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1. Supplementary Methods 
 
1.1. Study Area 

Lake Bosumtwi is a small (~8 km diameter) but deep (~75 meter) stratified lake 

occupying a meteorite impact crater in the tropical forest zone of southern Ghana (Fig. 

S1, S2).  The lake is internally draining and isolated from the regional groundwater 

system, making it exceptionally sensitive to changes in the precipitation-evaporation 

balance 1-3.  Sheltering of the lake by the surrounding crater walls limits deep mixing of 

the water column, resulting in permanently anoxic bottom waters and the preservation of 

fine (mm-scale) laminations, which have been previously demonstrated to be annual in 

nature 4.  Most of the surrounding catchment is forested, except the flat-lying areas, 

which have been converted to agriculture (e.g., maize, plantain, cassava) over the last few 

decades 5. 

In 1999 and 2004, a series of freeze cores, piston cores and drill cores were 

collected from the lake depocenter (Fig. S1)6.  The freeze cores capture the sediment 

water interface intact and were visually correlated to the piston cores using marker 

laminations that could be traced in sediment cores across the central basin 4.  The piston 

cores are finely (mm-scale) and continuously laminated over their entire length, with the 

exception of the interval between 2.1 and 3.9 meters, which is organic-rich and contains 

abundant well-preserved remains of the cyanobacteria Anabaena indicative of eutrophic 

conditions (Unit S1) 4.   Drill cores collected during the Intercontinental Drilling Program 

(ICDP) sediment coring expedition to the lake in 2004 provide a nearly continuous 290-
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meter long sediment record, which spans the last ca. 1.07 Ma 6.  The present study 

focuses on the uppermost 10.6 meters of this sediment sequence preserved in the piston 

cores, which covers the last 25 kyr.   

Located in southern Ghana, the climate of Lake Bosumtwi is heavily influenced 

by the West African monsoon, which draws moisture onshore from the Gulf of Guinea 

during the months of April-October as the monsoon trough migrates northward with the 

sun (Fig. S2).  In winter the winds reverse, and the climate of southern Ghana is 

influenced by hot, dry northeasterly monsoon winds, which inhibit precipitation over 

much of North Africa.  Because of its near equatorial (6°N) location and its proximity to 

the coast, the rainy season is longer and precipitation totals are high near the coast and 

around Lake Bosumtwi (e.g., 1260 mm yr-1) and decrease with increasing latitude 3.   

 
 
1.2 Age depth modeling 

A radiocarbon chronology for the sediment record is based on Bayesian age-depth 

modeling of 107 radiocarbon ages on plant macrofossils and bulk organic matter covering 

the upper 21.4 meters (Fig. S3) 7.  Modeling was performed with the R software package 

BACON 8 and using the IntCal09 radiocarbon calibration curve 9.  Radiocarbon dates 

from overlapping cores were correlated using matches from marker laminae and 

magnetic susceptibility profiles and placed on a standardized depth scale (relative meter 

composite depth scale – RMCD)7.  For modeling purposes, BACON uses the prior 

assumption that ages are in stratigraphic order and that sedimentation rates fall within a 

designated range and follow a long-tailed distribution.  The program models 

sedimentation rates using a simple gamma autoregressive process and generates posterior 

age distributions using a self-adjusting Markov Chain Monte Carlo algorithm 10.  The 

result is a population of possible age-depth models, which reflect the probability 

distributions associated with the analytical radiocarbon age uncertainties as well as the 

uncertainties in the calibrated ages.  

 

1.3 Reconstruction of paleolake highstands 

 The paleolake level history was reconstructed using a combination of radiocarbon 

dated highstand benches identified above the modern lake level, lowstand terraces 
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identified in seismic data and sediment cores, and lacustrine muds deposited above the 

modern lake and preserved on the crater walls (Fig. S4, main text, Fig 2b.; for a more 

detailed description see 1,11).  Radiocarbon dates on roots from a submerged paleoterrace 

indicate that the lake was at least 60 meters lower at 16.3 ka 1,12.  However, laminated 

lacustrine silts 20 meters above the modern lake level indicate that the lake was already 

substantially deeper than today by 14.5 ka.  This recovery was interrupted by a lake level 

regression between 12.9-11.2 ka, followed by a return to deep lake conditions in the early 

