WHAT CAN PAIRED MEASUREMENTS OF Th ISOTOPE ACTIVITY AND PARTICLE CONCENTRATION TELL US ABOUT PARTICLE CYCLING IN THE OCEAN?

4	Olivier Marchal
5 6 7 8 9	Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA Tel: +1 508 289 3374 Fax: +1 508 457 2187 email: omarchal@whoi.edu
10	Phoebe J. Lam
11 12	Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA

13

April 17, 2012

Abstract

14

The ability of paired measurements of thorium isotope activity and particle concentration to constrain rate constants of sorption reactions and particle dynamics in the ocean is examined. This study is motivated by GEOTRACES and other sampling programs where 17 Th and particle data are gathered in various oceanic environments. Our approach relies 18 on inversions with a model of trace metal and particle cycling in the water column. 19 First, the model is used to simulate vertical profiles of (i) the activity of three Th isotopes 20 (228,230,234 Th) in the dissolved phase, small suspended particles, and large sinking particles, 21 and (ii) the concentration of small and large particles. The simulated profiles are then 22 subsampled and corrupted with noise to generate a pseudo data set. These data are 23 combined with the model with arbitrary values of rate constants of Th adsorption, Th 24 desorption, particle sinking, particle remineralization, and particle (dis)aggregation in an 25 effort to recover the actual values used to generate the data. Inversions are performed using a least-squares technique with varying assumptions about data noise, data sampling, 27 and model errors. 28

We find that accurate and precise recovery of rate parameters is possible when all data 29 have a relative error of less than 20\%, vertical sampling is dense enough to resolve activity 30 and concentration gradients, and model errors are negligible. Estimating cycling rates 31 from data with larger errors and (or) at locations where model assumptions are not 32 tenable would remain challenging. On the other hand, the paired data set would improve significantly the relative precision of rate parameters compared to that of prior estimates 34 $(\geq 100\%)$, even with current data uncertainties and significant model errors. Based 35 on these results, we advocate the joint measurement of all three Th isotopes, ²²⁸Ra, and 36 particles collected by in situ filtration within GEOTRACES and other sampling programs 37 targeted at the study of particle processes in the ocean.

39 1 INTRODUCTION

The production, transport, and destruction of particles in the ocean have profound consequences for the marine biogeochemical cycle of a wide range of constituents. For example, 41 chemical elements such as nitrogen, phosphorous, and carbon are incorporated into the 42 biogenic particles that are produced in the upper layers of the sea. These particles sink by gravity and tend to be decomposed at depth, leading to the release of these elements to the dissolved phase in deep water. This vertical transport of constituents by particle cycling is thought to strongly influence the large-scale distribution of a number of substances in the ocean, such as biological nutrients, dissolved oxygen, and dissolved inorganic carbon. 47 The exchange of chemical constituents between the dissolved phase and particles in the ocean can take different forms, including adsorption, desorption, (in)organic complexa-49 tion, and biologically-mediated uptake and remineralization. Besides, ocean particles are 50 subject to a wide variety of processes, such as precipitation, sinking, remineralization or 51 dissolution, (dis)aggregation, and transport by currents. Present-day knowledge about 52 sorption reactions and particle processes in the ocean stems largely from measurements 53 of particle-reactive metals, in particular thorium. Estimates of rate constants of Th and 54 particle cycling have been obtained from such measurements at various locations in the 55 world oceans, e.g., in the North Pacific (Nozaki et al., 1981; Nozaki et al., 1987; Murnane 56 et al., 1990; Clegg et al., 1991), the Equatorial Pacific (Clegg et al., 1991), the Panama 57 Basin (Bacon and Anderson, 1982), the Arctic Ocean (Bacon et al., 1989; Lepore and Moran, 2007), the North Atlantic (Cochran et al., 1993; Murnane et al., 1994; Murnane 59 et al., 1996), the Ross Sea (Cochran et al., 2000), the Indian Ocean near Kerguelen Is-60 lands (Venchiarutti et al., 2008), and the Drake Passage (Venchiarutti et al., 2011). These 61 estimates range over several orders of magnitude and suffer generally from very large un-62 certainties (Figure 1): point estimates of the cycling rates range from 0.1 to 1 y^{-1} for 63 adsorption, 1 to 10 y^{-1} for desorption, 10 to 100 y^{-1} for remineralization, 0.1 to 100 y^{-1} for aggregation, and 1 to 1000 y^{-1} for disaggregation. Likewise, estimates of the sinking speed of marine particles that have been derived from various methods span a large range and commonly lie between tens to a few hundred m d^{-1} (for a recent short review

see McDonnell and Buesseler (2010). These very large uncertainties constitute a severe impediment to the description of biogeochemical processes in ocean models.

This paper explores the extent to which measurements of the activity of three Th isotopes 70 $(^{228,230,234}\mathrm{Th})$ can, in combination with measurements of particle concentration, constrain aspects of Th and particle cycling in the ocean. It is motivated by the extensive set of 72 measurements obtained during GEOTRACES and other sampling programs concerned 73 with particle-reactive substances. Among the overriding goals of GEOTRACES is the evaluation of sources, sinks, and internal cycling of selected trace elements and isotopes 75 in the ocean (GEOTRACES, 2006). A major objective of this paper is to determine the extent to which the types of measurements gathered during GEOTRACES and other 77 programs could provide accurate and precise estimates of the rate constants of Th and 78 particle cycling in the deep sea. In particular, the sensitivity of the derived rate constants 79 to the uncertainties in the Th and particle data is estimated, thereby providing a target 80 for analytical improvements. 81

Our approach to reach the above objective is the following. First, a model that describes the cycling of trace metals and particles in the oceanic column is used to simulate the 83 vertical distributions of ^{228,230,234}Th activity and particle concentration in different size fractions. The distributions of Th isotope activity and particle concentration calculated 85 by the model are then subsampled and contaminated with noise in order to generate an idealized data set. These data are combined with the model with arbitrary values of the rate constants in an effort to recover the original values of the constants that have been 88 used to generate the data. Since the values of the rate parameters used to generate the 89 data are known exactly, the ability of the data to estimate these parameters can be tested. 90 The approach described above is often referred to as 'twin experiments' in other contexts and is routinely applied to test data assimilation procedures. 92

An inverse method is used to combine the data of Th isotope activity and particle concentration with the model of trace metal and particle cycling. Accordingly, this investigation builds to a large extent upon prior work by R. Murnane and his colleagues, who extensively applied such methods to the study of thorium and particles in the ocean (Murnane et al., 1990; Murnane et al., 1994; Murnane, 1994; Murnane et al., 1996). Our work shows both similarities and differences with these previous applications. The most significant difference is perhaps the absence of measurements of the vertical flux of Th isotopes and particles in the present study, since sediment traps are typically not deployed along transoceanic sections such as completed during GEOTRACES. On the other hand, measurements of particle concentration in different size fractions, which are lacking in previous applications, are considered here since such measurements are becoming more commonly available.

This paper is organized as follows. The model of trace metal and particle cycling, the idealized data, and the inverse method are described in section 2. In section 3, the ability of the data to recover rate constants in the presence of data errors, model errors, and (or) limited sampling is examined. Emphasis is placed on both the accuracy and the precision of the rate constants estimated by inversion. More specific aspects of the estimation problem and limitations of our approach are discussed in section 4. Conclusions follow in section 5.

12 METHODOLOGY

The methodology being used comprises three main components: a model that describes 113 the cycling of trace metals and particles in the ocean, a set of idealized measurements, 114 and an inverse method that combines the model with the measurements. The domain of 115 investigation is supposed to represent the water column at a deep ocean station occupied 116 during a large-scale sampling program such as GEOTRACES. It extends from the base 117 of the euphotic zone (taken at $z_e = 110$ m) to the bottom ($z_b = 5000$ m). By restricting 118 the domain to below the euphotic zone, particle production by photosynthesis does not 119 need to be considered and a relatively simple model of particle cycling could be used. By 120 convention, the vertical direction is pointing downwards. 121

2.1 Model of Trace Metal and Particle Cycling

2.1.1 Trace metal cycling

123

The model of trace metal cycling is a very simplified description of the behaviour of 124 particle-reactive substances in the ocean (Figure 2). It is analogous to the model proposed 125 by Bacon et al. (1985), with the addition of the remineralization of small particles leading 126 to the release of small particulate material to solution (see below). The resulting model 127 is identical to that applied in subsequent analyses of Th and particle measurements on 128 oceanic samples (e.g., Murnane et al. (1990); Cochran et al. (1993); Murnane et al. 129 (1994); Murnane (1994); Murnane et al. (1996); Cochran et al. (2000); Lepore and Moran 130 (2007)). The interested reader is invited to consult these references for a discussion of the 131 model assumptions. 132

In the model, the activity of each Th isotope (228Th, 230Th, and 234Th) is divided in 133 three phases: the dissolved phase, the small particles, and the large particles (Figure 2). 134 These phases have the following operational definitions. The dissolved phase designates 135 the material that passes through a conventional filter with a nominal porosity of about 136 $0.5 \mu m$. The small particle fraction refers to the material in the size range from about $0.5 \mu m$. 137 μm to about 50 μm . This fraction can be sampled from water pumped by large volume 138 filtration (LVF) and is assumed here to be suspended, i.e., it does not sink by gravity. 139 Finally, the large particle fraction denotes the material with a size larger than about 50 μ m. It can also be sampled by LVF and is assumed here to sink. 141

The specific processes being considered in the model include, for each Th isotope, the production by the radioactive parent, the radioactive decay, the adsorption onto small particles, the release from small particles by desorption and remineralization, the exchange between the small and large particles by particle (dis)aggregation, and the vertical transport due to the sinking of large particles. The processes associated with solution-solid exchange are assumed to follow first-order kinetics. Thus, the governing equations for the activity of each isotope in the dissolved phase $(A_d$, in dpm m⁻³), the small particles $(A_s$, dpm m⁻³), and the large particles $(A_l, \text{dpm m}^{-3})$ are

$$T(A_d) = \lambda A_n + (k_{-1} + \beta_{-1}) A_s - (k_1 + \lambda) A_d, \tag{1a}$$

$$T(A_s) = k_1 A_d + \beta_{-2} A_l - (k_{-1} + \beta_{-1} + \beta_2 + \lambda) A_s,$$
(1b)

$$T(A_l) = \beta_2 A_s - (\beta_{-2} + \lambda) A_l - w \frac{\partial A_l}{\partial z}.$$
 (1c)

Here A_p is the activity of the radioactive parent, λ the radioactive decay constant, k_1 the adsorption rate, k_{-1} the desorption rate, β_{-1} the remineralization rate, β_2 the aggregation rate, β_{-2} the disaggregation rate, and w the particle sinking speed. The term $T(\cdot)$ includes the temporal rate of change as well as the effects of advection and diffusion, e.g., $T(A_d) = \frac{\partial A_d}{\partial t} + \mathbf{u} \cdot \nabla A_d - \nabla \cdot (\mathbf{K} \nabla A_d)$, where t is time, \mathbf{u} the vector velocity, and \mathbf{K} a diffusion tensor. Note that the different effects in $T(\cdot)$ are not represented in Figure 2. There is a system of equations (1a-1c) for each Th isotope, so the model of trace metal cycling comprises a total of nine equations.

The radioactive decay constants and the radioactive parent activities that are assumed in this work are listed in Table 1. The activity of ²²⁸Ra (half-life of 5.7 y) shows generally large vertical variations in the ocean, with maxima near the surface and the bottom, and minima at mid-depth (e.g., *Key et al.* (1992)). Since ²²⁸Ra is supplied from sediments, highest ²²⁸Ra activities are observed in surface waters near the coasts and in bottom waters. In order to represent vertical variations of ²²⁸Ra activity in our analysis, the ²²⁸Ra activity is set to vary with depth according to:

$$^{228}\text{Ra}(z) = Ae^{-(z-z_e)/l_{\text{Ra}}} + Be^{-(z_b-z)/l_{\text{Ra}}},$$
(2)

where $A=30~{\rm dpm~m^{-3}}$, $B=5~{\rm dpm~m^{-3}}$, and $l_{\rm Ra}=500~{\rm m}$. The vertical distribution of $^{228}{\rm Ra}$ described by this equation exhibits an exponential decrease from the base of the euphotic zone (where $^{228}{\rm Ra}=30~{\rm dpm~m^{-3}}$) and an exponential decrease from the bottom (where $^{228}{\rm Ra}=5~{\rm dpm~m^{-3}}$), with much smaller activities at mid-depth (minimum of 169 0.2 dpm m⁻³ near $z=3000~{\rm m}$). In contrast to $^{228}{\rm Ra}$, the $^{234}{\rm U}$ and $^{238}{\rm U}$ activities are thought to exhibit relatively small variations in the ocean where uranium tends to vary linearly with salinity and hence to behave conservatively (e.g., *Owens et al.* (2011)). Here these activities are taken as vertically uniform. The $^{238}{\rm U}$ activity is fixed at 2.4×10^3

dpm m⁻³ assuming a salinity of 35 (*Owens et al.*, 2011) and the ²³⁴U activity is fixed at $2.4 \times 1.14 = 2.7 \times 10^3$ dpm m⁻³ assuming a ²³⁴U/²³⁸U ratio of 1.14 for seawater (*Chen et al.*, 1986; *Robinson et al.*, 2004).

