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Abstract 

The ecological literature reveals considerable confusion about the meaning of validation in the context of simulation 
models. The confusion arises as much from semantic and philosophical considerations as from the selection of validation 
procedures. Validation is not a procedure for testing scientific theory or for certifying the ‘truth’ of current scientific 
understanding, nor is it a required activity of every modelling project. Validation means that a model is acceptable for its 
intended use because it meets specified performance requirements. 

Before validation is undertaken, (1) the purpose of the model, (2) the performance criteria, and (3) the model context 
must be specified. The validation process can be decomposed into several components: (1) operation, (2) theory, and (3) 
data. Important concepts needed to understand the model evaluation process are verification, calibration, validation, 
credibility, and qualification. These terms are defined in a limited technical sense applicable to the evaluation of simulation 
models, and not as general philosophical concepts. Different tests and standards are applied to the operational, theoretical, 
and data components. The operational and data components can be validated; the theoretical component cannot. 

The most common problem with ecological and environmental models is failure to state what the validation criteria are. 
Criteria must be explicitly stated because there are no universal standards for selecting what test procedures or criteria to use 
for validation. A test based on comparison of simulated versus observed data is generally included whenever possible. 
Because the objective and subjective components of validation are not mutually exclusive, disagreements over the meaning 
of validation can only be resolved by establishing a convention. 
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1. Introduction 

Validation is a thorny issue for both ecological 
model builders and model users as exemplified by 
the confusing and often mutually exclusive state- 
ments in the literature. For example, model valida- 
tion is sometimes considered essential (e.g., Gentil 
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and Blake, 1981; Power, 1993), and sometimes con- 
sidered impossible (e.g., Starfield and Bleloch, 1986; 
Oreskes et al., 1994). Some authors suggest that 
models can be validated (Law and Kelton, 1991), 
while others contend that models can only be invali- 
dated (e.g., Holling, 1978; McCarl, 1984). Valida- 
tion may be an integral part of the model building 
process (e.g., Overton, 1977), and also testing to be 
conducted after the model is built (e.g., Goodall, 
1972; Shugart, 1984). Validation may be a technical 
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Mayer and Butler, 1993) or hypothesis testing (e.g., 
Jeffers, 1978), and also an exercise in formal logic 
(e.g., Caswell, 1976). Validation is sometimes even 
confused with ‘truth’ (e.g., Reckhow and Chapra, 
1983; Swartzman and Kaluzny, 1987). Because of 
these conflicting ideas, some modellers are prompted 
to avoid using the terms verification and validation 
altogether (e.g., Botkin, 1993). Amazingly, despite 
this confusion, it has now become commonplace for 
empiricists to demand that models be validated, and 
for modellers to state that models will be validated 
by comparison to field data. 

Is validation possible, and, if so, are there univer- 
sal criteria for model validation? To what extent are 
these conflicts based on scientific versus philosophi- 
cal differences among ecologists? Can these conflicts 
be objectively and definitively resolved? These are 
important questions because modelling, from purely 
mental models to the construction of physical mod- 
els, is an essential scientific and engineering activity 
(Giere, 1991). The purpose of this paper is to explore 
the underlying causes of these conflicts and to assess 
the potential for resolving them. Descriptions of 
specific test procedures for simulation models can be 
found elsewhere (e.g., Law and Kelton, 1991; Mayer 
and Butler, 1993; Power, 1993). 

The vast majority of simulation models are built 
to meet practical management, industrial and engi- 
neering needs. The majority of ecological models are 
built for scientific research purposes, but increas- 
ingly for forecasting and management purposes. From 
the ecological research perspective, the validation 
problem reflects ambiguity about how to certify the 
operational capability of a model versus how to test 
its theoretical content. The crux of the matter is 
deciding (1) if the model is acceptable for its in- 
tended use, i.e., whether the model mimics the real 
world well enough for its stated purpose (Giere, 
1991), and, (2) how much confidence to place in 
inferences about the real system that are based on 
model results (Curry et al., 1989). The former is 
validation, the latter is scientific hypothesis testing. 

For this discusssion, the term ‘model’ refers gen- 
erally to computer simulation models, but many of 
the points are applicable to mathematical and theo- 
retical models as well. Although the focus is on 
validation, the concepts of verification, calibration, 
qualification and credibility must also be considered 

to place the validation step in the proper context of 
model building and evaluation. 

My arguments are that (a) models can indeed be 
validated as acceptable for pragmatic purposes, 
whereas theoretical validity is always provisional, (b) 
validation can be a useful model evaluation activity 
regardless of whether the model is declared validated 
or invalidated, (c> insufficient attention has been 
given to specifying validation criteria or standards, 
(d) the fear of producing an invalidated model in- 
hibits the development of ecology, and (e> validation 
is not an essential activity for evaluating research 
models, but is important for building model credibil- 
ity in the user community. 

2. A chronological review of validation concepts 
in ecological literature 

The authors cited in this review present more 
detailed and thoughtful discussion of validation ideas 
than can be represented in a synopsis. My intent is to 
provide an overview that I hope fairly characterizes 
the major points in the research cited. 

The subject of validation began to appear explic- 
itly in ecological modeling discussions in the 1960s. 
For over 20 years, the issue of whether a model can 
be treated as a scientific hypothesis has been debated 
without being resolved. Levins (1966) initiated the 
discussion, “A mathematical model is neither an 
hypothesis nor a theory. Unlike the scientific hypoth- 
esis, a model is not verifiable directly by experiment. 
For all models are both true and false. . . . leave out 
a lot and are in that sense false, incomplete, inade- 
quate. The validation of a model is not that it is 
‘true’ but that it generates good testable hypotheses 
relevant to important problems.” Levins is obviously 
not using the term validation in a quantitative or 
technical sense, but rather as a value judgment based 
on experience with a model. 