Holocene. The early Holocene highstand deposited extensive lacustrine silts on the walls 

of the crater, up to 110 meters above the modern lake, until at least 5.7±0.4 ka 1, though 

significant undated lacustrine silt accumulations above this date indicate that the high 

lake stand persisted much later than this.  A wave-cut notch in the crater rim indicates 

that the positive water balance during the early Holocene resulted in the lake overflowing 

the crater rim 4. Although the lake level record does not completely constrain the end of 

the Holocene lake level highstand, a well-dated terrace 15 meters above the modern lake 

level suggest that it had mostly receded by ca. 2.8-3.5 ka.  Submerged terraces, identified 

in seismic data and confirmed in proxy data suggest that the lake shrank by more than 25 

meters below modern lake level at least twice in the last 2 millennia, the most recent of 

which occurring coincident with the Little Ice Age (1500-1800 AD) 1,13. 

 Constraints on the timing of the maximum lake level come from radiocarbon 

dating of a maximum highstand terrace ca. 110 meters above the modern lake surface and 

cosmogenic surface exposure dating of wavecut bedrock in the overflow spillway at the 

same elevation.  Radiocarbon dates on charcoal from the base of the highstand terrace 

yield an age of 8.6-9.0 ka, which we interpret as indicating the onset of overflowing 

conditions 1.  Cosmogenic radiocarbon surface exposure ages on eroded bedrock from the 

overflow provide an estimate of when water ceased overflowing from the crater.  Earlier 

exposure ages estimates were similar to that obtained from the highstand terrace (9.5±1.5 

ka) 1.  However, a revised age estimate using updated cosmogenic 14C production rate 

estimates and scaling procedures (assuming a spallation production rate of 13.6 

atom/gram/yr at sea level and high latitude 14; and computed with the Cronus calculator 
15), yielded significantly younger ages (5.9±0.9, 6.2±0.9 ka).  Together these data suggest 
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that the lake overflowed for a significant portion of the early Holocene (i.e., between ca. 

9.0 and 6.0 ka), consistent with the δD record. 

 
 
1.4 Stable isotope analysis of leaf waxes 

1.4.1 n-alkane extraction and separation 

1-5 gram sediment samples were freeze dried and solvent extracted using either a 

Dionex Accelerated Solvent Extraction System or a CEM MARS X Microwave 

Extraction System with dichloromethane:methanol (9:1; v/v) to obtain a total lipid extract 

(TLE).  The TLE was partitioned into acid and neutral fractions by aminopropyl flash 

chromatography using 9:1 DCM:MeOH and 2% formic acid in DCM. The neutral 

fraction concentrated under N2 and separated into polar and apolar fractions over silica 

gel with hexane and MeOH. Either urea adduction or molecular sieve was used to remove 

branched compounds and when needed, Ag+ chromatography was used to isolate the 

alkane and alkene fractions prior to stable isotope analysis. 

 
1.4.2 Hydrogen isotope analysis of n-alkanes 

Hydrogen isotope analysis of individual n-alkanes was performed using an 

Agilent 6890 gas chromatograph operated in splitless mode and equipped with a DB-5 

ms column (30m x 0.25µm x 0.25mm), coupled to a Delta V isotope ratio mass 

spectrometer via a pyrolysis interface operated at 1430°C.  H3
+ factors were determined 

daily, and external isotope standards (either the B2 n-alkane or F8 FAME mix, Indiana 

University Biogeochemical Laboratories) were measured between every 6 to 8 samples.  

The external standards had a precision of <±5 ‰.  Coinjection of propane during the 

analysis of the external standards allowed us to determine the isotope value of our 

propane reference tank and allowed us to use the propane as an internal standard within 

each unknown sample analysis. Between three and five propane injections were 

performed during each sample run.  Within each run the propane peaks had a precision of 

<±5 ‰.  Most samples were run in either duplicate or triplicate and the standard 

deviations based on replicate analysis of the same samples was typically <±3 ‰.   

 
 
 

© 2015 Macmillan Publishers Limited. All rights reserved



 5 

1.4.3 Correcting leaf wax hydrogen isotopes for ice volume and vegetation effects 
In this study, we interpret changes in δDwax as reflecting changes in the 

δDprecipitation, which in turn is associated with changes in rainfall amount.  On glacial-

interglacial timescales there is an additional effect on the δD of precipitation associated 

with changes in the isotopic composition of source waters due to changes in ice volume.  