In order to generate idealized Th data, equations (1a-1c) are solved for the Th isotope 176 activity in each phase by making the following assumptions. First, the effects of unsteadi-177 ness, advection, and diffusion are assumed to be negligible in the Th isotope balances, i.e., $T(A_d) = T(A_s) = T(A_l) = 0$. These assumptions are unlikely to be valid for all Th 179 isotopes and (or) at all oceanic locations. Vertical profiles of ²³⁰Th at several locations in the North Pacific are consistent with a reversible exchange with settling particles and do 181 not seem to require a significant influence of ocean circulation (e.g., Nozaki et al. (1981); 182 Roy-Barman et al. (1996)). Measurements of ²³⁰Th activity in the North Atlantic, how-183 ever, have been suggested to reflect a significant effect of deep circulation (e.g., Cochran 184 et al. (1987); Moran et al. (1997); Vogler et al. (1998); Moran et al. (2002); Marchal 185 et al. (2007)). Second, the presence of a vertical derivative in (1c) implies that a bound-186 ary condition is required to solve the system (1a-1c). The derivative is present in the 187 equation for large particle activity, so either the large particle activity or the flux of Th in 188 large particles should be prescribed at a given depth. Here the large particle activity at 189 depth z_e is fixed to 0.01 dpm m⁻³ for ²²⁸Th, 0.001 dpm m⁻³ for ²³⁰Th, and 2.5 dpm m⁻³ for ²³⁴Th. These values are generally consistent with specific activities (dpm per particle 191 mass) measured on material collected by sediment traps deployed in the upper 400 m 192 at different locations in the North Atlantic (Brewer et al., 1980; Cochran et al., 1993; 193 Roy-Barman et al., 2005), assuming a concentration of large particles of $1 \times 10^{-6} \text{ kg m}^{-3}$ 194 (see below). Finally, the rate constants k_1 , k_{-1} , w, β_{-1} , β_2 , and β_{-2} take on the values of Table 2 (3rd column), which are within the range of published estimates (Figure 1). 196

With the above assumptions, the Th isotope equations (1a-1c) reduce to a system of ordinary differential equations that can be solved exactly by Laplace transform. Note that equations (1a-1c) can be solved for the Th isotope activities independently of the concentrations of particles. This possibility arises from the fact that these activities are expressed in dpm per volume of water, since measured ^{228,230,234}Th activities, including

particle activities derived from in situ filtration, are usually given in dpm per volume or mass of water. If the particle activities were expressed instead in dpm per mass of particles, then particle concentrations would appear explicitly in (1a–1c) and they should be known in order to determine the Th activities (the particle cycling model is described section 2.1.2).

The vertical distributions of Th isotope activity, which are obtained by analytical solution 207 of (1a-1c), are displayed in Figure 3 to Figure 5 (solid lines). The activity of ²²⁸Th in the 208 dissolved phase and the small particles show maxima near the surface and the bottom, where the radioactive parent ²²⁸Ra is relatively abundant (Figure 3). In contrast, the 210 activity of ²²⁸Th in the large particles presents a subsurface maximum, which reflects a 211 balance between the effects of particle (dis)aggregation, radioactive decay, and particle 212 sinking (equation 1c). The activity of ²³⁰Th increases quasi-linearly with depth in each 213 phase, which arises from the reversible exchange with particles and a relatively long halflife (Figure 4). Finally, the activity of the short-lived ²³⁴Th shows, for each phase, a 215 decrease in the upper 1000 m and nearly uniform values in the deeper part of the water 216 column, where secular equilibrium with the progenitor ²³⁸U is almost reached (Figure 5). 217

Albeit instructive, the analytical model described above would generally not be appropri-218 ate for combination with real measurements, as it neglects possible vertical variations of 219 the rate constants. In order to allow for such variations, a numerical model is considered. 220 Equations (1a-1c) are thus approximated with finite differences at grid points extending 221 from the base of the euphotic zone to the bottom. The grid points of the numerical model 222 belong to two subsets. The grid points of a first subset coincide with the fourteen deep-223 est levels of a sampling scheme adopted at some of the stations occupied during the US 224 GEOTRACES North Atlantic section (completed in 2010–2011): 110, 135, 185, 250, 550, 225 850, 965, 1500, 2100, 3000, 3600, 4300, 4750, and 4900 m. For convenience, stations with 226 this sampling scheme are referred to below as 'GEOTRACES NA deep stations'. The 227 grid points of the second subset are intermediate points located between the sampling 228 depths. Specifically, two additional points whose depth is found by linear interpolation 229 are included between each pair of adjacent sampling depths. The addition of intermediate 230

points between sampling depths increases the resolution of the numerical model and leads to accurate results (see below). The two subsets form a total of 40 grid points including the boundary point at $z_e = 110$ m where the large particle activities are prescribed. The sinking term $w\partial A_l/\partial z$ in (1c) is approximated by a central difference scheme at all points except at the deepest point (z = 4900 m) where it is approximated with backward differencing.

The vertical distributions of 228,230,234 Th, which are obtained numerically, are compared to those calculated analytically in order to test the accuracy of the numerical model (compare dashed lines with solid lines in Figure 3 to Figure 5). They rely on the same assumptions as for the analytical solution. The relative error in the Th isotope activities determined numerically is ≤ 0.01 on average for each Th isotope and for each phase, indicating that the numerical solution is accurate.

2.1.2 Particle cycling

The model of particle dynamics is a very crude description of the behaviour of particles in the ocean (Figure 2). It is similar to the model proposed and applied by Clegg and 245 Whitfield (1990), Clegg and Whitfield (1991), and Clegg et al. (1991), except that the 246 production of small particles and the remineralization of large particles are disregarded. 247 It is identical to the model adopted in previous inversions of Th and particle data (Mur-248 nane et al., 1990; Murnane et al., 1994; Murnane, 1994; Murnane et al., 1996). A critical 249 discussion of the model assumptions was recently provided by Burd and Jackson (2009). For example, whereas the model assumes first-order kinetics for particle processes, aggre-251 gation is thought as a second-order process that involves the collision of two particles, 252 leading to a different interpretation of the rate constant for aggregation in the model. 253

In the model, the concentration of particles is considered only in two size classes: the
small particles and the large particles (Figure 2). The processes being considered are
the aggregation of small particles to form large particles, the remineralization of small
particles, the disaggregation of large particles into small particles, and the sinking of large

particles. The governing equations for particle concentration in the small size fraction (P_s , in kg m⁻³) and large size fraction (P_l , kg m⁻³) are thus

$$T(P_s) = \beta_{-2}P_l - (\beta_{-1} + \beta_2) P_s,$$
 (3a)

$$T(P_l) = \beta_2 P_s - \beta_{-2} P_l - w \frac{\partial P_l}{\partial z}.$$
 (3b)

In order to generate idealized particle data, equations (3a-3b) are solved for the vertical distributions of P_s and P_l by making assumptions similar to those for the Th isotopes. 261 First, the effects of unsteadiness, advection, and diffusion are assumed to be negligible 262 i.e., $T(P_s) = T(P_l) = 0$. Second, the presence of a vertical derivative in (3b) implies 263 that a boundary condition is required to solve the particle equations (3a-3b), as for the Th equations. Since the derivative occurs in the equation for large particles, either the 265 concentration or the flux of large particles should be imposed at a given depth. Here the 266 concentration of large particles at depth z_e is fixed at $P_l = 1 \times 10^{-6}$ kg m⁻³. This value 267 can be derived, for example, from (i) a vertical particle flux of 100 mg m⁻² d⁻¹ at this 268 depth, which compares favorably with the particle flux intercepted over most of the year 269 by a sediment trap at 150 m in the Sargasso Sea (Lohrenz et al., 1992), and (ii) a sinking 270 velocity of large particles of 100 m d⁻¹. Finally, the rate constants w, β_{-1} , β_2 , and β_{-2} 271 take on the values that are listed in Table 2 (3rd column). 272

The vertical distributions of P_s and P_l , which are obtained by solving equations (3a–3b) analytically, show maxima near the surface and an exponential decrease with depth (solid lines in Figure 6). The length scale characterizing the exponential decrease of particle concentration is equal to $w(\beta_{-1}+\beta_2)/\beta_{-1}\beta_{-2}$ and is therefore the same for the two particle fractions. The ratio of small particle concentration to large particle concentration is given by $\beta_{-2}/(\beta_{-1}+\beta_2)$ and is thus the same at all depths.

Note that the decrease with depth of the concentration of particulate organic carbon (POC) measured on material collected by LVF has been described with a power law, not with an exponential function (*Lam et al.*, 2011). However, the POC decrease takes place primarily through the mesopelagic zone (between approximately 100 and 1000 m). In the abyssal region, which is the focus of this study (section 2.2.1), the difference between a

power law and an exponentional function to describe the vertical distribution of particle concentrations should be relatively slight.

The vertical distributions of P_s and P_l obtained numerically using the same grid and finite-differencing as for the model of trace metal cycling are compared to the analytical solution (compare dashed lines with solid lines in Figure 6). The relative error in the particle concentrations determined numerically averages to less than 0.01, indicating good accuracy of the numerical solution.

$_{91}$ 2.1.3 Model errors

The assumption of vanishing model errors when inferring rate parameters from field mea-292 surements is likely to be generally unrealistic. Indeed, a variety of processes that are 293 poorly or not represented in models of trace metal and particle cycling may significantly 294 influence the Th isotope activities and (or) particle concentrations that are observed in 295 situ (such processes include, for example, mesoscale eddies; Sweeney et al. (2003)). When 296 such an influence is suspected, the model equations should not be imposed exactly in 297 the data analysis. Moreover, model errors should include uncertainties in the radioactive sources λA_p (equation 1a), since these are never known perfectly. In particular, $^{228}\mathrm{Ra}$ 299 measurements at mid-depth can suffer from significant uncertainties, implying that the 300 radioactive source and hence the equation for dissolved ²²⁸Th should not be imposed too 301 strictly in the analysis. 302

Different approaches to constrain model errors have been adopted in previous inversions of
Th and particle measurements on oceanic samples (e.g., Murnane et al. (1994); Murnane
et al. (1996)). In some inversions, model errors were assumed to be proportional to a
prior estimate of the sum of the source, sink, and sinking terms (where present) in the Th
and particle equations (Murnane et al., 1994). In other inversions, based on time-series
of data, model errors were taken as proportional to the standard deviation of the trends
observed in the data (Murnane et al., 1996). In the present analysis, where the data do
not occur in the form of time series, the former approach to constrain model errors is

adopted (section 2.3.2).

312 2.2 Idealized Data Set

The vertical distributions of Th isotope activity and particle concentration, which are 313 computed from the numerical model (Figures 3-6), are used to produce an idealized data 314 set from which the ability of Th and particle data to estimate cycling rates could be 315 tested. This data set includes (i) the activity of ²²⁸Th, ²³⁰Th, and ²³⁴Th in the dissolved 316 phase, the small particles, and the large particles, and (ii) the particle concentration in the 317 small and large size fractions. They would represent the types of measurement available 318 at stations occupied during modern sampling programs, such as at the GEOTRACES 319 NA deep stations. The types of measurement and the measurements errors, which are 320 considered here, are specific to the US GEOTRACES North Atlantic plans and investi-321 gators, although they may apply to other programs as well. Two limitations need to be 322 considered: the relatively limited number of samples and the presence of non-negligible 323 uncertainties in the data. 324

325 2.2.1 Limited sampling

The Th isotope activities and particle concentrations will not be measured on all size fractions and at all pumping depths at GEOTRACES NA deep stations. The set of 327 measurements that is considered to be available in this study is consistent with current 328 expectations for the samples collected at these stations, although it is perhaps too op-329 timistic (section 4.2). Specifically, the following data set is assumed to be available: (i) 330 228 Th for all size fractions and at all depths, (ii) 230 Th_d at all depths, (iii) 230 Th_s at the 331 ten deepest levels (in our analysis, at $z \ge 550$ m), (iv) 230 Th_l at a single depth (2100 m), 332 (v) 234 Th_d and 234 Th_s at all depths, (vi) 234 Th_l in the upper 500–1000 m ($z \le 965$ m), 333 and (vii) P_s and P_l at the ten deepest levels ($z \geq 550$ m), as for $^{230}\mathrm{Th}_s$. The following 334 procedure is adopted to assign activity and concentration values at the model grid points, 335 unless stipulated otherwise. The Th isotope activities and particle concentrations at grid

points coinciding with measurement depths are the values derived from the numerical solution at these depths. The activities and concentrations at points between measurement depths are obtained by linear interpolation of these values. The activities and concentrations at all other points are obtained by extrapolation from the values derived numerically at the closest measurement depth (for example, 230 Th_l values above and below 2100 m are set equal to the value at 2100 m).

The number of data used in our analysis is further reduced for the following reason. 343 Testing the ability to recover rate parameters from the present approach requires an assumption about their actual vertical distribution in the ocean. Rate parameters of 345 sorptive reactions and particle cycling are likely to vary with depth, in particular in the 346 mesopelagic zone. For example, the concentration of strong organic ligand in particulate 347 matter (PM), as determined from the amount of Th adsorbed onto PM in 0.1 M HCl, was 348 found to decrease with depth between 100 and 1000 m in the South Pacific and South Atlantic (Hirose et al., 2011). Chemical and biological processes modify the physical 350 properties of aggregates as they sink, thereby altering their settling speed (Burd and 351 Jackson, 2009). The settling speed of particles has been estimated to increase by a factor 352 of two between 100 and 2000 m and by 15-60% between 2000 and 3500 m at two stations 353 in the Equatorial Pacific Ocean and the Arabian Sea (Berelson, 2002). Rates of particle sinking have also been inferred to increase with depth off Cape Blanc in the Eastern North 355 Atlantic (Fischer and Karakas, 2009). The rate constant for particle remineralization 356 would decrease with depth as particles would comprise less labile material as they settle 357 (for a review about particle degradation see Boud and Trull (2007)). Likewise, processes 358 responsible for particle (dis)aggregation (Burd and Jackson, 2009), such as zooplankton feeding and fecal pellet production, are likely to vary in intensity with depth. 360

For simplicity, our analysis is restricted to the abyssal region at depths ≥ 965 m (the deepest level where 234 Th $_l$ might be measured at GEOTRACES NA deep stations). Accordingly, only the data occurring at depths ≥ 965 m are used to recover the rate parameters by inversion. Furthermore, the rate parameters to be recovered from Th and particle data are taken as vertically uniform in the abyssal region, unless stated other-

wise. Note that the assumption of uniform cycling rates even at abyssal depths cannot be rigorously defended. It would certainly not be valid at all oceanic locations. For example, the presence of a benthic nepheloid layer can lead to variations in at least some of the rate constants, as discussed in section 4.1. In that section, the estimation of a nonuniform rate parameter from Th and particle data is addressed.