Goodall (1972) equated validation with testing to 
determine the degree of agreement between a model 
and the real system, and suggested that the appropri- 
ate question to ask of an ecosystem model is how 
good its predictions are, not whether it should be 
accepted or rejected in the sense of hypothesis test- 
ing. Although he stated that validation is never abso- 
lute, he did not suggest any validation standards. 
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Goodall suggested that the model data and field data 
used for comparisons should be statistically indepen- 
dent. The notion of validation by comparison to an 
independent set of data has subsequently been men- 
tioned by many authors (e.g., Odum, 1983; Shugart, 
1984; Jorgensen, 1986; Power, 1993). Goodall also 
made a distinction between testing the adequacy of a 
model’s predictions for a particular ecosystem and 
generalization of its applicability to a range of 
ecosystems. A model might be useful for a particular 
ecosystem, but not be generalizable. Finally, he 
pointed out that a single complex ecosystem model 
was likely to predict some variables well and others 
not so well, thus complicating the issue of validation. 

Caswell (1976) addressed the fundamental duality 
of model as scientific theory versus model as engi- 
neering practice by differentiating the theoretical 
component from the operational component of a 
model. He distinguished two general purposes for 
which models are constructed: understanding (which 
he equated with theoretical models) and prediction. 
The point that evaluation of a model depends on its 
purpose has also been stated repeatedly by scientists 
and engineers alike (e.g., Mankin et al., 1977; Rykiel, 
1984; Hoover and Perry, 1989; Mayer and Butler, 
1993). Caswell applied the term validation to predic- 
tive models and the term corroboration to theoretical 
models. He concluded that scientific models can be 
corroborated or refuted (falsified) in the sense of 
scientific hypothesis testing, while predictive models 
can be validated or invalidated in the sense of engi- 
neering performance testing. The same model can be 
judged on both grounds, and thus a model might 
simultaneously be declared predictively validated and 
scientifically refuted. Later, in defending theoretical 
ecology, he asserted that neither theoretical models 
nor empirical data are ever validated (Caswell, 1988). 

Mankin et al. (1977) suggested that the objectives 
of model-building may be achieved without validat- 
ing the model. The idea that validation is not a 
required activity is a significant point that has been 
generally ignored. Mankin et al. set as a criterion for 
a valid model that all model behavior must corre- 
spond to some real ecosystem behavior. They de- 
fined a useful model as one that correctly predicts 
some but not all behavior. On the basis of this 
distinction, they proposed that models should be 
judged on their usefulness rather than their validity 

because no ecosystem model could meet their crite- 
rion for validity. In essence, they shifted the question 
of validation to a question of usefulness. 

Overton (1977) viewed validation as an integral 
part of the modelling process, and stated that it is a 
misconception that models are first built, then vali- 
dated. He pointed out that modelling is an iterative 
process that has no definitive end without an explicit 
specification of requirements that the model is to 
meet. The specified objectives have been met when 
the validation criteria are met and the modelling 
activity ceases when the model achieves the valida- 
tion standards set by the specifications. After the 
model is constructed and validated, it can be used to 
answer the questions for which it was designed, and 
sometimes other questions as well. In Overton’s 
view, validation is strongly related to hypothesis 
testing. In his view, hypotheses cannot be proven 
true, and thus models cannot be validated in an 
absolute sense of proving that a particular form is 
correct, or even best. Nevertheless, he distinguished 
two regions of ‘validation space’, objective valida- 
tion over the region of prescribed behavior and 
theoretical or extended validation over the prediction 
region. These regions roughly correspond to testing 
the model against data available for model develop- 
ment and testing model predictions against indepen- 
dent data (Goodall, 1972). 

Holling (1978) pronounced it a fable that the 
purpose of validation is to establish the truth of the 
model. He expressed the view that models are hy- 
potheses, which can only be falsified, and in this 
regard his opinion is opposite that of Levins (1966). 
He therefore asserted that invalidation to establish 
the limits of model credibility is the proper view of 
model testing. Thus, the issue is changed from estab- 
lishing truth (which is evidently scientifically impos- 
sible) to increasing a model’s credibility, “Provi- 
sional acceptance of any model implies not certainty, 
but rather a sufficient degree of belief to justify 
further action. . . . In practice, the problem is one of 
model invalidation - of setting the model at risk so 
as to suggest the limits of its credibility”. In essence, 
the more validation tests a model passes the more 
confident we become in its predictions. He consid- 
ered the demands for ‘valid’ models unsound be- 
cause models can only be invalidated. Although a 
model might pass many tests, the very next one 
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might require rejection just as in testing a scientific 
hypothesis. 

Shugart (1984) also took the position that models 
are complex hypotheses, and that evaluation of a 
model’s performance is the hypothesis-testing step in 
the scientific method. He defined verification as 
“procedures, in which a model is tested to determine 
whether it can be made consistent with some set of 
observations” (region one of the Overton (1977) 
validation space; Goodall, 1972). He then defined 
validation as “procedures, in which a model is 
tested on its agreement with a set of observations 
that are independent of those observations used to 
structure the model and estimate its parameters”. 
(region two of the Overton (1977) validation space; 
Goodall, 1972). 

Botkin (1993) expressed the concern that usage of 
the terms verification and validation was not consis- 
tent with their logical meanings. He interpreted veri- 
fication as evidence that confirms the accuracy or 
truth of something as contrasted with certifying that 
a model is a correct computational implementation. 
He interpreted validation as the logical procedure of 
drawing a valid conclusion from the premises of an 
argument, and considered validation by comparison 
to independent data as a contradictory meaning. He 
stated his intention to avoid using the terms verifica- 
tion and validation because of these conflicting 
meanings. 

Few common threads run through this decade-long 
discussion. The only area of general agreement is 
that the purpose of a model ought to be clearly 
stated. Obviously, the issue of model as scientific 
hypothesis versus engineering practice has not been 
resolved by the debates thus far. Ecological models 
commonly combine the aims of theory and practice, 
and the same model may be tested for both general 
purposes. 

3. Definitions 

3.1. Verification 

Since ‘verify’ and ‘validate’ are synonyms in 
ordinary language, we must assign special meanings 
to distinguish them for modelling purposes. Fishman 
and Kiviat (1968) are often cited as first defining 

these terms in the context of simulation modelling 
and differentiating between verification and valida- 
tion. Verification is a demonstration that the model- 
ing formalism is correct. 