To correct for this effect, we assumed a 1‰ change in δ18O at the Last Glacial Maximum  

(LGM; 16,17.  We converted this change in δ18O to a change in the δD of the glacial ocean 

assuming that the deuterium excess of the ocean was zero 18,19.  We then developed a 

time series of δDocean values spanning the last 20,000 years by scaling these changes to 

the LR04 benthic oxygen isotope stack 20.  Changes in δDocean were then subtracted from 

measured δDwax values to produce a corrected δDwax record (δDcorr.) 

Previous studies of modern vegetation have demonstrated that there is a 

significant negative isotopic fractionation associated with the incorporation of hydrogen 

into leaf waxes 21.  This offset appears to be significantly different for plants using the C3 

and C4 photosynthetic pathways 21, leading to a significant influence on δDwax values 

when vegetation changes are large (as in this study). To address this, we follow a 

procedure similar to that used by other workers (e.g., 22) and use the δ13C values of the 

terrestrial leaf waxes to adjust the δDwax values for the effect of vegetation type.  

Assuming that the dominant control on the δ13Cwax signal is the relative proportions of C3 

woody plants and C4 grasses, we estimate that the proportion of C4 grasses shifted from 

~60% in the deglacial to ~10% in the late Holocene.  The magnitude, abruptness and 

approximate timing of this change are in good agreement with a previously published, 

lower resolution record of changes in grass pollen from Lake Bosumtwi23 (% grass pollen 

shifts from 60% to ~5%), supporting our assumption that the δ13C signal is 

predominantly the result of changes in vegetation type.  Using these δ13Cwax-derived 

estimates of vegetation changes, we estimate the apparent fractionation factor between 

the δDwax (for the C31 n-alkane) and the δDprecipitation(εwax-precip.) using endmember values 

reported for grasses (-145±15‰)24 and tropical forests (-125±5‰)25 following previous 

workers22. 
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Because of the large change in δ13C between the glacial/deglacial period prior to 14.6 ka, 

and the Holocene, this adjustment significant alters the relative magnitude of the changes 

in δDwax over the deglaciation.  However, it makes relatively little difference in the 

overall timing or rate of δD changes in the record (Fig. S5). 

1.5 Synthesis of paleohydrologic records  

To better understand spatiotemporal variations in North African hydroclimate, we 

synthesized available published records from the literature (Table S1, Fig S6a,b, Fig. S7 

animation, main text, Fig. 3).  The synthesis draws upon near-shore paleomarine and 

paleolimnological records based on a wide variety of proxies including stable isotopes 

(δ18O, δ 13C), biological indicators (diatoms, ostracodes, molluscs), stratigraphic dating of 

paleolacustrine deposits and lithological changes, palynological reconstructions of 

vegetation changes, and changes in geochemistry.  We also include all published δDwax 

records spanning the time interval of interest and records of changing terrigenous dust 

fluxes in marine records.  All reported uncalibrated radiocarbon ages were calibrated 

using CALIB7.026. Where possible, we used the interpretations of the datasets as reported 

in the original manuscripts or in existing synthesis papers e.g.,27. Individual site data was 

plotted using the clockwheel approach used previously for the Asian monsoon system 28.  

We excluded data from the non-peer reviewed literature, in which paleohydrologic or 

vegetation inferences were uncertain, and at sites where significant portions of the AHP 

were not covered by the reconstructions. To simplify the diagram, we reduced the stable 

isotope, paleohydrologic and the paleovegetation data to three hydrologic phases: high, 

intermediate (or transitional) and low.  We recognize that these designations may be 

somewhat subjective, and particularly with the pollen data, may be complicated by other 

factors such as non-analog vegetation assemblages, local (non-hydrologic) controls on 

vegetation and anthropogenic modification of the landscape. High values are intervals 

when the inferred hydrologic balance was at or near the early Holocene maximum.   Low 

values are when the proxy data were interpreted as at or near post-AHP levels.  
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Intermediate values are when the data fell somewhere in between- not as dry as the post 

AHP but not as wet as the AHP peak. 

To further illustrate the temporal variations in the timing of hydrologic changes, 

we pooled all of the data for low and high humidity conditions across 5° latitude bands to 

produce frequency histograms at a 500 yr timestep, following an approach similar to 29 

(main text Fig 3, Fig S7a).  These histograms serve to summarize the frequency of 

evidence for wet conditions as a function of time and indicate a time-transgressive shift 

from wet to dry conditions at the end of the AHP.  However, we note that interpretations 

of these plots should consider the potential complications associated with deflation of the 

records at the most northernmost sites, which dried out completely.  Deflation will 

preferentially remove the most recent portion of the record with the effect of biasing 

preservation towards older sediments and could potentially account for some of these 

apparent time-transgressive features.  However, the limited number of continuous records 

tend to support these reconstructed trends. 