2.2.2 Data errors

Uncertainties in the measurements of Th isotope activity and particle concentration on 372 oceanic samples arise from various sources, such as inadequate sample volumes, imperfec-373 tions in sample collection, preservation, and preparation, and instrumental errors. The 374 relative errors for the measurements of Th isotope activity and particle concentration, 375 which are assumed in this work, are listed in Table 3. The relative error of 15% for ²²⁸Th measured on the dissolved phase and the small particles is within the expected 377 range of uncertainty (M. Charette, pers. comm.). The relative error of 20% for ²³⁰Th 378 measured on these fractions is an assessment by the present authors based on results 379 from an intercalibration coordinated by GEOTRACES (plots kindly provided by R. An-380 derson). Measurements of ²²⁸Th and ²³⁰Th on large particles have rarely or never been 381 attempted and are arbitrarily assumed here to have a relative error of 50%. Although 382 samples from multiple depths may need to be combined in order to exceed the detection limits of instruments (M. Charette, pers. comm.), combination of multiple samples is not 384 considered in our analysis. The errors in ²³⁴Th measurements are relatively small due to 385 the abundance of ²³⁴Th in seawater compared to that of ²²⁸Th and ²³⁰Th. The relative 386 error of 5% for ²³⁴Th measured on each fraction (Table 3) is consistent with published 387 estimates (e.g., Buesseler et al. (2008)). Finally, a relative error of 20% is assumed for particle concentrations measured on water samples collected by LVF. 389

In order to account for measurement errors, the Th isotope activities and particle concentrations obtained from the numerical solution are corrupted with noise. The addition of noise requires an assumption about the underlying probability distributions of the activities and concentrations. If a normal (gaussian) probability distribution is assumed, the addition of noise can lead to negative values, which is unrealistic. Negative values are
most likely to occur for measurements with the largest relative errors (Table 3). In order
to avoid the occurrence of negative values, the Th isotope activities and the particle concentrations are assumed to follow lognormal distributions (Aitchison and Brown, 1957).
For example, the ²²⁸Th activity in the dissolved phase is, in the presence of measurement
errors, set equal to

$$^{228}\mathrm{Th}_d' = e^{\mu + r\sigma},\tag{4}$$

400 where

$$\mu = \ln\left(^{228} \text{Th}_d\right)$$
 and $\sigma = \sqrt{\ln\left(1 + \epsilon^2 [^{228} \text{Th}_d]\right)}$. (5)

Here 228 Th_d is the value obtained from the numerical solution and (when applied) subse-401 quent interpolation or extrapolation, and $\epsilon[^{228}\mathrm{Th}_d]=0.15$ is the relative error in $^{228}\mathrm{Th}_d$ 402 measurement (Table 3). The quantity r in (4) is a normal deviate with zero mean and 403 unit variance, which is generated randomly. If a large number of values of r is generated 404 for fixed $^{228}\mathrm{Th}_d$ and $\epsilon[^{228}\mathrm{Th}_d]$, the probability distribution of $^{228}\mathrm{Th}_d'$ tends to a lognormal 405 distribution with median μ and variance σ^2 . A test ensures that the values of $^{228}\text{Th}'_d$ 406 that are derived randomly are within $1 \pm \epsilon^{[228} Th_d$ of the value of $^{228} Th_d$. The above 407 procedure is applied to the other Th isotope activities and to the particle concentrations in all fractions. The Th and particle values at sampling depths, which are used to produce 409 the idealized data for the inversions, are displayed together with their respective errors in 410 Figure 3 to Figure 6 (open and solid circles, with horizontal bars). 411

412 2.3 Inverse Method

An inverse method is used to combine the model of trace metal and particle cycling (section 2.1) with the (idealized) measurements of Th isotope activity and particle concentration (section 2.2). This combination will inform us about the extent to which these types of measurement could be used to recover the rate constants k_1 , k_{-1} , w, β_{-1} , β_2 , and β_{-2} in the abyssal region (below a depth of 965 m). Since the measurements have significant errors, they should not be imposed exactly when inferring the rate constants. Here, the Th isotope activities and particle concentrations are, in addition to the rate

constants, considered to be actually part of the solution. This approach allows the values of Th isotope activity and particle concentration to adjust in the inversions, while remaining consistent with the observed values. In order to avoid the inference of negative values, the inverse method aims at estimating, not the actual values, but their natural logarithm (e.g., Murnane et al. (1994)).

The inverse method being used is a generalized least-squares method known as the algo-

rithm of total inversion (Tarantola and Valette, 1982a; Tarantola and Valette, 1982b). A

2.3.1 Algorithm of total inversion

426

427

brief description of this method allows us to introduce concepts that are referred to later 428 in the paper (for details see the above references). Let us first introduce a state vector \mathbf{x} of 429 dimension n. The components of x are the natural logarithm of (i) the activity of 228 Th, 430 ²³⁰Th, and ²³⁴Th in the dissolved phase, the small particles, and the large particles, (ii) the 431 particle concentration in the small and large size fractions, and (iii) the rate constants k_1 , 432 $k_{-1}, w, \beta_{-1}, \beta_{2}$, and β_{-2} , at different depths. The components of **x** represent the actual, 433 true values to be estimated by inversion. If the number of depths where the components 434 are to be estimated is m, then the dimension of x is $n = (3 \times 3 + 2 + 6)m = 17m$. 435 Let us then consider an a priori estimate of \mathbf{x} , which is noted \mathbf{x}_o . This prior estimate 436 of the solution is obtained from the measurements of Th isotope activity and particle 437 concentration (section 2.2) and from values of rate constants that are consistent with 438 published estimates (Figure 1). Here the prior values of the rate constants are set equal 439 to $5 \pm 5 \text{ y}^{-1}$ for both k_1 and k_{-1} , $300 \pm 150 \text{ m d}^{-1}$ for w, $10 \pm 50 \text{ y}^{-1}$ for β_{-1} , $10 \pm 100 \text{ y}^{-1}$ 440 for β_2 , and $500 \pm 5000 \text{ y}^{-1}$ for β_{-2} (Table 2, 4th column). The ranges defined by these values encompass most of the point estimates of these parameters in the ocean (Figure 1). 442 Let us then define a $n \times n$ error covariance matrix \mathbf{C}_o . The diagonal elements of \mathbf{C}_o are 443 the variances (standard deviations or errors squared) of the prior estimates in \mathbf{x}_o and the off-diagonal elements of \mathbf{C}_o are the covariances between these errors. Assuming that the 445 Th activities, particle concentrations, and rate constants are lognormally distributed, the

variances are set equal to $\ln(1 + \epsilon^2[\cdot])$, where $\epsilon[\cdot]$ is the relative error for these variables (e.g., $\epsilon[k_1] = 5/5 = 1$). On the other hand, the covariances are set to zero, i.e., \mathbf{C}_o is assumed to be diagonal.

Finally, let us consider the equations of the model of Th cycling (1) and particle dynamics 450 (3), but with the trend and transport terms set equal to zero $(T(\cdot) = 0)$. The finite-451 difference approximations that result from the discretization of these equations on the 452 grid are included in a vector $\mathbf{f}(\mathbf{x}) = \mathbf{0}$. Thus, the vector $\mathbf{f}(\mathbf{x})$ includes the finite-difference 453 forms of the source, sink, and sinking terms in equations (1) and (3). Its dimension is equal to $(3 \times 3 + 2)m = 11m$. The sinking terms are approximated with central differences at 455 all interior points. The boundary points where large particle activities and concentrations 456 are prescribed occur at z = 965 m and 4900 m. As for the data, the equations $f(\mathbf{x}) = \mathbf{0}$ 457 should not be imposed exactly when inferring rate constants in the ocean, since these 458 equations contain uncertainties due to the assumption of steady state, the neglect of the 459 effect of ocean circulation, the truncation error introduced by the numerical approximation 460 of the sinking term, etc. Consequently, an error covariance matrix is also introduced for 461 $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, and noted \mathbf{C}_f . The diagonal elements of \mathbf{C}_f are the square of the errors of 462 the components of $\mathbf{f}(\mathbf{x})$, i.e., the square of the errors in the difference forms of the model 463 equations. The off-diagonal elements of \mathbf{C}_f are the covariances between these errors and are set equal to zero. 465

The problem considered in this paper is to find estimates of Th isotope activity, particle concentration, and rate constants k_1 , k_{-1} , w, β_{-1} , β_2 , and β_{-2} , which are consistent with (i) prior estimates of all these quantities and (ii) a model of trace metal and particle cycling. Equivalently, the problem is to find an estimate of \mathbf{x} that is consistent with both the prior estimate \mathbf{x}_o and the model equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, given estimates of their respective errors. It is solved by determining a minimum of the objective function

$$J = (\mathbf{x} - \mathbf{x}_o)^T \mathbf{C}_o^{-1} (\mathbf{x} - \mathbf{x}_o) + \mathbf{f}(\mathbf{x})^T \mathbf{C}_f^{-1} \mathbf{f}(\mathbf{x}), \tag{6}$$

where the superscript T denotes the transpose. The first and second terms on the righthand side describe, respectively, the deviation from the prior estimates and the deviation from the model equations. Since C_o and C_f are approximated by diagonal matrices, the objective function is a weighted sum of squares:

$$J = \sum_{i=1}^{17m} \left(\frac{x_i - x_{o,i}}{\sigma_{o,i}} \right)^2 + \sum_{i=1}^{11m} \left(\frac{f_i(\mathbf{x})}{\sigma_{f,i}} \right)^2, \tag{7}$$

where $\sigma_{o,i}$ is the standard deviation for the *i*th component of \mathbf{x}_o and $\sigma_{f,i}$ is the standard deviation for the *i*th component of $\mathbf{f}(\mathbf{x}) = \mathbf{0}$. The matrices \mathbf{C}_o and \mathbf{C}_f play therefore the role of weighting factors, such that prior estimates or model equations with relatively large uncertainties contribute only modestly to the objective function to be minimized. For example, the relative errors $\geq 100\%$ for the prior estimates of the rate constants (Table 2) imply that the posterior estimates of these constants to be found by inversion may strongly deviate from the prior estimates (indeed, by one order of magnitude or more).

Note that the search for a minimum of J is a nonlinear problem, since the equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ contain products of elements of \mathbf{x} (e.g., $k_1^{228}\mathrm{Th}_d$ in equation (1a)): if the Th and particle data were to contain no error, then they could be taken as constant values and moved out of the state vector \mathbf{x} . In this case, the equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ could be written as $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is a matrix of coefficients constrained from the data, \mathbf{x} a vector of unknowns containing the rate constants, and \mathbf{b} a vector including, e.g., the production rates from the radioactive parents. The search for a minimum of J would then reduce to a linear problem. The general validity of this approach, however, is doubtful for real (and thus uncertain) observations.

The method of total inversion is iterative in nature and proceeds by successive linearization of the nonlinear equations using their gradient with respect to the state vector. Accordingly, convergence of the method is only ensured if the nonlinearity is not too strong ($Tarantola\ and\ Valette$, 1982a). Here the algorithm is initialized with the prior estimate of the state, \mathbf{x}_o , and iteration is stopped when all the elements of the solution differ by less than 1% from those of the solution at the previous iterative step.

When a solution is found, the posterior estimates of the rate constants and their errors are derived as follows. The posterior estimates are obtained from the antilog of the solution

elements (e.g., the posterior estimate of k_1 is obtained from the antilog of $\widehat{\ln k_1}$, where $\widehat{\ln k_1}$ is the estimate of the logarithm of k_1 that is found by inversion). If a solution element is 502 the mean value of a normal distribution, then its antilog would be the median value of a 503 lognormal distribution. Alternately, the posterior estimates of the rate constants can be 504 derived using the formula for the mean of a lognormal random variable. For example, the 505 posterior estimate of the adsorption rate, $\widehat{k_1}$, can be obtained from $\exp\left(\widehat{\ln k_1} + \sigma_{\widehat{\ln k_1}}^2/2\right)$, where $\sigma_{\widehat{\ln k_1}}$ is the error in the posterior estimate of $\ln k_1$ (Aitchison and Brown (1957); 507 p. 8, equation 2.7). If nonlinearity is not too strong, the error $\sigma_{\widehat{\ln k_1}}$ can be derived using 508 the formula for the error covariance matrix of the solution for the linear case (Tarantola 509 and Valette, 1982a). The two forms (median and mean) of posterior estimate of the rate 510 constants are considered here, as in previous inversions of Th and particle data (e.g., 511 Murnane et al. (1994)). 512

Finally, the errors in the posterior estimate of the rate constants are computed using the formula for the standard deviation of a lognormal random variable (*Aitchison and Brown* (1957); p. 8, equation 2.8). For example, for the adsorption rate k_1 ,

$$\sigma_{\widehat{k_1}}^2 = \exp\left(\sigma_{\widehat{\ln k_1}}^2 + 2\widehat{\ln k_1}\right) \left(\exp\left(\sigma_{\widehat{\ln k_1}}^2\right) - 1\right). \tag{8}$$

In summary, the number of depths where the rate constants k_1 , k_{-1} , w, β_{-1} , β_2 , and β_{-2} are to be estimated from the Th and particle data amounts to m=20 (six sampling depths plus fourteen intermediate depths between z=965 m and 4900 m excluded). Consequently, the number of unknowns (size of \mathbf{x}) is 340 and the number of equations (size of \mathbf{f}) is 220. The inference of the rate constants is a formally underdetermined (and nonlinear) problem.

2.3.2 Prescription of model errors

Based on some of the concepts of the inverse method, the prescription of model errors in our analysis can be described precisely. Following a previous approach (*Murnane et al.*, 1994), the model errors are assumed to be proportional to the prior estimate of the sum of the source, sink, and sinking terms in the Th and particle equations:

$$\{\mathbf{C}_f\}_{i,j} = p \,\delta_{i,j} \{\mathbf{f}(\mathbf{x}_o)\mathbf{f}(\mathbf{x}_o)^T\}_{i,j},\tag{9}$$

where $\{\cdot\}_{i,j}$ is the i,j element of the matrix, p is a proportionality factor, and $\delta_{i,j}=1$ if i=j and $\delta_{i,j}=0$ if $i\neq j$. For example, the assumption p=1 is equivalent to the statement that processes that are not represented explicitly in the model can be on the same order of magnitude as the prior estimate of the sum of the source, sink, and sinking terms.

32 3 RESULTS

In this section, the Th and particle data are combined with the model of Th and particle 533 cycling to test the ability of these data to recover the rate parameters of the model. 534 Emphasis is placed on the accuracy and precision with which the rates of adsorption, 535 desorption, sinking, remineralization, and (dis)aggregation can be estimated. Results from 536 a variety of inversions are reported in order to isolate the effects, on parameter recovery, of 537 data errors, model errors, and limited sampling. Hypothetical cases where data or model 538 errors are small or even zero and where data are available at all depths are considered 539 first. We then examine more realistic cases where the uncertainty and availability of data 540 approach those at stations occupied during modern sampling programs and where the 541 model contains significant errors.