There are two types of verification errors: me- 
chanical and logical. The first amounts to debugging 
a computer program and in mathematical models 
showing that the mathematics is mechanically cor- 
rect. A more subtle and difficult verification problem 
is showing that the program logic is correct. Some 
program errors only appear under circumstances that 
do not routinely occur, and may not have been 
anticipated. Verification is a technical matter that 
relates to how faithfully and accurately ideas are 
translated into computer code or mathematical for- 
malisms. For large models, it is extremely difficult to 
verify that the model is entirely accurate and error- 
free under all circumstances, and that modifications 
to existing code have only the intended effect. Mod- 
els are thus generally verified for the normal circum- 
stances in which they are expected to be applied, and 
such verification is presumed inapplicable if the 
model is run outside these circumstances. 

It is important to distinguish verification logic 
which relates to program operation from conceptual 
model logic which refers to the ecological logic used 
in structuring the model. Hoover and Perry (1989) 
state, “The computer model is verified by showing 
that the computer program is a correct implementa- 
tion of the logical model. Verifying the computer 
model is quite different from showing the computer 
model is a valid representation of the real system and 
a verified model does not guarantee a valid model”. 
In their technical sense, a valid model is one whose 
scientific or conceptual content is acceptable for its 
purpose. 

3.2. Calibration 

Models typically have parameters and constants 
that need to be given values to produce numerical 
results. Ideally, these factors have a clear ecological 
basis from which they can be calculated. The process 
of determining these values is parameter estimation. 
Calibration is the estimation and adjustment of model 
parameters and constants to improve the agreement 
between model output and a data set. Model calibra- 
tion is, in essence, the step of making a model as 



E. J. Rykiel, Jr. /Ecological Modelling 90 (1996) 229-244 233 

consistent as possible with the data set from which 
parameters are estimated (the verification process of 
Shugart, 1984). Calibration procedures can be used 
to estimate parameter values that are otherwise un- 
known. 

3.3. Validation 

As with verification, validation is better under- 
stood as a process that results in an explicit state- 
ment about the behavior of a model. Validation is a 
demonstration that a model within its domain of 
applicability possesses a satisfactory range of accu- 
racy consistent with the intended application of the 
model (e.g., Sargent, 1984; Curry et al., 1989). This 
demonstration indicates that the model is acceptable 
for use, not that it embodies any absolute truth, nor 
even that it is the best model available. For opera- 
tional validation, the demonstration involves a com- 
parison of simulated data with data obtained by 
observation and measurement of the real system 
(e.g., Parton et al., 1987; Mayer and Butler, 1993). 
Such a test cannot demonstrate the logical validity of 
the model’s scientific content (Oreskes et al., 1994). 

Validation demonstrates that a model meets some 
specified performance standard under specified con- 
ditions. It is often overlooked that the ‘specified 
conditions’ include all implicit and explicit assump- 
tions about the real system the model represents as 
well as the environmental context. That is, a model 
is declared validated within a specific context which 
is an integral part of the certification. If the context 
changes, the model must be re-validated; however, 
that does not invalidate the model for the context in 
which it was originally validated. Validation is a yes 
or no proposition in the sense that a model does or 
does not meet the specified validation criteria. These 
criteria may include requirements for statistical prop- 
erties (e.g., goodness-of-fit) of the data generated by 
the model, and thus are not necessarily deterministic. 

Ambiguous situations can arise when the model 
meets some but not all of the criteria. The criteria 
may need to be prioritized, and the model may be 
validated with respect to these priorities. Because 
modelling is an iterative process, validation criteria 
may evolve along with the model. This is more 
typically the case with scientific research models 
than with engineering models. 

3.4. Credibility 

A credible model is one in which a user has 
sufficient confidence to base scientific and manage- 
ment decisions (Helling, 1978; Sargent, 1984). Cred- 
ibility is a sufficient degree of belief in the ualidity of 
a model to justify its use for research and decision 
making. Credibility is relative to the particular con- 
text of the model. The credibility of a model is 
therefore related to the amount of knowledge avail- 
able, the purpose of the model, and the consequences 
of any decisions based on it. A model with high 
operational credibility does not necessarily have high 
conceptual credibility. Credibility is a subjective 
qualitative judgment, and cannot be quantified in any 
absolute sense. 

3.5. Qualification 

Qualification is aimed at discovering the domain 
over which a validated model may properly be used, 
i.e., whether the model is acceptable for use in a 
more general context, and amounts to revalidating a 
model for new cases. As revalidation tests are passed, 
the domain of the model’s applicability increases. 
When the model fails a revalidation test, its domain 
of applicability is qualified, i.e., restricted to those 
situations where it has been validated. The implica- 
tion of qualification is that the model remains useful 
for those situations for which it has been validated 
irrespective of its inability to pass other revalidation 
tests. The generality of a model can be inferred only 
inductively from repeated qualification testing. 

These definitions do not give any specific metrics 
by which to judge models precisely because no 
validation standards have been established for eco- 
logical models. Ecologists are most familiar with 
statistical tests and tend to make judgments on the 
basis of them. However, a variety of metrics are 
available and the pros and cons are under discussion 
(e.g., Mayer and Butler, 1993). 

4. Validation concepts 

The validation process can encompass a large 
number of tests. In light of the history of validation 
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PROBLEM 
Objectives 

OPERATIONAL 
VALIDATION 

I 

\ DATA 
VALIDITY 

PAPAMFTERUATION , 

CONCEPTUAL 
VALIDITY 

ANALYSIS AND 
MODELUNG 

r-l CONCEPTUAL 
MODEL 

VERIFICATION 

Fig. 1. A diagrammatic representation of the modelling cycle and 
the position of operational, conceptual, and data validation pro- 
cesses (modified from Sargent, 1984). 

ideas for ecological models, it seems sufficient to 
consider a minimal partition of validation activities. 
Sargent (1984) described a simplified version of the 
modelling process that identified three principal ar- 
eas where validity checking may be needed (Fig. 1). 
In his view, a model is validated only when it meets 
the design criteria for operational, conceptual, and 
data validity. Validation does not require that the 
model apply to more than one case unless that 
criterion is asserted as a validation requirement. That 
is, generality is no more required of a simulation 
model than it is of a regression equation. Testing 
procedures are used during model construction, at 
model completion, and for model qualification. 

