balanced by
a supply of excess 3He from below on annual or
longer time-scales and thus gives a measure of
the amount of excess 3He being input to the
mixed layer. The correlation between excess 3He
and nitrate can then be used to calculate the
input of nitrate. Thus this calculation predicts
new production based on the physically medi-
ated nitrate flux from vertical transport of ther-
mocline waters—it does not take into account
nitrate from other sources such as nitrogen fix-
ation, zooplankton migration (Steinberg et al.
2000) or lateral transport of DON (Mahaffey
et al. 2004; Williams and Follows 1998).

This method was first used by Jenkins (1988a)
to calculate the rate of new production in the
Sargasso Sea from a two year time-series of 3He
data. Jenkins and Doney (2003) extended the
analysis to a six year time-series of 3He data and
found that the nutrient flux, though quantitatively
consistent with other observations of production
rates, cannot be supplied by local processes. Thus
they proposed a three dimensional circulation
path by which nutrients are returned to the sea-
sonally accessible surface ocean after being
remineralized in the thermocline.

8.3 Oxygen Utilization Rates
for Export Production

A third way in which noble gases can be used to
quantify biological production is through the use
of 3He and 3H to calculate oxygen utilization
rates. As described in Sect. 6, 3He and 3H can be
combined to calculate s, the mean age of a water
parcel, i.e. the time since the water parcel was
subducted. The age of the water can be com-
bined with oxygen data to calculate oxygen
utilization rates. If enough 3H and 3He data are
collected, then true oxygen utilization rates
(OUR) can be calculated (Jenkins 1988b). But if
3H and 3He data are only available at limited
locations/times, as is more common, then
apparent oxygen utilization rates (AOUR) are
calculated, with assumptions being made
regarding the path of the water and the initial
saturation state of oxygen (Jenkins 1980, 2008;
Klein et al. 2003; Stanley et al. 2012; Takahata
et al. 2008). The vertically integrated AOUR is a
measure of the regional export production; it
reflects a projection of geographic and horizon-
tally distributed processes working on individual
isopycnal layers (Stanley et al. 2012) rather than
local export production.
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Fig. 10 a Net Community Production (NCP) rates
through the equatorial Pacific, as determined by O2/Ar
ratios from an equilibrator inlet mass spectrometer. Neg-
ative and ‘‘blacked-out’’ values in the central equatorial
Pacific reflect upwelling rather than net heterotrophy. The
same data are plotted (b) in larger format for the region
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different color scale for the Western Equatorial Pacific. The
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sections of the cruise track. The high-resolution records of
O2/Ar show an enormous amount of small scale variability
in NCP. Figure modified from Stanley et al. (2010)
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8.4 Water Column Denitrification
Rates

A fourth application of noble gases to biological
processes is the use of N2/Ar ratios to quantify
water column denitrification. Denitrification, i.e.
the loss of fixed nitrogen from the ocean, is a key
term in the global nitrogen budget but is currently
not well constrained, leading to some studies
suggesting the nitrogen budget is balanced
whereas other studies suggest the budget has a net
loss of nitrogen (e.g. Codispoti 2007; Gruber and

Sarmiento 1997). Argon can be paired with N2 to
quantify water column denitrification rates
(Chang et al. 2010; Devol et al. 2006; Fuchsman
et al. 2008; Manning et al. 2010). The basis
behind this technique is that all denitrification
processes, whether they stem from NO3 or NH3,
will lead to an increase in N2. Ar is used to nor-
malize the observed N2 excesses for physical
processes, such as the supersaturation due to
mixing (see Sect. 4) and to some extent thermal
heating/cooling. The advantages of this technique
are that it makes no assumption about the form of
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Fig. 11 a Profiles of the
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(N2:Ar)norm, throughout the
SE Pacific including at two
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the Eastern Tropical South
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concentrations and a
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rates. Figure reproduced
from Chang et al. (2010)

Noble Gases in Seawater as Tracers 73



fixed nitrogen consumed, does not rely on the
perhaps erroneous assumption of Redfield stoi-
chiometry, and integrates over larger scales than
bottle incubations.

Argon has been used in conjunction with N2

in calculating denitrification rates in two ways.
In one method, the N2/Ar ratio is used (Fig. 11a)
(Chang et al. 2010; Devol et al. 2006; Fuchsman
et al. 2008; Manning et al. 2010). Profiles of N2/
Ar, normalized to equilibrium values, from
oxygen deficient zones (ODZ) show a significant
excess of N2/Ar in the denitrification zone, i.e.
region of low O2, compared to N2/Ar profiles
from other regions of the ocean (i.e. outside of
the ODZ). The N2/Ar excess can be used to
calculate the amount of N2 lost by denitrification
processes. This N2 loss can then be used in
conjunction with an estimate of the residence
time of water to calculate the denitrification rate.

In the second method (Chang et al. 2010;
Fuchsman et al. 2008), absolute N2 and Ar
concentrations are measured by isotope dilution
with a spike of 36Ar (Fig. 11b and c). A two-end
member mixing model is used to estimate the
effects of diapycnal mixing on the N2 and Ar
concentrations. The absolute N2 excess can then
be calculated by the difference in concentration
of N2 from that predicted by the mixing model.
Again, estimates of the residence time of the
water are needed to convert the excess N2 loss
into a rate of denitrification.

In the Arabian sea, the N2/Ar method for cal-
culating denitrification rates gave a rate that was
twice as high as that predicted by the more typical
‘‘Nitrate-deficit’’ method—a method that relies
on the difference between observed nitrate con-
centration and Redfield N:P ratios (Devol et al.
2006). The difference is likely to result from one
of four causes: (1) non Redfieldian stoichiometry
of remineralized matter, perhaps due to nitrogen
fixers, leading to errors in the nitrate-deficit
method; (2) denitrification of NH3 which is mis-
sed by the nitrate deficit method but included in
the N2/Ar method; (3) water column processes
between Fe, Mn, I and N leading to production of
N2; (4) sedimentary processes that release N2 into
the overlying water. In the Eastern Tropical South
Pacific ODZ, the N2/Ar method yielded estimates

of denitrification that were only 15–30 % larger
than those calculated using the nitrate deficit
method (Chang et al. 2010).

9 Summary

Noble gases in seawater, whether measured indi-
vidually (i.e. 3He for circulation or Ar for diapycnal
mixing), as a suite (i.e. measurements of He, Ne,
Ar, Kr, and Xe made concurrently for air-sea gas
exchange) or in conjunction with biologically
active gases (such as O2/Ar and N2/Ar), are useful
tracers of physical and biological processes.
A number of applications of noble gases exist
presently and it is likely that more applications will
be developed. Until recently, the heavier noble
gases (Kr and Xe) were not easily measured.
Including Kr and Xe in many of the studies men-
tioned above could improve the information
gleaned from the noble gas distributions.
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