$_{\scriptscriptstyle{43}}$ 3.1 Effect of Data Errors

We first consider two different inversions where the Th and particle data have small uncertainties, they are available at all depths (no data interpolation or extrapolation is applied), and model errors are very small ($p = 10^{-5}$). Although these conditions are unlikely to be met in any real circumstances, the results from these inversions provide a useful reference as more realistic assumptions about the measurements and the model will be considered.

In a first inversion, the relative error of all data is fixed to 5\%, which is comparable to the relative error of ²³⁴Th measurements (for convenience this inversion is referred 551 to below as our 'reference inversion'). It is seen that the rate parameters can all be 552 successfully recovered in this case (solid circles in Figure 7). The posterior estimates 553 of these parameters are close to the actual values used to generate the Th and particle 554 data, and their posterior errors are small. This result indicates that accurate and precise recovery of the kinetic parameters from Th and particle data is a theoretical possibility. 556 The Th and particle data overdetermine effectively the problem, so that all a priori 557 information about the rate constants can be neglected. In this case, the iteration of the 558 linearized problem always leads to the correct solution (Tarantola and Valette, 1982a). 559

In the second inversion, the relative error of all data is raised to a maximum of 20%, 560 a value that seems to approximately hold for ²³⁰Th measurements on the dissolved and 561 small particle fractions. Thus, all measurements have the relative errors listed in Table 3, 562 except ²²⁸Th and ²³⁰Th measurements on large particles whose relative error is 20%. As 563 in the previous inversion, the prior estimates of the rate constants are adjusted so as to 564 jointly satisfy the data and the model equations given their respective uncertainties (open 565 circles in Figure 7). As expected, the recovery of the rate constants is generally poorer 566 than in the previous case where data have a relative error of 5\%, except for the adsorption 567 rate that is still estimated with high accuracy and precision. The estimated rate constants 568 are generally larger than those derived in this previous case. This pattern is due to the 569 fact that inversions with larger data errors are less strongly influenced by Th and particle 570 data and more strongly influenced by prior estimates of the rate constants (equation 7). 571 Accordingly, since the prior estimates of the rate constants are set to be greater than their 572 actual values, the posterior estimates of the rate constants obtained by inversion increase 573 with the errors in the data. Nonetheless, most of the posterior estimates of the cycling 574 rates are considerably more precise than the prior estimates, while being generally within one standard deviation of the actual values. This result suggests that Th and particle 576 data with a relative error $\leq 20\%$ may still dramatically improve our understanding of solid-solution exchange and particle processes. Of course, this conclusion would hold only 578 at locations where the data are available with good vertical resolution and the model

provides an accurate description of Th and particle cycling (the effects of model errors and data resolution are explored later in sections 3.2 and 3.3, respectively).

A set of inversions illustrates more comprehensively the effect of varying data errors on 582 the accuracy and precision of the recovered rate parameters (Figures 8-9). All these 583 inversions assume that the data are available at all depths and that model errors are 584 very small $(p = 10^{-5})$. The accuracy of a rate constant is measured by the normalized difference $(\hat{x} - x)/x$, where \hat{x} is the value of the rate constant estimated by inversion 586 (here the mean) and x is its actual value $(x \in \{k_1, k_1, w, \beta_{-1}, \beta_2, \beta_{-2}\})$. The precision is measured by the ratio $\sigma_{\hat{x}}/\hat{x}$, where $\sigma_{\hat{x}}$ is the standard deviation of rate constant x estimated by inversion (equation 8). As expected, both the accuracy and the precision 589 of the recovered rate parameters deteriorate as the Th and particle data contain larger 590 errors (Figures 8–9). Nonetheless, parameter recovery with $|\hat{x} - x|/x < 1$ and $\sigma_{\hat{x}}/\hat{x} < 1$ 591 remains generally possible even in the presence of significant data errors (maximum of 20%). As already illustrated, not all parameters can be recovered with the same accuracy 593 and precision: in general, the rate of Th adsorption onto small particles (k_1) and the rate 594 of Th desorption from small particles (k_{-1}) are the parameters that are the easiest to 595 infer from Th and particle data. 596

Note that, so far, the relative errors listed in Table 3 have been assigned to some but not all Th and particle data. Specifically, ²²⁸Th and ²³⁰Th measurements on large particles have been assumed to have a relative error of less than 50%. The case where the relative error in these measurements is equal to this value is examined in section 3.4.

601 3.2 Effect of Model Errors

As suggested above, the assumption of vanishing model errors when inferring rate constants from field data should generally be discouraged. In order to isolate the effect of model errors, inversions are considered where the Th and particle data are assumed to be perfect ($\sigma_o = 0$ for these data) and available at all depths. Note that the situation $\sigma_o = 0$ for some variables does not lead to infinite values in the algorithm of total inversion, as equation (7) may suggest. Indeed, the algorithm can rely on either \mathbf{C}_o or its inverse through the use of a matrix identity (e.g., Liebelt (1967)).

The rate parameters that are estimated in two inversions with p = 0.1 or p = 1 are 609 compared in Figure 10. It is seen that the second, more conservative assumption about 610 the model (p = 1) leads to a significant deterioration of the accuracy and precision of 611 the rate constants compared to the first assumption. In the second inversion, the rate 612 constants are adjusted generally to a lesser degree from their prior estimates, which is 613 consistent with a lower weight given to the model equations and, consequently, to the Th and particle data. On the other hand, the rate constants estimated by inversion are much 615 more precise than the prior estimates (except for k_{-1} and w), while being within two 616 standard deviations of the actual values. This result suggests that important information 617 about the cycling rates could be extracted from Th and particle data even at locations 618 where significant model errors should be assumed, provided that these data are accurate 619 and numerous. 620

621 3.3 Effect of Limited Sampling

The above inversions assumed that Th and particle data are available at each depth of the model grid, i.e., at twenty two depths (8 sampling depths plus 14 intermediate depths 623 between 965 and 4900 m included). No data interpolation or extrapolation was applied. 624 In order to explore the effect of limited sampling, two other inversions are considered. In 625 a first inversion. The and particle data are assumed to be available at all depths and to 626 contain no error. In the second inversion, the Th and particle values at levels between sampling depths are obtained by interpolation or extrapolation of the data at the sampling 628 depths (section 2.1.1). Thus, for example, the values of ²³⁰Th and ²³⁴Th activity for large particles are extrapolated from their values at z = 2100 m and 965 m, respectively. The 630 relative error of the data is fixed to 0\% at the sampling and interpolation depths, and to 631 100% at the extrapolation depths. Both inversions assume that the model provides an 632 accurate description of Th and particle cycling (p = 0.01). 633

We find that the rate parameters can still be recovered even with an incomplete data set, although the accuracy and precision of the posterior estimates vary between the rate 635 constants and between different depths (Figure 11). This result suggests that the sampling 636 scheme considered here (section 2.1.1) should be adequate for a successful estimation of 637 cycling rates, provided that the data and the model are both accurate. This conclusion, 638 however, should by tempered by the fact that the Th isotope activities and particle concentrations could exhibit, at some oceanic locations, much larger vertical gradients than in our synthetic data set (Figures 3-6). Indeed, no successful recovery of rate 641 parameters should be anticipated at locations where sampling is not dense enough to 642 resolve the property gradients. 643

⁶⁴⁴ 3.4 Recovery of Cycling Rates at a Deep Ocean Station

The rates of Th and particle cycling are now estimated in the presence of data errors, model errors, and limited sampling. The errors in the Th and particle data that are anticipated for samples collected at GEOTRACES NA deep stations (Table 3) and the 647 set of measurements that may be expected at these stations (section 2.2.1) are considered to provide a realistic example. Specifically, the relative errors at measurement depths are the values listed in Table 3. The relative errors at the interpolation points are given the same values, whereas the relative errors at the extrapolation points are set equal to 100%. 651 The errors in the Th and particle equations are assumed to be on the order of the prior 652 estimate of the sum of the source, sink, and sinking terms in these equations (p = 1). 653 Note that whether this assumption would be generally valid when applied to the analysis 654 of real data is unclear. For example, the prior estimate of the source, sink, and sinking 655 terms at a given location may be very poor due to the currently large uncertainties in the rate parameters. 657

As expected from our previous inversions, the presence of significant errors both in the
data and in the model decreases considerably the ability to recover the rate constants
(Figure 12). Accurate and precise estimation of the cycling rates would remain challenging even with a relatively exhaustive data set, unless data errors are reduced and the

assumption of small model errors is justified. Nevertheless, the posterior estimates of the rate constants would constitute a significant improvement over the prior estimates, in the sense that they would be generally much more precise (with the exception of k_{-1} and w), while being within two standard deviations of the actual values (Figure 13). When averaged over all depths in the abyssal region, the relative precision of the kinetic parameters (as measured by $\sigma_{\hat{x}}/\hat{x}$) is improved by about a factor of two for adsorption, four for remineralization and aggregation, and seven for disaggregation.

It is instructive to compare these results with those obtained from simpler approaches to infer rate constants of Th and particle cycling. Consider first the particle settling speed that would be inferred solely from 230 Th activity in sinking particles (here available only at z = 2100 m; Figure 4). Summing equations (1a–1c) gives a simple equation for total 230 Th,

$$0 = \lambda A_p - w \frac{\partial A_l}{\partial z},\tag{10}$$

where it has been assumed that $T(\cdot)=0$ and that the radioactive decay constant is negligible compared to other rate constants (a good approximation for ²³⁰Th). Integrating this equation from depths z to 2100 m, assuming a vertically uniform w, and solving for w yield

$$w = (2100 - z)\lambda \frac{A_p}{A_l(2100 \text{ m}) - A_l(z)}.$$
 (11)

With only one measurement of 230 Th in sinking particles (0.0019 dpm m⁻³ at z=2100m; Figure 4), w cannot be uniquely determined. If the ²³⁰Th activity in particles vanishes at z = 0 m, as assumed in some models (e.g., Bacon and Anderson (1982)), the estimated 680 value of w would be 75 m d⁻¹, which is half the actual value (150 m d⁻¹). Thus, the 681 assumption of vanishing 230 Th_l at z=0 m leads to inaccurate recovery of w. A poor 682 estimate of w was also obtained in our inversion where the posterior value of w is close 683 to its prior value of 300 m d⁻¹ (Figure 12). Note that the measurement of ²³⁰Th in large particles at just one additional depth would allow w to be accurately estimated (if it is 685 constant). For example, if the value $^{230}\mathrm{Th}_l=0.001~\mathrm{dpm}~\mathrm{m}^{-3}$ at z=110 is known in 686 addition to that at 2100 m, then application of (10) predicts a particle sinking speed of 687 150 m d⁻¹ (keeping three significant digits), which is precisely the actual value.

Consider then the adsorption rate k_1 and the sum $k_{-1}^* = k_{-1} + \beta_{-1}$. Summing equations (1b-1c) leads to an equation for Th activity in all particles (small and large). Neglecting the sinking and radioactive decay of large particle activity compared to other terms in this equation,

$$\frac{k_1}{k_{-1}^* + \lambda} = \frac{A_s}{A_d},\tag{12}$$

which is equation (13) in Bacon and Anderson (1982) (note that these authors did not 693 explicitly consider particle remineralization, so k_{-1}^* is equivalent to k_{-1} in their equation). These authors used this equation to derive individual estimates of k_1 and k_{-1}^* from 695 measurements of ²³⁰Th and ²³⁴Th activity on dissolved and particle fractions. Here the 696 average value of A_s/A_d for the eight sampling depths (Figures 4 and 5) amounts to 0.16 for 230 Th and 0.037 for 234 Th, which lead to an estimate of 0.50 y⁻¹ for k_1 and 3.2 y⁻¹ for 698 k_{-1}^* . These values are close to the actual ones (Table 2), in contrast to the results from our inversion (Figure 12). Given this result, the poor recovery of $k_{-1} + \beta_{-1}$ (Figure 12) may seem surprising. However, this result is obtained by assuming that the Th data 701 and the approximate balance $k_1/(k_{-1}^* + \lambda) = A_s/A_d$ are perfectly accurate, whereas our 702 inversion assumes data and model errors that should be more representative of oceano-703 graphic conditions. Should lower data and model errors be assumed, then the recovery of 704 $k_{-1} + \beta_{-1}$ (and w) would be more successful and their posterior errors would be smaller, as illustrated in previous inversions (Figure 7; Figures 10 and 11).

707 4 DISCUSSION

In this section, the potential of Th and particle data to estimate rate constants of Th and particle cycling in the ocean is further explored. Emphasis is placed on (i) the ability to recover vertical variations in rate parameters, (ii) the contribution of ²²⁸Th, ²²⁸Ra, and particle data to parameter recovery, and (iii) the relative importance of ^{228,230}Th data in different size fractions. Three potential limitations of this study are then discussed. These are related to (i) the use of additional measurements to constrain the rate constants, (ii) the adequacy of the algorithm of total inversion as a general method to infer the rate parameters, and (iii) the interpretation of errors in the least-squares solution.