4.1. Operational validation (whole model validation) 

Operational validation is a test protocol to demon- 
strate that model output meets the performance stan- 
dards required for the model’s purpose. This is the 
Caswell (1976) purpose of prediction and includes 
the Rykiel (1984) purpose of projection (qualitative 
correspondence with event dynamics). This process 
is a pragmatic approach to validation because it is 
concerned primarily with how well the model mim- 

ics the system regardless of the mechanisms built 
into the model. Statistical tests of comparisons be- 
tween simulated and real data are widely used to 
evaluate model behavior (Mayer and Butler, 1993; 
Power, 1993). If the output of a model corresponds 
with observed data, then the model is an adequate 
representation of the system. However, such a corre- 
spondence does not guarantee that the scientific basis 
of the model and its internal structure correspond to 
the actual processes or cause-effect relationships 
operating in the real system. Although it may seem 
paradoxical, in general, it is not true that good 
predictions can only be obtained from a model that is 
mechanistically correct. Operational validation is the 
engineering side of the validation process that seeks 
to demonstrate model capability and continues the 
model building process until a prescribed level of 
performance is attained. Failure to meet an opera- 
tional validation test can also reveal underlying con- 
ceptual problems (e.g., Fleming and Shoemaker, 
1992). 

4.2. Conceptual ualidity 

Conceptual validity means that the theories and 
assumptions underlying the conceptual model are 
correct, or at least justifiable, and that the model 
representation of the problem or system, its structure, 
logic, mathematical, and causal relationships, are 
reasonable for the model’s intended use. Conceptual 
validity depends on providing a scientifically accept- 
able explanation of the cause-effect relationships 
included in the model. Alternatively, justification is 
given for using simplifications of known processes, 
and for conjectured relationships for poorly known 
processes and mechanisms. Such justification may 
extend to providing a rationale for leaving out pro- 
cesses known to be involved in ecosystem behavior, 
and for using representations known to be ecologi- 
cally false, i.e., for using a conceptually invalid 
model. Because the model is an abstraction of the 
real system, many components and processes must 
be left out for the purposes of a particular model. 
Conceptual validity, considered as acceptable justifi- 
cation of the scientific content of the model, does not 
guarantee that the model will make accurate predic- 
tions. 
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4.3. Data validation 

Data are not an infallible standard for judging 
model performance (Fagerstrom, 1987). Rather the 
model and the data are two moving targets that we 
try to overlay one upon the other. Validation of data 
certifies that the data meet a specified standard (qual- 
ity assurance/quality control). We cannot assume 
that data accurately represent the real system and 
therefore constitute the best test of the model. The 
validity not only of the data but also of its interpreta- 
tion must also be demonstrated. Holling (1978) cited 
an instance where a model was re-analyzed for two 
months when it was finally determined that the data 
had been misinterpreted and the model was not at 
fault. The relative inaccuracy and imprecision of 
ecological data also places limits on model testabil- 
ity. Obviously, computer simulation models cannot 
be expected to provide results that are more accurate 
and precise than the data that are available. Con- 
versely, it can be argued that the model may be a 
better representation of reality than data that are 
limited by our technological abilities for measure- 
ment and subjectively biased by our perceptions of 
the system. 

4.4. Validation procedures 

Sargent (1984) discussed some of the tests used 
for model validation. These tests are described briefly 
to provide a feeling for simulation industry valida- 
tion concepts and a general sense of the variety of 
possible validation tests. This list is representative, 
not exhaustive (e.g., McCarl, 1984). Validation tests 
include both qualitative and quantitative measures of 
system performance, and project-specific tests are 
common. In commercial and government systems 
development projects, independent verification and 
validation are often required (Lewis, 1992). This 
technique has not been pursued in ecological mod- 
elling because there is no institutional or scientific 
infrastructure for concurrent independent verification 
and validation of another ecologist’s simulation 
model. In addition, ecological simulation models 
often develop in an ad hoc fashion rather than as 
highly structured software development projects. In 
contrast to industry and government, no structured 
reporting requirement for the verification and valida- 
tion processes exists in ecological modelling (or 

scientific modelling in general), although proposals 
for reporting guidelines have begun to appear (e.g., 
Tsang, 1991; Bart, 1995). 

4.4.1. Face validity 
Knowledgeable people are asked if the model and 

its behavior are reasonable. This test suggests whether 
the model logic and input-output relationships ap- 
pear reasonable ‘on the face of it’ given the model’s 
purpose. Some ecological models have high face 
validity by virtue of their longevity and wide spread 
use. 

4.4.2. Turing tests 
Knowledgeable individuals are asked if they can 

discriminate between system and model outputs. Ap- 
peals to the reader to observe how closely the simu- 
lated and actual data match in a graphical display 
(e.g., a time series graphic) are essentially unsuper- 
vised Turing tests combined with visualization. The 
subjective elements of this test need to be carefully 
considered (Mayer and Butler, 1993). 

4.4.3. Visualization techniques 
Time series plots, state space phase plots and 

other visual displays form the basis for comparisons 
between system and model. Most often, validation is 
determined subjectively by a statement that extols 
the visual goodness of fit. 

4.4.4. Comparison to other models 
The output of one model can be compared to that 

of another model. In some cases, such as global 
climate models, this may be the principal means of 
evaluation (Cess et al., 1990). Comparisons of eco- 
logical models are just beginning to occur on an ad 
hoc basis (Agren et al., 1991). 

4.4.5. Internal validity 
A test data set (initial conditions, parameter val- 

ues, and input data for driving variables) can be 
shown to produce a consistent output each time the 
model is run. This test is particularly applicable to 
stochastic models. 

4.4.6. Event validity 
A comparison between the model and system is 

made of the occurrence, timing and magnitude of 
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simulated and actual events. Event validity may also cause significant changes in the model’s behavior 
be interpreted as qualitative validation in which the should be estimated with greatest accuracy. Fre- 
model is tested for its ability to reproduce the proper quently, there is disparity between parameters to 
relationships among model variables and their dy- which the system is sensitive and those to which the 
namic behavior rather than to accurately reproduce model is sensitive, but this issue is seldom men- 
their quantitative values. tioned. 