We also note that a time-transgressive trend in the timing of the end of the AHP 

also occurs going from East to West (Fig. S7b). While records from West and Central 

Africa tend to show a later demise of the AHP, sites to the east (>20° E) occur earlier e.g., 

4-5000 cal yr BP.  Unlike the records from West Africa, however, the east-west 

differences in timing cannot be attributed to the truncated nature of the records, providing 

support the trends apparent in the histograms are robust. 

 

1.6 Changes in the monsoon from the TraCE-21 experiments 

To investigate the climate dynamics driving the observed changes in the West African 

Monsoon, we compared our results to transient simulations of the last 21,000 years 

performed using the Community Climate System Model, version 3 (CCM3) maintained 

at NCAR (i.e, the TraCE-21 experiments; www.cgd.ucar.edu/ccr/TraCE/). For most of 

the comparisons, we chose to examine variables from the ~3.7 x 3.7 degree grid cell 

centered at 9.8° N, and 0°E. This cell is located about 3° north of Lake Bosumtwi, 

however, we found it to be most representative of climate at Lake Bosumtwi, primarily 

because the thermal equator is situated too far North in the TraCE simulation, causing the 
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grid cell centered at 5.6° N, 0°E to primarily, and unrealistically, respond to changes in 

Southern Hemisphere insolation.   

 The TraCE simulation captures the primary pattern of the seasonal migration of 

the West African rainbelt (Figure S8), however it does not properly simulate the mid-

summer dry season on the Guinea Coast. Instead of passing over the Guinea Coast after 

the May-June rainy season, the monsoon belt expands northward into the Sahel while 

precipitation continues, and even reaches a maximum during August on the Guinea 

Coast. This effect is enhanced by our choice of grid cell situated North of the lake.  

To better understand the climate dynamics underlying the observed and simulated 

changes in moisture balance at Lake Bosumtwi during the deglaciation, especially with 

respect to freshwater forcing in the North Atlantic during Heinrich 1 and the Younger 

Dryas, we examined the behavior of the African and Tropical Easterly Jets during those 

intervals. Throughout the TraCE-21 experiment, the speed of the upper-level Tropical 

Easterly Jet, which is associated with the intensity of the West African Monsoon 

(Nicholson, 2008), is insensitive to freshwater forcing, instead, closely tracking tracks 

Boreal summer insolation (TEJ; Figures S9). This association is likely due to the role of 

the Asian Monsoon in modulating TEJ speed. In contrast, the position of the mid-level 

African Easterly does respond to freshwater forcing in the North Atlantic, shifting 

southward and intensifying over the Sahel during periods of cool SSTs in the North 

Atlantic (Figure S10). This behavior has been observed in previous experiments (Mulitza 

et al., 2008), and the enhanced moisture export is hypothesized to have contributed to 

decreases in moisture in the region during these events.  

In contrast to the deglacial period, simulated precipitation at Lake Bosumtwi does 

not record the variability observed from the proxy evidence during the Holocene. The 

lack of a mid-summer dry season in the simulation may explain this data-model 

mismatch. Focusing on seasonal, rather than annual, precipitation, the peaks in 

precipitation corresponding to the two rainy seasons at Lake Bosumtwi are observed in 

the simulation (Fig S11). Precipitation during both the first (MJJ) and second (SO) rainy 

seasons track local insolation during those months, implicating the role of local insolation 

on precipitation, and supporting our hypothesis that the late Holocene peak in 
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precipitation at Lake Bosumtwi, and elsewhere in low-latitude West Africa, was driven in 