4.1 Vertical Variations in Rate Parameters

The inversions reported in section 3 are restricted to the case where the rate constants of 717 Th and particle cycling that are to be estimated from Th and particle data are vertically uniform. As already stated it is plausible, however, that these 'constants' vary markedly in 719 the deep sea. For example, significant depletion of ²³⁴Th compared to secular equilibrium 720 with its parent ²³⁸U has been observed in benthic nepheloid layers (e.g., Bacon and Rut-721 gers van der Loeff (1989); Turnewitsch and Springer (2001); Rutgers van der Loeff et al. 722 (2002); Inthorn et al. (2006)). The relatively large $^{234}\mathrm{Th}_s/^{234}\mathrm{Th}_d$ ratio that is sometimes 723 observed in these layers would result from a relatively large value of $k_1/(k_{-1}^* + \lambda)$, as-724 suming equilibrium for sorption reactions (equation 12; Bacon and Rutgers van der Loeff 725 (1989)). 726

The inverse method used in this study could also be applied to recover rate constants 727 that vary along the water column. To illustrate this, an inversion is considered with 728 two modifications compared to our reference inversion. First, Th adsorption onto small 729 particles is assumed to be relatively slow except in a deep layer where it is faster. This 730 case would represent a situation where particles suspended in deep water, such as MnO₂-731 rich particles in a benthic nepheloid layer (e.g., Balistrieri and Murray (1986); Geibert 732 and Usbeck (2004)), have a high capacity for attaching Th onto their surfaces compared 733 to particles in overlying water. Specifically, the following vertical profile is assumed for 734 k_1 , 735

$$k_1(z) = k_{1o} \left(1 + \alpha \phi \left(z \right) \right), \tag{13}$$

where $k_{1o} = 0.5 \text{ y}^{-1}$, $\alpha = 0.2$, and $\phi(z) = \arctan((z - z_*)/l_*) + \pi/2$ with $z_* = 4000 \text{ m}$ and $l_* = 200 \text{ m}$. This profile is characterized by quasi uniform values close to 0.5 y^{-1} above 3500 m, a sharp increase from 3500 m to 4500 m, and relatively uniform values below reaching a maximum of about 0.8 y^{-1} (solid line in Figure 14). Second, a source of small particles carrying the long-lived ²³⁰Th is invoked near the bottom. The following source terms are added to the right-hand side of, respectively, the ²³⁰Th_s equation (1b) and the

small particle equation (3a):

$$\dot{P}_{s}(z) = ^{230} \dot{T} \dot{h}_{s,o} \phi(z)$$
 and $\dot{P}_{s}(z) = \dot{P}_{s,o} \phi(z)$, (14)

where 230 Th_{s,o} = 10^{-2} dpm m⁻³ y⁻¹ and $\dot{P}_{s,o} = 10^{-5}$ kg m⁻³ y⁻¹. The sources described by (14) are relatively uniform above 3000 m, increase sharply from about 3500 to 4500 m, and are more uniform below (not shown). They would represent the effect of lateral transport of fine particles near the bottom or the effect of resuspension of fine particles from the seafloor, two processes that are thought to contribute to the formation and maintenance of benthic nepheloid layers in the ocean (e.g., McCave (1986)).

Profiles of ^{228,230,234}Th activity and particle concentration in the three size fractions are 749 obtained by numerical solution of (1-3) with (i) k_1 varying according to (13) and (ii) the 750 230 Th_s and small particle sources (14). The 228 Th profiles are qualitatively similar to those 751 obtained with uniform k_1 (Figure 15). On the other hand, the ²³⁰Th profiles are noticeably 752 affected by the enhanced adsorption rate and the 230 Th_s source in deep water (Figure 16). 753 At depths greater than about 3500 m, the dissolved ²³⁰Th activity shows lower values and 754 the particle activities show larger values compared to those obtained with uniform k_1 and 755 no 230 Th_s source. The 234 Th activity in each size fraction is significantly influenced by 756 enhanced k_1 in deep water (Figure 17): the dissolved activity shows lower values below 757 3500 m and the particle activities show higher values below 3500-4000 m relatively to the profiles computed with uniform k_1 . Finally, the small and large particle concentrations 759 show relative maxima below about 3500-4000 m, consistent with the presence of a particle 760 source near the bottom (Figure 18). 761

An inversion is conducted in order to determine whether the vertical variations in the rate constant k_1 could be estimated from Th and particle data. The assumptions regarding the data and the model are the same as for the reference inversion: the data have a relative error of 5%, they are available at all depths, and model errors are very small $(p = 10^{-5})$. It is seen that the rates of Th adsorption estimated by inversion are all close and within two standard deviations of the actual values (Figure 14). The same result generally holds for the other rate constants (not shown). This result suggests that vertical variations of k_1

at a given oceanic location could be detected with high accuracy and precision, provided that data errors are reduced compared to their present values (Table 3), measurements are available with good vertical resolution, the ²³⁰Th_s and small particle sources are known, and the model provides an accurate description of Th and particle cycling.

228 4.2 Contribution of 228 Th, 228 Ra, and Particle Data

Since this study is primarily motivated by GEOTRACES, it is probably worth clarifying further the sampling plans for GEOTRACES cruises. The sampling scheme considered here (section 2.1.1) corresponds only to one adopted at some of the deep stations occupied during the US GEOTRACES North Atlantic section. It does not apply to all stations 777 of GEOTRACES sections but only to specific stations occupied during a specific cruise of this program. Furthermore, among the Th isotopes, only ²³⁰Th is a key parameter to 779 be measured on all GEOTRACES cruises. Thorium-228 would be measured rarely. The 780 ²²⁸Th activities are typically very low at mid-depth in the ocean, implying that a precise 781 and accurate measurement of this nuclide would be challenging. A similar difficulty applies 782 to its radioactive parent ²²⁸Ra, also not a key parameter of GEOTRACES. Accordingly, 783 the availability of ²²⁸Th and ²²⁸Ra data, which is assumed in this study, may be generally 784 too optimistic. Thorium-234 will be determined on many but not all GEOTRACES 785 cruises. Finally, the collection of particulate matter by in situ filtration (for Th analysis) 786 is part of many GEOTRACES cruises but not all. Particle weights for small and large 787 particles may not be available for many GEOTRACES expeditions.

Given these considerations, the contributions of 228 Th activity, 228 Ra activity, and particle concentration data to the estimation of rate constants of Th and particle cycling appear to deserve some discussion. Consider first the contribution of 228 Th data. In order to isolate this contribution, an inversion similar to our reference inversion (section 3.1) is performed but with the constraint provided by 228 Th dramatically reduced. Specifically, this new inversion assumes a relative error of 5% for all the data, their availability at all depths, and very small errors for the model equations ($p = 10^{-5}$) except for the 228 Th equations (p = 1). Compared to the reference inversion, the precision of the recovered

rate parameters deteriorates noticeably except for k_1 (Figure 19). As the error factor for the ²²⁸Th equations is increased from $p = 10^{-5}$ to p = 1, the relative precision $(\sigma_{\hat{x}}/\hat{x})$ of the posterior estimates changes from 0.06 to 0.07 for k_1 , 0.20 to 0.33 for k_{-1} , 0.20 to 0.36 for w, 0.24 to 0.42 for β_{-1} , and 0.24 to 0.43 for β_2 and β_{-2} (all values are averages for the estimates at the six different depths displayed in Figure 19). Thus, the constraint provided by ²²⁸Th data leads to a notable improvement in the relative precision of the rate constants, in particular of the rates of remineralization and (dis)aggregation.

Consider then the contribution of 228 Ra data. This contribution is illustrated from an inversion similar to the reference inversion except that (i) ²²⁸Ra activity data are re-805 placed by a constant value and (ii) the error for the dissolved ²²⁸Th equation is increased. 806 Assumptions (i)-(ii) would mimic those made for a location where an estimate of rate 807 constants is desired but where ²²⁸Ra activity data are not available. The ²²⁸Ra activity at 808 each depth is set equal to 2.4 dpm m⁻³, which is twice the average value between 965 and 809 4900 m computed according to (2). Hence, the ²²⁸Ra activities assumed in the inversion 810 differ markedly from those used to generate the Th and particle data, an intentionally un-811 favourable situation. The error for the 228 Th_d equation is set equal to the constant value of 812 2.4 dpm m⁻³ times the ²²⁸Th radioactive decay constant. This assumption acknowledges 813 that, given the use of a constant 228 Ra in the analysis, the error in the 228 Th_d equation 814 can be on the order of the radioactive source in this equation. It is seen that assump-815 tions (i)-(ii) reduce to some extent the precision of most of the recovered rate constants 816 compared to the reference inversion (Figure 20). The results are broadly comparable to 817 those obtained for the case where the ²²⁸Th constraint is reduced (Figure 19), although 818 the relative precision of the estimated rate constants is better: when assumptions (i)-(ii) 819 are made, the $\sigma_{\hat{x}}/\hat{x}$ ratio amounts to 0.07 for k_1 , 0.26 for k_{-1} , 0.25 for w, 0.30 for β_{-1} , 820 and 0.32 for β_2 and β_{-2} (all values are again averages for the estimates at the six different 821 depths displayed in Figure 20). 822

Consider finally the contribution of particle concentration data. The contribution of these
data to the estimation of the rate constants could in principle be isolated using the same
approach as for ²²⁸Th. However, our attempts to generate an inversion similar to our

reference inversion but with the particle concentration constraints much reduced (p=1)for the particle equations) have failed. We speculate that the lack of convergence of the 827 objective function that occurs in this case is associated with the fact that estimates of 828 all rate constants cannot be simultaneously obtained if the particle concentration con-829 straints are much reduced or absent. Specifically, the rate constants of desorption and 830 remineralization always appear as a sum in the Th equations (1a-1b), whereas in the 831 particle equations (3a-3b) β_{-1} is present but k_{-1} is not. Accordingly, if only Th data are 832 considered to infer the rate constants, the sum $k_{-1} + \beta_{-1}$ could be determined but not 833 the individual values of k_{-1} and β_{-1} . 834

4.3 Importance of ^{228,230}Th Data in Different Size Fractions

Whereas the activity of the most abundant Th isotope (²³⁴Th) would be measured with high accuracy, the activity of the other Th isotopes, in particular in the large particles, would not (Table 3). This state of affairs raises the question of whether ²²⁸Th and ²³⁰Th errors in all three size fractions are equally important for the estimation of the rate constants of Th and particle cycling.

To address this question, three inversions are performed, which differ from the reference inversion in the following respects. In a first inversion, the relative error in ^{228,230}Th data for the dissolved phase is raised to, respectively, 15% and 20% (Table 3). In a second inversion, the relative error in ^{228,230}Th data for small particles is fixed to the same values. Finally, in a third inversion, the relative error in ^{228,230}Th data for large particles is set equal to 20%. In each of these three inversions, the error for all the other data, the data availability, and the model errors are the same as those assumed in the reference inversion.

We find that, for each of these three inversions, the estimated rate constants differ generally from their actual values by less than two standard deviations (not shown). More relevant to the above question, the relative precision $\sigma_{\hat{x}}/\hat{x}$ varies by ≤ 0.07 for each rate constant between these inversions and the change in $\sigma_{\hat{x}}/\hat{x}$ is not systematic. That is, the presence of relatively high error for a given size fraction worsens the precision of some of the rate constants but improves the precision of others, compared to results obtained with relatively high error in another fraction. These results suggest that ²²⁸Th and ²³⁰Th should be measured with comparable (and high) accuracy in all size fractions if a precise estimate of all rate constants is sought.

57 4.4 Use of Additional Data

As shown by the present analysis, the extent to which measurements of a given property can constrain sportion and particle processes depends on the uncertainties in these mea-859 surements (data errors) as well as on our understanding of the behaviour of this property 860 in the ocean (model errors). These processes will be completely unresolved if this prop-861 erty does not appear in the equations f(x) = 0 and if no correlation is introduced in C_o 862 between this property and the other components included in x. If this is not the case, 863 then knowledge about sorptive reactions and particle dynamics should be increased com-864 pared to that obtained from, say, Th and particle data alone. The errors in the posterior 865 estimates of the rate constants should be even more reduced compared to those in the prior estimates (e.g., Figure 1), the amount of reduction depending on the data errors 867 (\mathbf{C}_o) , the model errors (\mathbf{C}_f) , and the sensitivity of the model equations to the components of **x** (Tarantola and Valette, 1982a).

Accordingly, this work is limited by the fact that not all types of measurement that may
be available at stations occupied during modern oceanographic programs have been considered. Other properties may be available and provide additional information about rate
constants of Th and particle cycling, such as the concentration of particulate organic carbon (POC), particulate organic nitrogen (PON), calcium carbonate (CaCO₃), biogenic
silica (bSi), and another particle-reactive radio-isotope (protactinium-231). The concentration of Al, P, Ba, Pb, and transition elements (Ti, V, Mn, Fe, Co, Ni, Cu, Zn, and Cd)
on different size fractions could also be measured and be useful to estimate cycling rates.

The motive for not including measurements of POC, PON, CaCO₃, bSi, and ²³¹Pa in our analysis is not only simplicity. It seems plausible that measurements of POC, PON,

CaCO₃, and bSi are the most likely to provide additional information about the cycling rates, not in the deep, but in the upper ocean (say, at z < 1000 m), where these properties 881 tend to show large vertical gradients (e.g., Lam et al. (2011)). Besides, the kinetics of 882 exchange with marine particles is even less constrained for Pa than for Th. Several 883 studies have shown that Pa interacts in general less intensively with particles than Th, 884 with exceptions such as MnO₂ precipitates and biogenic opal (e.g., Anderson et al. (1983); Rutgers van der Loeff and Berger (1993); Walter et al. (1997); Chase et al. (2002); Moran 886 et al. (2002); Geibert and Usbeck (2004); Scholten et al. (2005); Kretschmer et al. (2011)). 887 Consequently, the ability of ²³¹Pa activity data to significantly increase knowledge about 888 processes such as particle coagulation and fragmentation over that already gained from 889 Th and particle data does not seem to be obvious.

Still other types of data, however, might be used to further constrain sorption and particle 891 processes at stations occupied along transoceanic sections. Whereas sediment traps are 892 typically not deployed along such sections, sediment trap data from compilations (e.g., 893 Honjo et al. (2008)) and local studies (e.g., Roy-Barman et al. (2005)) may provide useful 894 constraints on the vertical flux of components such as POC, CaCO₃, bSi, and Th isotopes 895 in some of the environments that are sampled along these sections. Particularly valuable would be data that would help better understand the relative importance of the trend and 897 transport terms in the Th and particle equations. Better understanding of these terms 898 would allow one to assume relatively small model errors and hence to better constrain the 899 rate constants of Th and particle cycling. Vertical profiles of water density at adjacent stations might be used to estimate the vertical shear of the geostrophic velocity in the 901 direction normal to the line joining the stations. Estimates of absolute velocity might 902 then be obtained, provided that the velocity at some reference level is known or assumed. 903 The product of absolute velocity times the horizontal gradient of Th isotope activity or 904 particle concentration normal to the line could be derived at crossover stations, which would provide an estimate of the advection of Th or particles by the geostrophic flow along this direction. Moreover, measurements of core parameters such as temperature, salinity, dissolved oxygen, and dissolved nutrients could be consulted to identify whether 908 features in the vertical profiles of Th isotope activities and particle concentrations could be associated with deep water masses of distinct origins. Short-lived isotopes such as half life of 11.4 d) and ²²⁴Ra (3.7 d) could be used to trace water transport from the margins over time scales of several days to weeks.