4.4.7. Historical data validation 4.4.11. Multistage ualidation 
When historical data exist, part of the data is used 

to build the model and part is used to test if the 
model behaves as the system does. This procedure is 
also referred to as data-splitting (Power, 1993). 

4.4.8. Extreme-condition tests 
The model structure and output should be plausi- 

ble for extreme or unlikely combinations of factors 
in the system. This test reveals if behavior outside of 
normal operating conditions is bounded in a reason- 
able manner. 

Validation methods are applied to critical stages 
in the model building process: (1) design: develop 
the model’s assumptions based on theory, observa- 
tions, general knowledge, and intuition; (2) imple- 
mentation: empirically test the model’s assumptions 
where possible; and (3) operation: compare the in- 
put-output relationships of the model and the real 
system. The three validation steps correspond roughly 
to conceptual, data, and operational components. 

4.4.12. Predictive validation 

4.4.9. Traces 
The behavior of specific variables is traced 

through the model and through simulations to deter- 
mine if the behavior is correct and if necessary 
accuracy is obtained. 

4.4.10. Sensitivity analysis 
The same relationships that occur in the system 

should occur in the model. Those parameters that 

The model is used to forecast the system behavior 
and comparisons are made to determine if the sys- 
tem’s behavior and the model’s predictions are the 
same. The system data may come from data sets not 
used in model development or from future observa- 
tions of the system. The strongest case is when the 
model output is generated before the data are col- 
lected. Evaluation of model predictions is often con- 
sidered as a kind of hypothesis testing. 

DATA VALIDITY 

3 
??Statistical Model Validity 

Statistical Validation is relevant 

EXPLORATORYfrHEORETlCAL 
MODEL DEVELOPMENT 

?? Face Validity 1 
?? Event Validity 

Conceptual Validation is relevant 

CONCEPTUAL MODEL VALIDITY 
DATA VALIDITY 
OPERATIONAL VALIDITY 

4 
. All Validation Techniques 

Quantitative Validation is relevant 

CONCEPTUAL MODEL VALIDITY 
. Comparison to Other Models 
. Face Validity 
. Event Validity 
. Turing Tests 
??Traces 2 
Quallative Validation is relevant 

b 

Understanding Increasing 

Fig. 2. Classes of modelling problems in relation to available data and understanding. Variation in the amount of data available and the level 
of understanding of the system influences the types of validation tests that can be conducted (modified from Holling, 1978, and Starfield and 
Bleloch, 1986). 
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4.4.13. Statistical validation 
Statistical validation includes a variety of tests 

performed during model calibration and operation. 
Three cases occur most often: (1) the model pro- 
duces output that has the same statistical properties 
as the observations obtained from the real system; 
(2) the error associated with critical output variables 
falls within specified or acceptable limits; (3) several 
models are evaluated statistically to determine which 
best fits the available data. 

The relevance of various validation tests can be 
conceptualized in terms of the data and understand- 
ing available for the system being modelled (Fig. 2). 

5. Semantics, logic, and philosophy 

The rational underpinnings of validation concepts 
are seldom considered, yet they are a strong influ- 
ence on how we view the testing of models (e.g., 
Oreskes et al., 1994). Arguments about validation 
cannot be resolved at an operational level until a 
common ground is established. This common ground 
is based on three areas: the meanings of the terms, 
the forms of reasoning, and philosophical perspec- 
tives of individual scientists and engineers. 

5. I. Semantics 

The meanings of the words verification and vali- 
dation have themselves been a problem (Oreskes et 
al., 1994). For example, the conclusion that valida- 
tion is impossible is most often based on the argu- 
ment that truth is certain and we as scientists have no 
certain knowledge. Therefore, we can never establish 
that a model is ‘true’ (Reckhow and Chapra, 1983; 
Starfield and Bleloch, 1986; Swartzman and Kaluzny, 
1987). In effect, validation is equated with certainty 
rather than a degree of belief (Holling, 1978). In- 
evitably, the meanings of truth and validity must 
come into play. There are a number of definitions of 
‘truth’ depending on the context (Merriam-Webster, 
1975). Definitions useful for modelling purposes are: 
(1) the quality or property of being in accord with 
fact or reality; (2) a judgment, proposition, or idea 
that is true or accepted as true; and also, (3) fidelity 
to an original or standard. For model validation, 
these definitions correspond respectively to: (1) con- 

sistent with available data, (2) in accord with current 
knowledge and beliefs, and (3) in conformance with 
design criteria. To the extent that truth is an issue, 
validation means establishing the truth of a model in 
these latter senses. Scientific truth is relative to what 
is known and believed to be true at the time a model 
is constructed. 

The terms confirmation and corroboration have 
been proposed as alternatives (Swartzman and 
Kaluzny, 1987; Oreskes et al., 1994). However, 
‘validate’ means to support or corroborate on a 
sound or authoritative basis. For a synonym, the 
dictionary points to confirm and for an antonym to 
invalidate. The entry for confirm indicates that the 
terms authenticate, confirm, corroborate, substanti- 
ate, validate, and verify are synonyms with the shared 
meaning element “to attest the truth or validity of 
something”. Therefore, at the level of ordinary lan- 
guage, neither ‘confirmation’ (Oreskes et al., 1994) 
nor ‘corroboration’ has a greater claim on provi- 
sional acceptance than does validation. Unless we 
make some technical distinctions, these terms all 
mean essentially the same thing. There is no com- 
pelling semantic reason to reject the term validation 
on grounds that scientific truth cannot be established 
with certainty, or that validation implies a strictly 
logical process of deduction. 

Valid means well grounded or justifiable: being at 
once relevant and meaningful; having a conclusion 
correctly derived from premises; and also, appropri- 
ate to the end in view. In other words, it may be 
valid to ignore known ecological mechanisms when 
that is appropriate to the end in view. The synonyms 
of valid are cogent, convincing, sound, and telling, 
which have the shared meaning element: having such 
force as to compel serious attention (i.e., credibility) 
and usually acceptance. Validation therefore is the 
process of showing that a model (1) accords with the 
facts (data) as we know them at the time; and/or, 
(2) with our judgment of what is true or accepted as 
true in ecology; and/or, (3) is justifiable and appro- 
priate for our purposes. 