part by an increase in precipitation during the Boreal fall, rather than the summer.  
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Fig. 1. Map of the Lake Bosumtwi crater.  Bathymetry (solid
grey lines, 10 m contour) from Brooks et al., [2005].  Dashed
line indicates crater rim. Inset shows the location of Lake Bosumtwi
in southern Ghana, West Africa.
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Figure S1.  Bathymetric map of the Lake Bosumtwi impact crater. 
Circles indicate the locations of coring sites used in this study1
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Figure S2. Study locations and precipitation over North Africa. a. Mean annual precipi-
tation (mm/day) for the period between 1998-2010 from the Tropical Rainfall Measur-
ing Mission (TRMM) v. 6 30.  Diamond, site showing an abrupt mid-Holocene termina-
tion of the AHP: ODP658c(20°45’N, 18°35’W).42. Squares, sites showing a two-stage 
collapse of the AHP: Red square, study area, Lake Bosumtwi (6°30’N, 1°25’W), Congo 
River delta core GeoB6518-1 (5°35.5’S, 11°13.3’E) 31, Senegal River core GeoB9508-S 
(15°29.9’N, 17°56.88’W)32. b. Hovmöller diagram of the seasonal change in precipita-
tion as a function of latitude at the longitude of Lake Bosumtwi (1°25’W) for 2003 from 
the Tropical Rainfall Measuring Mission (TRMM) v. 6 dataset. 
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Figure S3. Age depth model for the composite Lake Bosumtwi sediment record (in RMCD 
standardized depth). Symbols indicate calibrated age distributions for individual radiocarbon 
ages. The solid black line indicates the optimal age model determined using the bayesian 
age-depth modeling software BACON8.  Redrawn from 7.
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Figure S4.  Comparison between leaf wax isotopes and paleolake level reconstruction for 
Lake Bosumtwi.  a. Summer (June-August) insolation changes at 6.5°N. b. Changes in lake 
level reconstructed from radiocarbon dated terraces and lacustrine silts preserved on the crater 
walls and identified below the modern lake level.  Data was synthesized from previous work-
ers 1,11,12 and revised using new in-situ 14C production rates14.  c. Hydrogen isotope compo-
sition of C31 n-alkanes adjusted for changes in vegetation (grey) and vegetation and ice 
volume (black) (SOM 1.4.3) indicating changes in precipitation. Shading reflects 68% (dark) 
and 95% (light) uncertainties in the reconstruction, based on analytical and age model errors. 
d. Idealized core stratigraphy showing the time interval of unit S1, which is organic-rich, 
unlaminated and dominated by the remains of nitrogen fixing blue green algae indicative of 
eutrophic conditions33. 
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Figure S5. Correction of the δDwax precipitation record for changes in ice 
volume and vegetation. a. Measured δDwax values for the C31 n-alkanes in  
Lake Bosumtwi.  b. Measured δ13Cwax for the C31 n-alkanes. c. A compari-
son between the  δDwax record after correction for the influence of vegeta-
tion type on apparent fractionation between leaf wax and source water (grey) 
and after a correction for changes in the isotopic composition of source 
water due to ice volume (blue).
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Figure S6.  a. Sites used in the reconstruction of past hydrological changes across 
North Africa.  See Table S1 for reference number locations. b. Clock wheel 
diagrams synthesizing the evolution of reconstructed changes in hydrology over the 
last 20,000 years from the published literature.   Colors indicate paleohydrologic or 
paleovegetation conditions; white indicates no data at a given site.  Sites with grey 
symbols are designated here as East Africa and are excluded from the histograms in 
Fig. S7a.  See SOM sec. 1.5 and SOM Table S1 for details and references on indi-
vidual records. 
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Figure S7. Histograms of wet conditions during the AHP across North Africa. a. Same as in main 
text Figure 3 but with the sites from East Africa excluded.  b. Histograms in longitudinal bins going 
from west to east across the study area.  Dark blue: maximum wet conditions. Light blue: moder-
ately wet conditions.
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Figure S8. Model simulation of precipitation seasonality over West Africa. 
a.Simulated mean daily precipitation over tropical and subtropical Africa 
during the most recent 1000 years of the TraCE-21 simulations (991 – 1990 
AD). b. Latitudinal progression of summer monsoon precipitation in West 
Africa as a function of month, at 0°E. The latitude of Lake Bosumtwi 
(6.5°N) is shown by the black dashed line; the mid-point latitude (9.8°N) of 
the grid cell used for comparison in this study shown by the red dashed line.
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Figure S9. Speed and velocity of the Tropical Easterly Jet for June-August (JJA) during the deglaciation. A-D) 
Simulated zonal wind speeds, averaged over 100-200 mb, for A) Heinrich 1 (17 to 14.7 ka), B) Bolling-Allerod (14.6 to 
13 ka) C) Younger Dryas (12.9 to 11.5 ka) and D) The difference between A and B. E) Simulated average JJA zonal wind 
speed over the past 20 kyr, averaged over 0 to 15°N, -20 to 20°E, and 100 to 200 mb shown in black, with average JJA 
insolation at 6.5 N in red.
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Figure S10. Simulated zonal wind speeds between 10°S and 40°N along the Greenwhich Meridian, for Heinrich 1 
(H1; 17 to 14.7 ka), the Bolling-Allerod (BA; 14.6 to 13 ka), the Younger Dryas (YD; 12.9 to 11.5 ka) and the 
difference between H1 and BA. 
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Figure S11. Differences in monthly precipitation variability driven by changing insolation over the 
Holocene.  Simulated seasonal precipitation and insolation at the Lake Bosumtwi over the past 22,000 
years. Mean monthly precipitation for May, June and July are shown in blue, and mean monthly 
precipitation for September and October are shown in green. Both precipitation curves are smoothed 
with an 11-year running mean. Seasonal mean insolation at 6.5°N for the corresponding months are 
shown in cyan and bright green.
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Supplementary Table 
 