913 4.5 Appropriateness of Total Inversion

The method of total inversion has been applied in several studies aimed at interpreting Th and particle measurements on oceanic samples (e.g., Murnane et al. (1994); Murnane 915 (1994); Murnane et al. (1996)). However, the appropriateness of this method to infer rate 916 constants of trace metal and particle cycling has more recently been challenged (Athias 917 et al., 2000a; Athias et al., 2000b). In particular, Athias et al. (2000b) argued that an 918 approach based on a linearization around an a priori solution and on a gradient descent method is not adequate, given the complexity of the objective function and our poor a 920 priori knowledge of the rate parameters. These authors presented results from twin ex-921 periments with a model of Al and particle cycling, which suggest that other minimization 922 methods, such as genetic algorithms, are superior to the algorithm of total inversion for 923 inferring the rate constants. 924

As acknowledged by Tarantola and Valette (1982a), the total inversion algorithm will only 925 converge in problems where nonlinearity is not too strong. The source of nonlinearity for 926 the present problem resides in the quadratic terms (products of variables in \mathbf{x}) that are 927 present in the model equations f(x) = 0. Consequently, the total inversion algorithm 928 should fail to converge in situations where Th and (or) particle data have relatively large 929 errors and the model equations are imposed relatively strictly. For example, failure to 930 converge is observed to occur in an inversion where the maximum relative error in the 931 data is raised to 50% (so the relative errors take on the values in Table 3 for all data), 932 the data are assumed to be available at all depths, and the model equations are assumed 933 to be exact $(\mathbf{C}_f = \mathbf{0})$. On the other hand, this inversion does converge if even modest 934 model errors are taken into consideration (p = 0.1). This example demonstrates that the performance of the total inversion algorithm depends on the specific data and model 936 errors that are assumed by the investigator. 937

Accordingly, the total inversion algorithm may not be a generally applicable method to provide estimates of the cycling rates of trace metals and particles in the ocean. Alternative methods to provide such estimates, such as explored by *Athias et al.* (2000b), may be more universally applicable. On the other hand, the algorithm of total inversion has features that tend to make it attractive compared to other methods used to solve minimization problems, e.g., it can provide a formal estimate of the error in the solution and it does not require the prescription of parameters besides a criterion for convergence. The interpretation of posterior errors in the solution, however, is not always straightforward, as discussed below.

947 4.6 Interpretation of Error Estimates

The error estimates for the rate constants that are obtained by generalized least-squares are only approximate and do not all have a straightforward interpretation. First, the model equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ are always imposed (in the mean square) in our inversions (if $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ were not imposed, the problem would have the trivial solution $\mathbf{x} = \mathbf{x}_o$). This implies that nonlinearity is always present and that the error covariance matrix for the solution, which is obtained using the formula for the linear case, is always approximate (Tarantola and Valette, 1982a). On the other hand, all solutions reported in this paper are convergent, which suggests that nonlinearity is relatively weak and that the posterior variances of the rate 'constants', which these solutions provide, are useful estimates.

Second, the method of total inversion as applied here provides estimates of the standard deviation of the logarithm of the rate constants, not of their actual values. Although formula (8) allows posterior errors to be calculated, it assumes that the values obtained by inversion are the medians of normal distributions, which is not necessarily correct. Furthermore, the variance of a lognormal distribution determines not only the dispersion but also higher moments of the distribution such as skewness (Aitchison and Brown, 1957), in particular for variables with large spread around the mean (large variance). Accordingly, the large posterior errors for some of the rate constants that are estimated by inversion are relatively difficult to interpret. This is particularly the case for the rates

of aggregation and disaggregation, which are among the parameters that are the most difficult to constrain from Th and particle data.

5 CONCLUSIONS

The rates at which particles are decomposed, settle, and (dis)aggregate in the ocean are of 969 paramount importance from a geochemical viewpoint. However, they also are very difficult 970 to estimate. A common approach to estimate these rates relies on measurements of 971 particle-reactive elements, in particular Th radio-isotopes, on samples collected by bottles, 972 in situ pumps, and sediment traps. Ongoing and future programs such as GEOTRACES 973 are providing an unprecedented opportunity to estimate particle processes in a variety of 974 oceanic settings. Whereas sediment traps are typically not deployed during large-scale 975 sampling programs that are section-based, large volumes of water can now be collected 976 over the entire water column during these programs. This sampling permits to document, 977 at the same station, the vertical distribution of the activity of several Th isotopes and the vertical distribution of the concentration of particles, in different size fractions. The 979 extent to which this unique set of observations could constrain the rates of Th and particle cycling in the ocean emerges as a question of preeminent interest. 981

Our study suggests that the data set gathered during modern sampling programs should 982 improve very significantly our present understanding of the rates of Th and particle cy-983 cling in the deep sea. With current estimates of data uncertainties and plausible estimates 984 of the uncertainty in Th and particle governing equations, the relative precision of rates 985 of particle processes such as aggregation and disaggregation could be largely improved, 986 sometimes by one order of magnitude, over that of prior estimates. On the other hand, es-987 timates of cycling rates that are both precise and accurate would remain difficult to obtain, 988 unless a significant effort is made to reduce the data uncertainties and the assumption of 989 small model errors is justified. Accurate and precise estimates could be derived when (i) all the data have a relative error of less than 20%, (ii) vertical sampling is dense enough 991 to resolve activity and concentration gradients, and (iii) model errors are negligible. In

the favourable situation where (ii)-(iii) would hold, reducing the uncertainties in measurements of ²²⁸Th and ²³⁰Th activities and in particle concentrations from a maximum of 20% to a value of 5% would lead to a dramatic improvement in the estimates of the rate constants, in particular for Th desorption, particle sinking, and particle (dis)aggregation.

Overall, our study suggests that (i) analytical improvements should be prioritized on
the measurement of ²²⁸Th, ²³⁰Th, and particle concentrations and (ii) Th and particle
cycling rates should be estimated at locations where model assumptions are valid or
where knowledge about temporal variability and transport processes is available. Accurate
measurements of ²²⁸Th and ²³⁰Th in all size fractions would be needed for a precise
estimation of all rate constants. Accurate measurements of ²³⁰Th in large particles at only
two depths should provide an important constraint on the particle sinking speed. Good
candidates for the above locations include crossover stations away from ocean margins
and where time series of oceanographic observations are available.

1006 Acknowledgements.

The authors are grateful to Michiel Rutgers van der Loeff and to an anonymous reviewer 1007 for very useful comments that allowed us to significantly improve the manuscript. This 1008 study was stimulated by the GEOTRACES Data-Model Synergy Workshop on marine 1009 particles (Barcelona, November 2011). The authors would like to thank Robert Anderson 1010 for providing details about the uncertainties in ²³⁰Th measurements on oceanic samples, 1011 for sharing figures illustrating unpublished results from an intercalibration effort undertaken as part of GEOTRACES, and for a discussion on preliminary results of this work. 1013 The provision by Matthew Charette of uncertainty estimates for ²²⁸Th measurements on oceanic samples is also acknowledged. 1015

1016 References

- Aitchison, J., and J. A. C. Brown. The lognormal distribution (with special reference to
- its uses in economics). Cambridge University Press, 1957. 176 pp.
- Anderson, R. F., M. P. Bacon, and P. G. Brewer, Removal of ²³⁰Th and ²³¹Pa at ocean
- margins, Earth Planet. Sci. Lett., 66, 73-90, 1983.
- Athias, V., P. Mazzega, and C. Jeandel. Nonlinear inversions of a model of the oceanic
- dissolved-particulate exchanges, P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald,
- R. G. Prinn, and D. E. Hartley (Eds.), Inverse methods in global biogeochemical cycles,
- Volume 114 of Geophysical Monograph, pp. 205–222. Am. Geophys. Union, 2000a.
- Athias, V., P. Mazzega, and C. Jeandel, Selecting a global optimization method to
- estimate the oceanic particle cycling rate constants, J. Marine Res., 58, 675–707, 2000b.
- Bacon, M. P., and R. F. Anderson, Distribution of thorium isotopes between dissolved
- and particulate forms in the deep sea, J. Geophys. Res., 87, 2045–2056, 1982.
- Bacon, M. P., C.-A. Huh, A. P. Fleer, and W. G. Deuser, Seasonality in the flux of
- natural radionuclides and plutonium in the deep Sargasso Sea, Deep Sea Res., 32, 273-
- 1031 286, 1985.
- Bacon, M. P., C.-A. Huh, and R. M. Moore, Vertical profiles of some natural radionu-
- clides over the Alpha Ridge, Arctic Ocean, Earth Planet. Sci. Lett., 95, 15–22, 1989.
- Bacon, M. P., and M. M. Rutgers van der Loeff, Removal of thorium-234 by scavenging
- in the bottom nepheloid layer of the ocean, Earth Planet. Sci. Lett., 92, 157–164, 1989.
- Balistrieri, L. S., and J. W. Murray, The surface chemistry of sediments from the Panama
- Basin: The influence of Mn oxides on metal adsorption, Geochim. Cosmochim. Acta, 50,
- 1038 2235-2243, 1986.
- Berelson, W. M., Particle settling rates increase with depth in the ocean, Deep Sea Res.
- 1040 II, 49, 237–251, 2002.

- Boyd, P. W., and T. W. Trull, Understanding the export of biogenic particles in oceanic
- waters: Is there a concensus?, Prog. Oceanogr., 72, 276–312, 2007.
- Brewer, P. G., Y. Nozaki, D. W. Spencer, and A. P. Fleer, Sediment trap experiments
- in the deep North Atlantic: Isotopic and elemental fluxes, J. Marine Res., 38, 703-728,
- 1045 1980.
- Broecker, W. S., and T.-H. Peng. Tracers in the Sea. Lamont-Doherty Geological
- Observatory, Palisades, NY: Eldigio Press, 1982.
- Buesseler, K. O., C. Lamborg, P. Cai, R. Escoube, R. Johnson, S. Pike, P. Masque,
- D. McGillicuddy, and E. Verdeny, Particle fluxes associated with mesoscale eddies in the
- 1050 Sargasso Sea, Deep Sea Res. II, 55, 1426–1444, 2008.
- Burd, A. B., and G. A. Jackson, Particle aggregation, Annu. Rev. Marine Sci., 1, 65–90,
- 1052 2009.
- 1053 Chase, Z., R. F. Anderson, M. Q. Fleisher, and P. W. Kubik, The influence of particle
- composition and particle flux on the scavenging of Th, Pa and Be in the ocean, Earth
- 1055 Planet. Sci. Lett., 204, 215-229, 2002.
- Chen, J. H., R. L. Edwards, and G. J. Wasserburg, ²³⁸U, ²³⁴U and ²³²Th in seawater,
- 1057 Earth Planet. Sci. Lett., 80, 241–251, 1986.
- 1058 Cheng, H., R. L. Edwards, J. Hoff, C. D. Gallup, D. A. Richards, and Y. Asmerom, The
- half-lives of uranium-234 and thorium-230, Chem. Geol., 169, 17–33, 2000.
- 1060 Clegg, S. L., M. P. Bacon, and M. Whitfield, Application of a generalized scavenging
- model to thorium isotope and particle data at equatorial and high-latitude sites in the
- Pacific Ocean, J. Geophys. Res., 96, 20655-20670, 1991.
- 1063 Clegg, S. L., and M. Whitfield, A generalized model for the scavenging of trace metals
- in the open ocean-I. Particle cycling, Deep Sea Res., 37, 809-832, 1990.
- 1065 Clegg, S. L., and M. Whitfield, A generalized model for the scavenging of trace metals
- in the open ocean-II. Thorium scavenging, Deep Sea Res., 38, 91-120, 1991.

- Cochran, J. K., K. O. Buesseler, M. P. Bacon, and H. D. Livingston, Thorium isotopes
- as indicators of particle dynamics in the upper ocean: Results from the JGOFS North
- Atlantic Bloom Experiment, Deep Sea Res., 40, 1569-1595, 1993.
- Cochran, J. K., K. O. Buesseler, M. P. Bacon, H. W. Wang, D. J. Hirschberg, L. Ball,
- J. Andrews, G. Crossin, and A. P. Fleer, Short-lived thorium isotopes (²³⁴Th, ²²⁸Th) as
- indicators of POC export and particle cycling in the Ross Sea, Southern Ocean, Deep
- 1073 Sea Res., 47, 3451–3490, 2000.
- Cochran, J. K., H. D. Livingston, D. J. Hirschberg, and L. D. Surprenant, Natural
- and anthropogenic radionuclide distributions in the northwestern Atlantic Ocean, Earth
- 1076 Planet. Sci. Lett., 84, 135–152, 1987.
- Fischer, G., and G. Karakaş, Sinking rates and ballast composition of particles in the
- Atlantic Ocean: Implications for the organic carbon fluxes to the deep ocean, Biogeo-
- sciences, 6, 85-102, 2009.
- Geibert, W., and R. Usbeck, Adsorption of thorium and protactinium onto different
- particle types: Experimental findings, Geochim. Cosmochim. Acta, 68, 1489–1501, 2004.
- GEOTRACES, 2006. An international study of the marine biogeochemical cycles of trace
- elements and their isotopes. Science plan, Scientific Committee on Oceanic Research,
- 1084 International Council for Science.
- Hirose, K., T. Saito, S. H. Lee, and J. Gastaud, Vertical distributions of the strong
- organic ligand in the twilight zone of Southern Hemisphere Ocean particulate matter,
- 1087 Prog. Oceanogr., 89, 108-119, 2011.
- Honjo, S., S. J. Manganini, R. A. Krishfield, and R. François, Particulate organic carbon
- 1089 fluxes to the ocean interior and factors controlling the biological pump: A synthesis of
- global sediment trap programs since 1983, Prog. Oceanogr., 76, 217–285, 2008.
- 1091 Inthorn, M., M. Rutgers van der Loeff, and M. Zabel, A study of particle exchange
- $_{1092}$ at the sediment-water interface in the Bengulea upwelling area based on $^{234}{
 m Th}/^{238}{
 m U}$
- disequilibrium, Deep Sea Res. I, 53, 1742–1761, 2006.