5.2. Logic and reasoning 

5.2.1. Formal us. material logic 
The process of testing whether a conclusion (in- 

ference) drawn from several premises is correct can 
be expressed by two components: validity and 
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soundness (Jeffrey, 1991). Formal logic specifies 
how to draw a valid conclusion from the premises of 
an argument. Validity is guaranteed by the form of 
the argument (hence form-al logic). If the premises 
are accepted as true, then the conclusion must fol- 
low. The argument is invalid when the premises are 
true but the conclusion is false. The soundness of 
reasoning requires in addition that the premises and 
conclusion correspond to material reality. A logically 
valid but unsound conclusion can be drawn when 
one (or more) of the premises are false. This distinc- 
tion is important because it indicates that the results 
of a model can be simultaneously formally valid and 
materially invalid (or unsound). In a modelling con- 
text, this situation can arise because (1) we assume 
but really don’t know that the premises are true, or 
(2) we have insufficient information contained in the 
model. Logical validity does not necessarily mean 
that you get the right answer; it only says that the 
answer you get follows logically from the informa- 
tion you have. The conclusion is unsound if at least 
one of the premises is false (Jeffrey, 1991). Logical 
validity is therefore not a sufficient test of a theory 
or model and should not be equated with model 
validation. 

Neither is a simulation model a formal logical 
structure like a syllogism, and the logical process of 
deduction cannot be applied in any strict formal 
sense. In fact, one of the primary reasons for build- 
ing a simulation model is that it is impossible to 
deduce the behavior of a complex set of interacting 
components on purely logical grounds. The model 
allows us to see the consequences that we cannot 
compute in our heads, and is aptly described as an 
‘assumption analyzer’ (Richard Holthausen quoted in 
Bart (1995)). 

5.2.2. Reasoning by analogy 
An analogy is a statement that two dissimilar 

things (ideas, objects, processes) are comparable in 
one or several respects even though they differ greatly 
in other respects (Toulmin et al., 1984; Giere, 1991). 
Inferences that can be made about the one can also 
be applied to the other with respect to their similari- 
ties. If the analogy is successful, the things compared 
may have other features in common that expand the 
analogy (Leatherdale, 1974). By their nature, all 
analogies fail at some point because they compare 

dissimilar things, e.g., computer model with forest 
ecosystem. Only the particular properties that the 
model shares with the material system can be tested 
against our beliefs of reality. As an analogy, a model 
need only accord with reality or be justified on those 
specific points that constitute the analogy. 

For example, Darwin (1859) drew an analogy 
between domestic animal breeding and the processes 
of natality and mortality in wild populations to con- 
clude that natural selection could lead to the genera- 
tion of new forms and hence evolution of species in 
the wild. The model (theory) is not falsifiable by any 
single statistical or logical test. Darwin accumulated 
an enormous amount of evidence that the analogy 
was useful and therefore that the observations of 
changes resulting from domestic animal breeding 
could be used to draw inferences about wild popula- 
tions. 

Analogical reasoning is not precise. Some will 
reject as unwarranted an analogy that others will 
accept. Yet, the human mind is adept at drawing 
analogies and exploring their consequences. Analo- 
gies, both conscious and unconscious, often form the 
basis for the flashes of insight and inspirations that 
lead to discoveries and theoretical advances. If we 
accept a model as an analogy to the real system, then 
we must accept that analogical reasoning cannot be 
tested in the same way as formal logical deduction. 

5.3. Philosophies of science 

The third problem encountered in understanding 
model validation is the philosophical perspective of 
the individual scientist. I do not intend a review of 
the philosophy of science, but only to make a few 
points that seem relevant to the validation issue. 
Many of the suggestions that validation is impossible 
rest on the notion that falsification is the critical 
activity of science. The philosophy of Popper (e.g., 
in Klemke et al., 1988) is most often cited as the 
basis for this belief: “ . . . the criterion of the scien- 
tific status of a theory is its falsifiability, or refutabil- 
ity, or testability”. Popper was seeking a method for 
distinguishing science from non-science (e.g., Marx- 
ist theory of history from Einstein’s theory of relativ- 
ity). Furthermore, Popper rejected the belief that 
science forms generalizations (theory) by logical in- 
duction from particular instances (empirical observa- 
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tions and model simulations), “Induction, i.e., infer- 
ence based on many observations, is a myth. . . . The 
actual procedure of science is to operate with conjec- 
tures: to jump to conclusions - often after one single 
observation . . . Repeated observations and experi- 
ments function in science as tests of our conjectures 
or hypotheses, i.e., as attempted refutations. . . . 
None of this is altered in the least if we say that 
induction makes theories only probable rather than 
certain”. 

However, philosophies of science are not only 
various, but also contradictory (see Klemke et al., 
1988). Falsifiability is not accepted as the ultimate 
(or even sufficient) criterion for scientific testing by 
all philosophers of science (Thagard, 1988). Neither 
is Popper’s rejection of induction shared by all 
philosophers of science (e.g., Trusted, 1979) and 
certainly not by all ecologists (e.g., Mentis, 1988). 

Single-minded focus on falsification is a superfi- 
cial treatment of a complex subject that includes, for 
example, much thought about what constitutes scien- 
tific explanation and what constitutes a theory (e.g., 
Suppe, 1989). Theories often contain unobservable 
components and thus cannot always be falsified di- 
rectly (Mentis, 1988). For example, competition co- 
efficients in Lotka-Volterra population models are 
not observable quantities. Practically all simulation 
models contain unobservable quantities, quantities 
that can only be observed with significant error, and 
calculations that cannot be compared to data because 
no data exist. O’Neill et al. (1989) for example, 
remark on how few field studies of multiple nutrient 
interactions exist in the literature (see also Caswell, 
1988). The impulse to falsify can result in ‘naive 
falsification’. For example, the fact that the earth’s 
carbon budget does not balance according to current 
data could naively be taken as a falsification of 
ecosystem theory that asserts that the earth is an 
ecologically closed system with respect to matter. 