Table S1. Locations of paleohydrological sites across North Africa. 

number site location lat lon proxy reference 
1 Sebkha mellala Algeria 32.18 5.20 1,2 27,35-37 
2 Hassi el Mejnah Algeria 31.67 2.50 1,2,3 27,36,38,39 

3 GeoB5546 Atlantic 27.54 
-
13.74 4 

40
 

4 OC437-7 GC37  Atlantic 26.82 
-
15.12 4 

41
 

5 OC437-7 GC49  Atlantic 23.21 
-
17.85 4 

41
 

6 ODP 658C Cape Blanc 20.75 
-
18.58 4 

42
 

7 OC437-7 GC68  Atlantic 19.36 
-
17.28 4 

41
 

8 GeoB9508-5 Senegal 15.50 
-
17.95 5,7 

32,43 

9 Diogo Senegal 15.26 
-
16.80 6 

44
 

10 
Erg Akchar Mauritania 21.98 

-
13.32 2 

27,45,46 

11 
Chemchane Mauritania 20.93 

-
12.22 7 

27,47-49 

12 Agorgott Mali 22.65 -4.02 2 27,50-52 
13 Wadi Haijad Mali 22.57 -3.67 1,2,3 27,36,53,54 
14 Tagnout-Chaggaret Mali 21.22 -0.68 2 27,53 
15 Ine Kousamene Mali 20.60 -0.85 2 27,53 

16 Agneby Ivory Coast 5.33 -4.25 6 
126

 

17 Ounjougou Mali 14.60 -3.07 2 56
 

18 
Oursi 

Burkina 
Faso 

14.65 -0.13 
6 

57
 

19 erg Uan Kasa Libya 25.76 10.89 2,3 58,59 
20 Tadrart Acacus Libya 10.50 25.50 2 

 21 Adrar Bous Niger 20.29 9.01 1,2,3 27,35,36 
22 Tin Ouaffadene Niger 20.18 9.19 1,2,4 27,35,36 
23 Fachi Niger 18.10 11.30 2 27,60,61 
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24 Dibella Niger 17.53 13.13 2 62
 

25 Kawar Niger 18.60 13.08 2,3 27,60,61 

26 Termit Niger 16.00 11.25 2,3,7 
36,63 

27 Jikariya Lake Nigeria 13.31 11.08 6 64
 

28 Bougdouma Niger 13.32 11.67 2,3 35,36 
29 Kaigama Nigeria 13.25 11.56 6 65

 

30 Kajemarum Nigeria 13.30 11.02 2,7 27,36,65-67 
31 Komadugo Nigeria 12.83 12.00 2 68

 

32 Bal lake Nigeria 13.31 10.95 6 
27,65 

33 Wadi Fesh Fesh Sudan 18.90 17.90 2,3,7 27,69-72 
34 Bahr el Ghazal Chad 15.42 18.02 2 73,74 
35 Yoa Chad 19.03 20.31 2,6 75,76 
36 Farafra Egypt 27.10 28.10 2 77-79

 

37 Dakhla oasis Egypt 25.23 29.42 2 80,81 

38 Selima Oasis Sudan 20.92 27.68 2,3 
27,71,82-86 

39 Dry Selima Sudan 21.37 29.17 1,2,3 27,69,84,87,88 
40 Oyo Sudan 19.27 26.18 2,6 27,82,83,89 
41 Lake Gureinat Sudan 16.97 27.30 1,7 90