- 1094 Key, R. M., J. L. Sarmiento, and W. S. Moore, 1992. Transient Tracers in the Ocean
- North Atlantic Study, Final Data Report for ²²⁸Ra and ²²⁶Ra. Technical report, 92-2,
- Ocean Tracer Lab. Princeton University, Princeton, N. J.
- Kretschmer, S., W. Geibert, M. M. Rutgers van der Loeff, C. Schnabel, S. Xu, and
- G. Mollenhauer, Fractionation of ²³⁰Th, ²³¹Pa, and ¹⁰Be induced by particle size and
- composition within an opal-rich sediment of the Atlantic Southern Ocean, Geochim.
- 1100 Cosmochim. Acta, 75, 6971–6987, 2011.
- Lam, P. J., S. C. Doney, and J. K. B. Bishop, The dynamic ocean biological pump:
- Insights from a global compilation of particulate organic carbon, CaCO₃, and opal
- concentration profiles from the mesopelagic, Global Biogeochem. Cycles, 25, GB3009,
- doi:10.1029/2010GB003868, 2011.
- Lepore, K., and S. B. Moran, Seasonal changes in thorium scavenging and particle
- aggregation in the western Arctic Ocean, Deep Sea Res., 54, 919-938, 2007.
- Liebelt, P. B. An introduction to optimal estimation. Addison-Wesley, Reading, MA,
- 1108 1967. 273 pp.
- Lohrenz, S. E., G. A. Knauer, V. L. Asper, M. Tuel, A. F. Michaels, and A. H. Knap,
- Seasonal variability in primary production and particle flux in the northwestern Sargasso
- 1111 Sea: U.S. JGOFS Bermuda Atlantic Time-series Study, Deep Sea Res., 39, 1373-1391,
- 1112 1992.
- 1113 Marchal, O., R. François, and J. Scholten, Contribution of ²³⁰Th measurements to the
- estimation of the abyssal circulation, Deep Sea Res., 54, 557–585, 2007.
- McCave, I. N., Local and global aspects of the bottom nepheloid layers in the world
- ocean, Neth. J. Sea Res., 20, 167–181, 1986.
- McDonnell, A., and K. Buesseler, Variability in the average sinking velocity of marine
- particles, Limnol. Oceanogr., 55, 2085–2096, 2010.

- Moran, S. B., M. A. Charette, J. A. Hoff, R. L. Edwards, and W. M. Landing, Distri-
- bution of ²³⁰Th in the Labrador Sea and its relation to ventilation, Earth Planet. Sci.
- 1121 Lett., 150, 151–160, 1997.
- Moran, S. B., C.-C. Shen, H. N. Edmonds, S. E. Weinstein, J. N. Smith, and R. L.
- Edwards, Dissolved and particulate ²³¹Pa and ²³⁰Th in the Atlantic Ocean: Constraints
- on intermediate/deep water age, boundary scavenging, and ²³¹Pa/²³⁰T fractionation,
- 1125 Earth Planet. Sci. Lett., 203, 999–1014, 2002.
- Murnane, R. J., Determination of thorium and particulate matter cycling parameters at
- station P: A reanalysis and comparison of least squares techniques, J. Geophys. Res., 99,
- 3393-3405, 1994.
- Murnane, R. J., J. K. Cochran, K. O. Buesseler, and M. P. Bacon, Least-squares esti-
- mates of thorium, particle, and nutrient cycling rate constants from the JGOFS North
- Atlantic Bloom Experiment, Deep Sea Res., 43, 239–258, 1996.
- Murnane, R. J., J. K. Cochran, and J. L. Sarmiento, Estimates of particle- and thorium-
- cycling rates in the northwest Atlantic Ocean, J. Geophys. Res., 99, 3373–3392, 1994.
- Murnane, R. J., J. L. Sarmiento, and M. P. Bacon, Thorium isotopes, particle cycling
- models, and inverse calculations of model rate constants, J. Geophys. Res., 95, 16,195-
- 1136 16,206, 1990.
- Nozaki, Y., Y. Horibe, and H. Tsubota, The water column distributions of thorium
- isotopes in the western North Pacific, Earth Planet. Sci. Lett., 54, 203-216, 1981.
- Nozaki, Y., H.-S. Yang, and M. Yamada, Scavenging of thorium in the ocean, J. Geophys.
- 1140 Res., 92, 772–778, 1987.
- Owens, S. A., K. O. Buesseler, and K. W. W. Sims, Re-evaluating the ²³⁸U-salinity
- relationship in seawater: Implications for the ²³⁸U-²³⁴Th disequilibrium method, Mar.
- 1143 Chem., 127, 31-39, 2011.

- Robinson, L. F., N. S. Belshaw, and G. M. Henderson, U and Th concentrations and
- isotope ratios in modern carbonates and waters from the Bahamas Bank, Geochim.
- 1146 Cosmochim. Acta, 68, 1777–1789, 2004.
- Roy-Barman, M., J. H. Chen, and G. J. Wasserburg, ²³⁰Th–²³²Th systematics in the
- central Pacific Ocean: The sources and fates of thorium, Earth Planet. Sci. Lett., 139,
- 351-363, 1996.
- Roy-Barman, M., C. Jeandel, M. Souhaut, M. Rutgers van der Loeff, I. Voege,
- N. LeBlond, and R. Freydier, The influence of particle composition on thorium scav-
- enging in the NE Atlantic ocean (POMME experiment), Earth Planet. Sci. Lett., 240,
- 1153 681-693, 2005.
- Rutgers van der Loeff, M. M., and G. W. Berger, Scavenging of ²³⁰Th and ²³¹Pa near
- the Antarctic Polar Front in the South Atlantic, Deep Sea Res. I, 40, 339–357, 1993.
- Rutgers van der Loeff, M. M., R. Meyer, B. Rudels, and E. Rachor, Resuspension and
- particle transport in the benthic nepheloid layer and near Fram Strait in relation to
- faunal abundances and ²³⁴Th depletion, Deep Sea Res. I, 49, 1941–1958, 2002.
- Scholten, J. C., J. Fietzke, A. Mangini, P. Stoffers, T. Rixen, B. Gaye-Haake, T. Blanz,
- V. Ramaswamy, F. Sirocko, H. Schulz, and V. Ittekot, Radionuclide fluxes in the Arabian
- Sea: The role of particle composition, Earth Planet. Sci. Lett., 230, 319–337, 2005.
- Sweeney, E. N., D. J. McGillicuddy, and K. O. Buesseler, Biogeochemical impacts due
- to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic
- 1164 Time-series Study (BATS), Deep Sea Res. II, 50, 3017–3039, 2003.
- Tarantola, A., and B. Valette, Generalized nonlinear inverse problem solved using the
- least squares criterion, Rev. Geophys. Space Phys., 20, 219–232, 1982a.
- Tarantola, A., and B. Valette, Inverse problem = quest for information, J. Geophys., 50,
- 1168 159–170, 1982b.
- Turnewitsch, R., and B. M. Springer, Do bottom mixed layers influence ²³⁴Th dynamics
- in the abyssal near-bottom water column?, Deep Sea Res., 48, 1279–1307, 2001.

- 1171 Venchiarutti, C., C. Jeandel, and M. Roy-Barman, Particle dynamics study in the wake
- of Kerguelen Island using thorium isotopes, Deep Sea Res. I, 55, 1343–1363, 2008.
- ¹¹⁷³ Venchiarutti, C., M. Rutgers van der Loeff, and I. Stimac, Scavenging of ²³¹Pa and
- thorium isotopes based on dissolved and size-fractionated particulate distributions at
- Drake Passage (ANTXXIV-3), Deep Sea Res. II, 58, 2767–2784, 2011.
- Vogler, S., J. Scholten, M. Rutgers van der Loeff, and A. Mangini, ²³⁰Th in the eastern
- North Atlantic: the importance of water mass ventilation in the balance of ²³⁰Th, Earth
- 1178 Planet. Sci. Lett., 156, 61-74, 1998.
- Walter, H. J., M. M. Rutgers van der Loeff, and H. Hoeltzen, Enhanced scavenging
- of ²³¹Pa relative to ²³⁰Th in the South Atlantic south of the Polar Front: Implications
- for the use of the ²³¹Pa/²³⁰Th ratio as a paleoproductivity proxy, Earth Planet. Sci.
- 1182 Lett., 149, 85–100, 1997.

Table 1. ^{228,230,234}Th half-lifes and parent activities

	$\mathrm{Half ext{-}life}^a$	Parent	Parent activity ^b
²²⁸ Th ²³⁰ Th ²³⁴ Th	1.91 yr $75.69 \times 10^3 \text{ yr}$ 24.1 d	²²⁸ Ra ²³⁴ U ²³⁸ U	variable $2.7 \times 10^3 \text{ dpm m}^{-3}$ $2.4 \times 10^3 \text{ dpm m}^{-3}$

1184

 1185 a The 228 Th and 234 Th half-lifes are from $Broecker\ and\ Peng\ (1982)$. The 230 Th half-life is from $Cheng\ et\ al.\ (2000)$

¹¹⁸⁷ The ²³⁸U activity is based on an empirical relationship with salinity (Owens et al., 2011)

 1188 assuming a salinity of 35. The $^{234}\mathrm{U}$ activity is derived from the resulting $^{238}\mathrm{U}$ activity

value and a seawater $^{234}\text{U}/^{238}\text{U}$ ratio of 1.14 (*Chen et al.*, 1986; *Robinson et al.*, 2004).

Table 2. Rate constants of thorium and particle cycling

1	1	9	C

Symbol	Definition	Model Value ^a	Prior Estimate ^a	Relative Error^b
k_1	Adsorption rate	0.5	5	1
k_{-1}	Desorption rate	2	5	1
w	Sinking rate	150	300	0.5
β_{-1}	Remineralization rate	1	10	5
eta_2	Aggregation rate	3	10	10
eta_{-2}	Disaggregation rate	150	500	10

1191

^a All values are in y^{-1} , except for w that is in $m d^{-1}$

The relative error pertains to the prior estimate

Table 3. Relative errors in measurement of ^{228,230,234}Th and particle concentration[†]

	Definition	Relative error
$^{228}\mathrm{Th}_d$	²²⁸ Th activity in dissolved phase	± 0.15
$^{228}\mathrm{Th}_s$	²²⁸ Th activity in small particles	± 0.15
$^{228}\mathrm{Th}_{l}$	²²⁸ Th activity in large particles	± 0.50
$^{230}\mathrm{Th}_d$	²³⁰ Th activity in dissolved phase	± 0.20
$^{230}\mathrm{Th}_{s}$	²³⁰ Th activity in small particles	± 0.20
$^{230}\mathrm{Th}_{l}$	²³⁰ Th activity in large particles	± 0.50
$^{234}\mathrm{Th}_d$	²³⁴ Th activity in dissolved phase	± 0.05
$^{234}\mathrm{Th}_{s}$	²³⁴ Th activity in small particles	± 0.05
$^{234}\mathrm{Th}_{l}$	²³⁴ Th activity in large particles	± 0.05
P_s	Concentration of small particles	± 0.20
P_l	Concentration of large particles	± 0.20

†Note our reference inversion assumes a relative error of 5% for all measurements

1195

Figure 1: Published estimates of rate constants of (1) thorium adsorption (k_1) and desorption (k_{-1}) and (2) particle remineralization (β_{-1}) , aggregation (β_2) , and disaggregation 1198 (β_{-2}) . The numbers along the lower horizontal axis are 0 for Nozaki et al. (1987), 1 1199 for Bacon et al. (1989), 2 for Bacon and Anderson (1982), 3 for Nozaki et al. (1981), 4 1200 for Clegg et al. (1991), 5 for Clegg and Whitfield (1991), 6 for Murnane et al. (1990), 1201 7 for Murnane et al. (1994), 8 for Murnane (1994), and 9 for Murnane et al. (1996). The plotted values are those compiled by Murnane et al. (1994) and Murnane (1994) 1203 (cf. Table 1 of these two papers) as well as those obtained in these two studies and by 1204 Murnane et al. (1996). They include (i) point estimates with errors (solid circles with 1209 vertical bars), (ii) ranges, and (iii) point estimates without error (solid circles alone). The 1206 error bars in contact with the lower horizontal axis reach negative values and cannot be shown on a logarithmic scale. Some of the intervals (ranges) reported in the compilations 1208 or original publications are open, implying a larger error than it appears on the figure. 1209 Note that not all published estimates are shown to avoid congestion of the figure. 1210

Figure 2: Schematic diagram of the cycling of trace metals (top) and particles (bottom) 1211 in the ocean aphotic zone. Metal activity is partitioned between the dissolved phase (A_d) , 1212 the small particles (A_s) and the large particles (A_l) . Particle concentration is partitioned 1213 between the small particles (P_s) and the large particles (P_l) . The processes affecting 1214 metal activity and particle concentration in these different forms are the production by 1215 the radioactive parent (A_p) , the radioactive decay (at a specific rate λ), the adsorption 1216 onto small particles (k_1) , the desorption from small particles (k_{-1}) , the remineralization 1217 of small particles (β_{-1}) , the aggregation of small particles (β_2) , the disaggregation of large 1218 particles (β_{-2}) , and the sinking of large particles (with velocity w). 1219

Figure 3: Vertical profiles of ²²⁸Th activity in the dissolved phase (upper horizontal axis), the small particles (middle axis), and the large particles (lower axis). The ²²⁸Th activities that are obtained from the analytical (numerical) solution of the model are shown by solid (dashed) lines. The two lines are barely distinguishable. The ²²⁸Th activities at sampling depths, which are used to produce the idealized data for the inversions, are shown by circles: open circles for the dissolved phase, small solid circles for the small

- particles, and large solid circles for the large particles. The horizontal bars show the errors in these activities. These activities are shown only at some of the pumping depths at GEOTRACES NA deep stations.
- Figure 4: Same as Figure 3 but for ²³⁰Th.
- Figure 5: Same as Figure 3 but for 234 Th.
- Figure 6: Same as Figure 3 but for the concentration of particles. The concentration of small (large) particles is shown by small (large) circles.
- Figure 7: Rate constants of Th and particle cycling estimated with varying data errors. 1233 The vertical solid lines indicate the values used to generate Th and particle data. The 1234 vertical dashed lines indicate the prior estimates assumed in the inversions. The solid 1235 circles with horizontal bars show the means with their errors estimated in an inversion where data have a relative error of 5% (reference inversion). The open circles (crosses) 1237 with horizontal bars show the means (medians) with their errors estimated in an inversion 1238 where data have a relative error of ≤ 20 %. In both inversions, data are available at all 1239 depths and model errors are assumed to be very small $(p = 10^{-5})$. The rate constants 1240 estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations. 1242
- Figure 8: Effect of maximum data error on the accuracy of the rate constants of Th and particle cycling estimated by inversion. The accuracy is measured by the difference between the estimated value and the actual value, divided by the actual value.
- Figure 9: Effect of maximum data error on the precision of the rate constants of Th and particle cycling estimated by inversion. The precision is measured by the ratio between the standard deviation of the estimated value and the estimated value.
- Figure 10: Rate constants of Th and particle cycling estimated with varying model errors.