An overemphasis on the philosophical belief that 
scientific hypotheses cannot be proven but only dis- 
proved may contribute to misunderstanding of model 
validation in another way. In one sense, the falsifica- 
tion argument fails to acknowledge the physical real- 
ity of the world. A premise can be proven true by 
showing that the thing can actually be done or is 
otherwise objectively verifiable even when scientific 
understanding is incomplete or even lacking. Such a 

demonstration is commonly termed ‘proof of con- 
cept’ in engineering jargon, This idea is really the 
basis for validation testing by comparison of simu- 
lated versus observed data. 

Finally, as much as we hate to admit it, we do not 
understand how humans think. Scientific method, 
hypothesis formation, analysis, and practice, cannot 
yet be reduced to a series of unequivocal steps which 
anyone can follow to make new discoveries, enunci- 
ate new theories, and validate models. Model evalua- 
tion brings to bear all the subjective and objective 
elements of conscious and unconscious thought and 
reasoning of which the individual scientist is capa- 
ble. In the words of Goodman (quoted in Thagard, 
1988) “A rule is amended if it yields an inference 
we are unwilling to accept; an inference is rejected if 
it violates a rule we are unwilling to amend. The 
process of justification is the delicate one of making 
mutual adjustments between rules and accepted in- 
ferences; and in the agreement achieved lies the only 
justification needed for either”. 

6. Discussion 

It is increasingly common for modellers to claim 
that a model has been validated without any refer- 
ence to validation criteria. Statements such as, “The 
model will be validated by comparison with empiri- 
cal data’ ’ , indicate operational validation but are 
otherwise meaningless until the standards of compar- 
ison are specified. Furthermore, operational valida- 
tion implies nothing about the mechanistic soundness 
of the model, though it increases the model’s credi- 
bility. Thus, the ability to predict independent data or 
future values does not mean that the model is an 
accurate cause and effect representation of the real 
system. In addition, a model may accurately simulate 
the qualitative behavior of the system without quanti- 
tative accuracy. 

6.1. Qualification versus invalidation 

When operational validation is the objective, the 
difference between qualification and invalidation be- 
comes an important distinction. Qualification is test- 
ing aimed at determining the domain over which a 
model is applicable. The model is expected to fail 
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outside this domain (or context). Consequently, a 
model may be subjected to increasingly stringent 
tests to determine the conditions under which it fails 
to be a satisfactory simulator of the real system. 
When a model fails a validation test, several options 
are available. (1) The model may be re-calibrated to 
improve its fit to data by changing parameter values. 
(2) The model may be modified structurally and 
conceptually by revising assumptions and by chang- 
ing the mathematical or logical representation of 
processes. (3) The application of the model may be 
restricted to a smaller domain where it is able to pass 
the validation test or where the particular test is not 
important. (4) Finally, failure to pass a validation test 
may be considered to invalidate the model. Invalida- 
tion implies that the model cannot pass a comparison 
test deemed essential for its credibility, acceptance, 
or usefulness. Notice that the implication is not that 
the scientific content of the model is erroneous; it 
may simply be insufficient. The scientific content is 
embodied in the assumptions, hypotheses and theo- 
ries on which the model is based and on the system 
the model is intended to simulate. For complex 
simulation models, falsification has little or no tradi- 
tional meaning because the scientific content is too 
extensive to be proven wrong en masse. Invalidation 
can only show that a model does not or cannot meet 
its validation criteria. Parts of the model may well be 
operationally and conceptually acceptable even 
though the integrated model is unable to pass partic- 
ular validation tests. Conversely, the integrated model 
may be validated even though parts of the model are 
scientifically invalid. 

6.2. Validation and scale 

Hierarchy theory indicates that the interpretation 
of mechanisms varies with the spatial and temporal 
scales at which a system is observed and modelled. 
Validation criteria can likewise vary with scale. For 
example, the level of mechanistic detail that is con- 
sidered valid and the allowable error tolerances for 
simulating system behavior are likely to be quite 
different for a model of the global carbon budget 
versus a model of leaf carbon balance. Consequently, 
our notion of what is acceptable depends not only on 
the objectives of the model but also on the ecological 
scale at which the model is framed. Changes in scale 

may permit aggregations that at face value are con- 
ceptually erroneous to produce operational results 
that are acceptable. 

6.3. Model validation us theoretical development 

There are many parallels between model develop- 
ment and testing and theory development and testing. 
A variety of studies suggest that prematurely impos- 
ing rigorous testing requirements can result in rejec- 
tion of correct or at least useful theories (Loehle, 
1987). Just as development of ecological theory can 
be stifled by an overemphasis on hypothesis testing 
(Fagerstrom, 1987; Mentis, 19881, modelling and the 
benefits to be gained from it can also be stifled by an 
overemphasis on model validation. 

Neither falsification nor validation are require- 
ments of theoretical and computer model develop- 
ment (Fagerstrom, 1987; Mentis, 1988; Thagard, 
1988). The nature of the testing undertaken depends 
on the model’s purpose. Purposes such as explo- 
ration, initial development, new perspectives, etc. do 
not require validation. Theories and models often 
start off with wrong elements which are discarded as 
development and understanding improve, and a sig- 
nificant loss of creativity occurs when models are 
not allowed to mature. Some things that are believed 
cannot be validated or falsified in any easy, obvious, 
or immediate way. Caswell (1988) has argued force- 
fully that theoretical models are useful without any 
attempt at validation and even when they are refuted. 

6.4. Validation and policy 

Oreskes et al. (1994) argue that usage of the terms 
verification and validation imply that the models are 
‘true’ and that this implication is inherently wrong. 
They call for a neutral language to avoid this impli- 
cation so policy makers will not be misled by fallible 
models. It is hard to see how this translation to a 
neutral language could be accomplished. Consider 
for example what term ecologists would use to re- 
place ‘succession’ to conform to the lay understand- 
ing of that term while retaining the ecological con- 
tent. In such cases, the better choice may be to 
educate the audience. 

To the extent that the technical meanings of veri- 
fication and validation may be misconstrued, mod- 
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ellers themselves should take the lead in asserting 
the restrictions and limitations of models, and should 
draw some important lessons from Oreskes et al. 
(1994). (1) Make clear that verification and valida- 
tion are used in a technical sense. (2) Carefully 
specify the context of the model. (3) Use model 
acceptability (Bait, 1995) and performance indices 
rather than simple declarations of validity to describe 
the results of model testing to general audiences. 
Policies and decisions must be made and models, 
however imperfect, are needed to assist the process. 
We have sufficient knowledge to accomplish many 
useful tasks and build a variety of devices whose 
very existence demonstrates that pragmatic opera- 
tional validation is possible despite our philosophical 
uncertainties. 