 

42 Meidob Hills Sudan 15.35 26.35 2,7 27,84,91 
43 Atrun Sudan 18.17 26.15 6 27,71,72,83 
44 ridge lake T175 Sudan 16.60 27.63 2,3 

27,71,72 

45 Wadi Howar Sudan 17.60 27.50 2,6 27,71,72,92,93 
46 Wadi Mansurab Sudan 15.42 32.22 1,2 94,95 
47 Rukwa Tanzania 8.42 32.75 3 97

 

48 Massoko Tanzania 9.33 33.75 3 98
 

49 Tana Ethiopia 12.00 37.25 5 99
 

50 Abhe Ethiopia 11.10 41.40 2,3 100,101 
51 Abiyata Ethiopia 7.30 38.40 3 102

 

52 P178-15P 
Gulf of 
Aden 11.96 44.30 5 

103
 

53 NIOP 905 Arabian Sea 50.00 10.00 4 104
 

54 Ziway-Shalla Ethiopia 7.50 38.40 2 105-107
 

55 Tilo Ethiopia 7.06 38.09 1 108
 

56 Kuruyange Burundi 3.83 29.68 6 109
 

57 Rusaka Burundi 3.43 29.62 6,7 110,111 

58 Muchoya  Uganda 1.28 29.80 6 
112

 

59 Edward Uganda -0.42 29.58 3,6,7 113
 

60 Turkana Kenya 2.67 36.50 2,3 114
 

61 Victoria Tanzania 1.00 33.00 1,3 115,116 
62 Mt Satima Mire Kenya 0.30 36.58 7 117

 

63 Challa Tanzania -3.32 37.70 5 18
 

64 Tanganyika Tanzania -6.70 29.83 5 
118

 

65 Cheshi Zambia -9.08 29.75 3 119
 

66 Tilla Nigeria 10.38 12.13 1,2,3 120,121 
67 Segedim Niger 10.17 12.78 6 27,60,122 
68 Bosumtwi Ghana 6.50 -1.42 2,5 this paper 
69 Sélé  Benin 7.15 2.43 6 123

 

70 Dangbo Benin 6.61 2.60 6 
124

 

71 Dogla Benin 6.53 2.37 6 124
 

72 Yeviedie Benin 6.53 2.38 6 124
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73 Lac Nokoue Benin 6.50 2.39 6 124
 

74 Goho Benin 6.44 2.58 6 124
 

75 Badagry Niger 6.43 2.77 6 
125

 

76 Bilanko Congo 15.35 -3.52 6 55
 

77 Barombi Mbo W Africa 4.67 9.40 6,7 127-129
 

78 MD03-2707 GOG 2.50 9.39 1,3,7 130
 

79 Njupi Cameroon 6.45 10.32 6 131-133
 

80 Shum Laka Cameroon 5.85 10.05 6 134,135 

81 Bafounda Swamp Cameroon 5.53 10.33 6 
131,136 

82 Mbalang Cameroon 7.32 13.73 6 137,138 
83 Ossa Cameroon 3.80 10.75 6,7 139,140 
84 Nyabessan Cameroon 2.67 10.67 6 141

 

85 Lake Goualougo Congo 2.16 16.51 6 142
 

86 Mopo Bai Congo 2.24 16.93 6 143
 

87 Lake Tele Congo 1.33 17.17 6 
144

 

88 Lake Maridor Gabon -0.17 9.35 6 131,132,145 
89 Lake Nguene Gabon -0.20 10.47 6 131,132,145 
90 Lake Kamalete Gabon -0.72 11.77 6 131,132,145 
91 Congo GOG -5.58 11.22 5 31

 

92 Coraf Congo  -4.75 11.85 6 131,132,146 

93 Kitina Congo -4.25 11.98 6 
131,132,147 

94 Sinnda Congo  -3.84 12.80 6 132,148 
95 Songolo Congo  -4.76 11.86 6,7 131,132,149 
96 Ngamakala Congo -4.07 15.38 6 146,150   

 
 
Proxy types: 1- oxygen isotopes, 2- stratigraphy/lithology, 3- biological indicators, 4- terrigenous fluxes, 5- 
δDwax, 6- pollen, 7- geochemistry 
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