7. Summary 

Validation is just one component of the larger 
task of model evaluation. Validation describes a test 
or usually a testing process on which to base an 
opinion of how well a model performs so that a user 
can decide whether the model is acceptable for its 
intended purpose. Invalidation means that a model is 
unable to perform at the required level. Validation 
procedures vary from general qualitative tests to 
highly restrictive quantitative tests. The nature of the 
tests and their interpretation may depend on one’s 
philosophical beliefs, but the specific procedures are 
the same. 

7.1. Is validation possible? 

In the limited technical sense of simulation mod- 
elling, validation is certainly possible and often es- 
sential for user acceptance. It is common for models 
to accurately predict the outcome of experiments and 
operational behavior. Modelling is a fundamental 
step in engineering design and practice. In a prag- 
matic sense, a model only needs to be good enough 
to accomplish the goals of the task to which it is 
applied. 

The context in which a model is developed as- 
sumes a conceptual closure of the model system, not 
the real system, and validation is conducted within 
this context. There is always the possibility that the 

context will change or is different than assumed, in 
which case the model may not apply. In a restricted 
technical sense, verification and validation are there- 
fore legitimate and useful concepts. 

7.2. Does the model require validation? 

The purpose of the model may dictate that valida- 
tion is not a useful activity. Validation may be 
difficult or impossible because of the lack of data. 
Exploration of model behavior without validation 
testing is a legitimate, reportable activity (Caswell, 
1988). Model development is a significant scientific 
contribution in itself without any validation tests 
being undertaken in addition. When the principal 
purpose of the model is to describe or systematize 
knowledge or to develop theory, validation is unnec- 
essary and irrelevant. 

Empirical scientists may treat model validation as 
an obligation of modellers. Reviewers may demand 
that models be ‘validated’ as a requirement for 
publication. However, modellers need not test their 
own models, nor do they have sole responsibility for 
validating models. To the extent that the model is a 
scientific experiment and theoretical development, its 
testing and validation are within the purview of the 
scientific community. The task of model develop- 
ment is often so complex in itself that it is legitimate 
to report models that do not make direct comparisons 
with field and laboratory data. Theory and models 
may be proposed even when the author has under- 
taken no experimentation, or has only suggested 
what observations could be made. A theory may 
explain previous observations, but may also suggest 
other things that ought to be looked at and may not 
yet have been measured, in which case there may be 
little or no data to be explained. The notion that 
models cannot be ‘truly validated’ is irrelevant and 
only serves to prolong confusion and argument about 
the proper role of validation in model testing. 

7.3. Purpose, criteria, context 

Whenever validation is required, the modeller 
must specify three things: (1) the purpose of the 
model, (2) the criteria the model must meet to be 
declared acceptable for use, and (3) the context in 
which the model is intended to operate. The latter 
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two items are seldom specified for ecological mod- 
els. Without them, a model cannot be validated. The 
context is particularly overlooked. Context embodies 
all the assumptions, especially those that are unstated 
and relegated to the system environment of the model. 
For example, a vegetation model of Mount Saint 
Helens might not include volcanic eruptions in its 
context. The model might assume that vegetation 
dynamics are occurring in a nominal (i.e., non-erup- 
tive) environment, and thus would not be applicable 
to primary succession following an eruption. There- 
fore, the model could be validated only for the 
nominal environment. Ecological models can be so 
complex that it is not feasible for the modeller to 
state all assumptions, particularly those that an eco- 
logical audience would be expected to know from 
common scientific knowledge. 

Because models are approximations of reality, it 
is always possible to establish a validation criterion 
that no model can meet, but such a criterion is not a 
fair test. On the other hand, the statement that a 
model has been validated is misleading without stat- 
ing the purpose of the model, the validation criteria 
used, and the context to which the claim applies. 

7.4. Engineering validation versus scientific validity 

Performance testing is fundamentally limited to 
showing that the model passes the validation tests 
devised for it. Certification is completed when the 
model is shown to meet its requirements specifica- 
tion. In the majority of cases to date, this has been 
understood as some measure of agreement between 
simulated and observed data and expert judgment. 
Ecological modellers do not describe in an engineer- 
ing sense the requirements specifications of the mod- 
els they build. Because there are no generally agreed 
validation criteria for ecological models, the best that 
can be done at present is for the modeller to state 
explicitly what the validation criteria are and leave it 
to the user to judge if the criteria are adequate. The 
most common criteria at present are the “see how 
well the simulated data matches the observed data” 
test and the “the model did a reasonable job of 
simulating. . . ” test in which the reader is asked to 
agree subjectively that the match is adequate (combi- 
nations of face validity, Turing test, and visualiza- 
tion). While validation testing may result in accumu- 

lating evidence that the scientific content of a model 
is correct, such testing cannot logically prove that the 
mechanisms contained in the model are scientifically 
complete and correct. 

7.5. Need for an operational validation convention 

McCarl (1984) emphatically states, “There is not, 
and never will be, a totally objective and accepted 
approach to model validation”. Once we face up to 
the fact that concepts like validation have strong 
subjective elements, it becomes clear that a func- 
tional definition requires the establishment of a con- 
vention, which is a generally accepted standard 
(Costanza, 1989; Botkin, 1990; NCASI, 1990). An 
arbitrary convention that all ecologists are familiar 
with is the use of a probability level of 0.05 as a test 
for statistical significance. There is no purely objec- 
tive basis for this standard. 

An appropriate convention may include not only 
how close to observed data the simulation is, but also 
how often. An initial proposal is that model outputs 
fall within the 95% confidence interval 75% of the 
time for the most important variables in dyamic 
models. The purpose of the model and the problem- 
specific level of accuracy required, for example a 
risk assessment requirement, are additional factors 
that will influence the construction of a general 
validation convention and provide the basis for re- 
finements of the convention. 
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