 The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in an inversion

where p = 0.1. The open circles with horizontal bars (crosses) show the means (medians) with their errors estimated in an inversion where p = 1. In both inversions, the data have no error and are available at all depths. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

Figure 11: Rate constants of Th and particle cycling estimated with varying sampling 1257 schemes. The vertical solid lines indicate the values used to generate Th and particle 1258 data. The vertical dashed lines indicate the prior estimates assumed in the inversions. 1259 The solid circles with horizontal bars show the means with their errors estimated in an 1260 inversion where data are available at all depths. The open circles (crosses) with horizontal bars show the means (medians) with their errors estimated in an inversion where data are 1262 interpolated or extrapolated. In both inversions, the data have no error (except in the 1263 second inversion where extrapolated values have a relative error of 1) and the factor for 1264 model errors p = 0.01. The rate constants estimated by inversion are shown at six of the 1265 pumping depths at GEOTRACES NA deep stations.

Figure 12: Rate constants of Th and particle cycling estimated in the presence of data errors, model errors, and limited sampling. The vertical solid lines indicate the values used to generate Th and particle data. The vertical (horizontal) dashed lines indicate the prior estimates (their errors) assumed in the inversions. The open circles (crosses) with horizontal bars show the means (medians) and their errors estimated in an inversion where (i) the errors and depths of the measurements would be those at GEOTRACES NA deep stations and (ii) the factor for model errors p = 1. The rate constants estimated by inversion are shown at six of the pumping depths at these stations.

Figure 13: Cumulative distribution function (CDF) of the relative precision of the rate constants of Th and particle cycling, which are estimated in the presence of data errors, model errors, and limited sampling. The relative precision is the standard deviation of the rate constant divided by the value of the rate constant. The dashed (solid) line is the CDF for the prior (posterior) estimates. Also shown is the CDF of the difference between the estimated and actual value, divided by the standard deviation of the estimated value (dotted line). Note that the CDFs for the posterior estimates are based on values at all

depths of the model grid.

Figure 14: Recovery of vertical variations in the rate constant of Th adsorption. The solid line indicates values used to generate Th and particle data. The solid circles with horizontal bars show the means with their errors estimated in an inversion where the data have a relative error of 5%, they are available at all depths, and model errors are very small $(p = 10^{-5})$. Note that the values estimated by inversion are shown only at some of the pumping depths at GEOTRACES NA deep stations.

Figure 15: Vertical profiles of ²²⁸Th activity in the dissolved phase (upper horizontal axis), the small particles (middle axis), and the large particles (lower axis). The ²²⁸Th activities that are obtained by numerical solution with uniform (variable) rate of Th adsorption are shown by dashed (solid) lines (left most lines for large particles, middle lines for the dissolved phase, and right most lines for small particles).

Figure 16: Same as Figure 15 but for ²³⁰Th (left most lines for large particles, middle lines for small particles, and right most lines for the dissolved phase).

Figure 17: Same as Figure 15 but for ²³⁴Th (left most lines for large particles, middle lines for small particles, and right most lines for the dissolved phase).

Figure 18: Same as Figure 15 but for the concentration of particles (left lines for large particles and right lines for small particles).

Figure 19: Rate constants of Th and particle cycling estimated with varying errors in 1300 the ²²⁸Th equations. The vertical solid lines indicate the values used to generate Th and 130 particle data. The vertical dashed lines indicate the prior estimates of the rate constants 1302 assumed in the inversions. The solid circles with horizontal bars show the means with their 1303 errors estimated in the reference inversion. The open circles (crosses) with horizontal bars 1304 show the means (medians) with their errors estimated in an inversion with a relatively 1305 large error for the 228 Th equations (p=1). In both inversions, the data have a relative 1306 error of 5% and are available at all depths. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

Figure 20: Rate constants of Th and particle cycling estimated with or without local 228 Ra data. The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in the reference inversion. The open circles (crosses) with horizontal bars show the means (medians) with their errors estimated in an inversion where (i) 228 Ra activity is fixed to 2.4 dpm m⁻³ at all depths and (ii) the error in the 228 Th_d equation is set equal to this value times the 228 Th radioactive decay constant. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

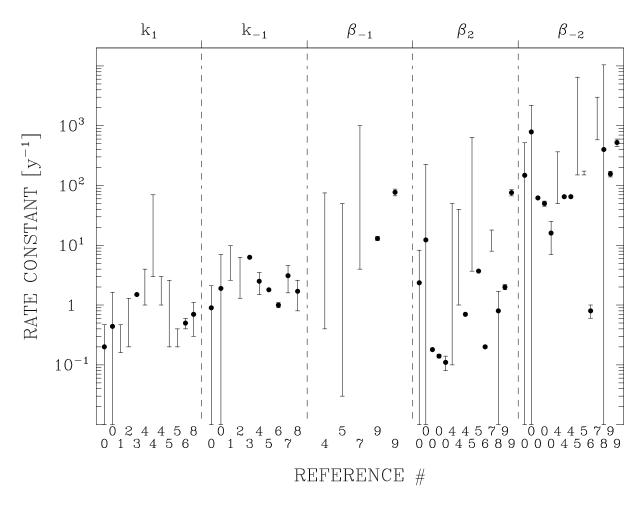


Figure 1: Published estimates of rate constants of (1) thorium adsorption (k_1) and desorption (k_{-1}) and (2) particle remineralization (β_{-1}) , aggregation (β_2) , and disaggregation (β_{-2}) . The numbers along the lower horizontal axis are 0 for Nozaki et al. (1987), 1 for Bacon et al. (1989), 2 for Bacon and Anderson (1982), 3 for Nozaki et al. (1981), 4 for Clegg et al. (1991), 5 for Clegg and Whitfield (1991), 6 for Murnane et al. (1990), 7 for Murnane et al. (1994), 8 for Murnane (1994), and 9 for Murnane et al. (1996). The plotted values are those compiled by Murnane et al. (1994) and Murnane (1994) (cf. Table 1 of these two papers) as well as those obtained in these two studies and by Murnane et al. (1996). They include (i) point estimates with errors (solid circles with vertical bars), (ii) ranges, and (iii) point estimates without error (solid circles alone). The error bars in contact with the lower horizontal axis reach negative values and cannot be shown on a logarithmic scale. Some of the intervals (ranges) reported in the compilations or original publications are open, implying a larger error than it appears on the figure. Note that not all published estimates are shown to avoid congestion of the figure.

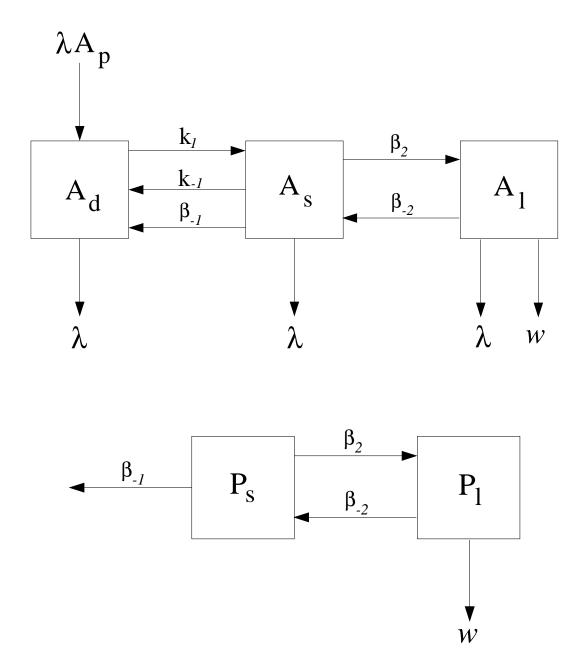


Figure 2: Schematic diagram of the cycling of trace metals (top) and particles (bottom) in the ocean aphotic zone. Metal activity is partitioned between the dissolved phase (A_d) , the small particles (A_s) and the large particles (A_l) . Particle concentration is partitioned between the small particles (P_s) and the large particles (P_l) . The processes affecting metal activity and particle concentration in these different forms are the production by the radioactive parent (A_p) , the radioactive decay (at a specific rate λ), the adsorption onto small particles (k_1) , the desorption from small particles (k_{-1}) , the remineralization of small particles (β_{-1}) , the aggregation of small particles (β_2) , the disaggregation of large particles (β_{-2}) , and the sinking of large particles (with velocity w).

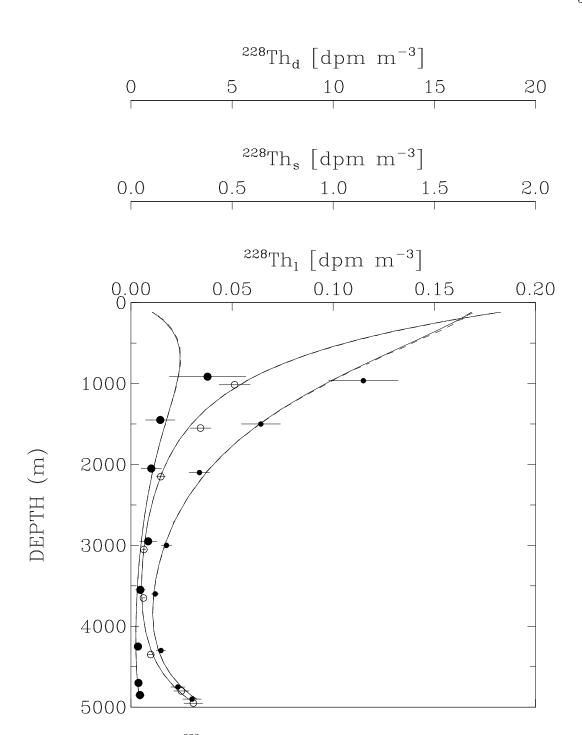


Figure 3: Vertical profiles of ²²⁸Th activity in the dissolved phase (upper horizontal axis), the small particles (middle axis), and the large particles (lower axis). The ²²⁸Th activities that are obtained from the analytical (numerical) solution of the model are shown by solid (dashed) lines. The two lines are barely distinguishable. The ²²⁸Th activities at sampling depths, which are used to produce the idealized data for the inversions, are shown by circles: open circles for the dissolved phase, small solid circles for the small particles, and large solid circles for the large particles. The horizontal bars show the errors in these activities. These activities are shown only at some of the pumping depths at GEOTRACES NA deep stations.

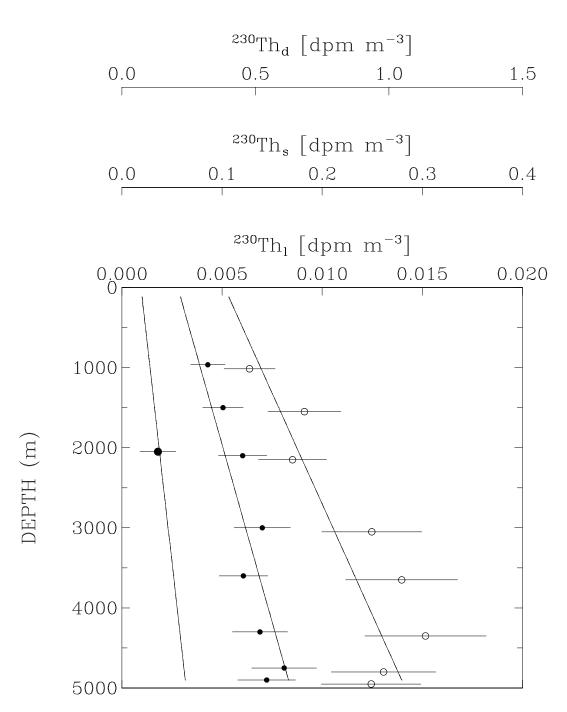


Figure 4: Same as Figure 3 but for $^{230}\mathrm{Th}.$

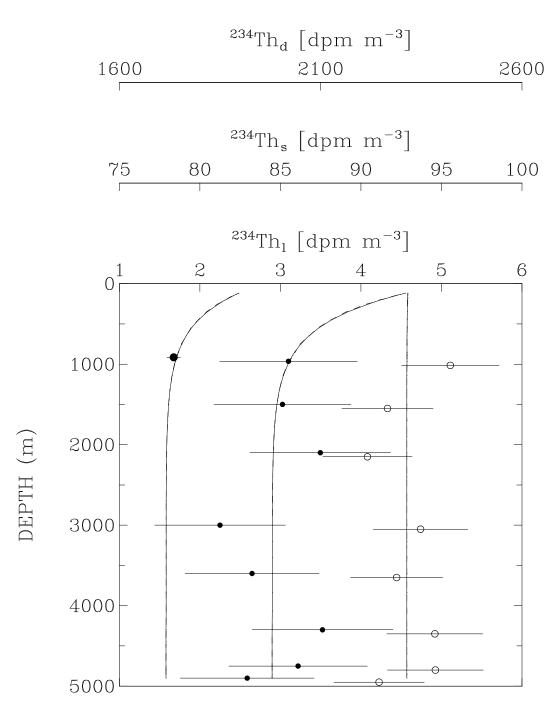


Figure 5: Same as Figure 3 but for 234 Th.

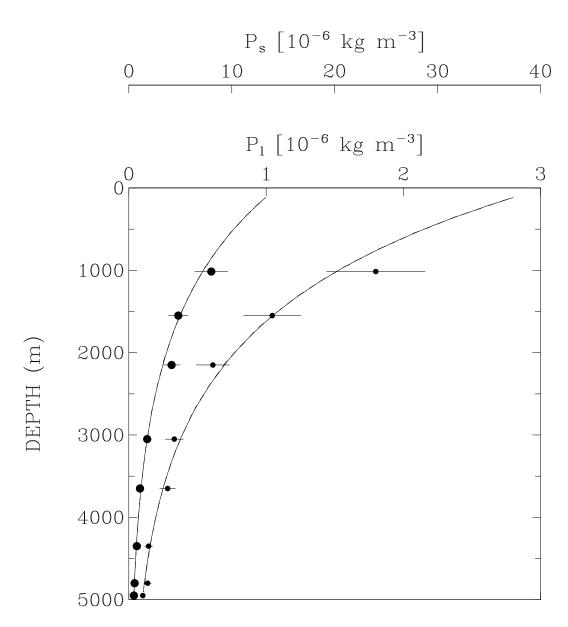


Figure 6: Same as Figure 3 but for the concentration of particles. The concentration of small (large) particles is shown by small (large) circles.

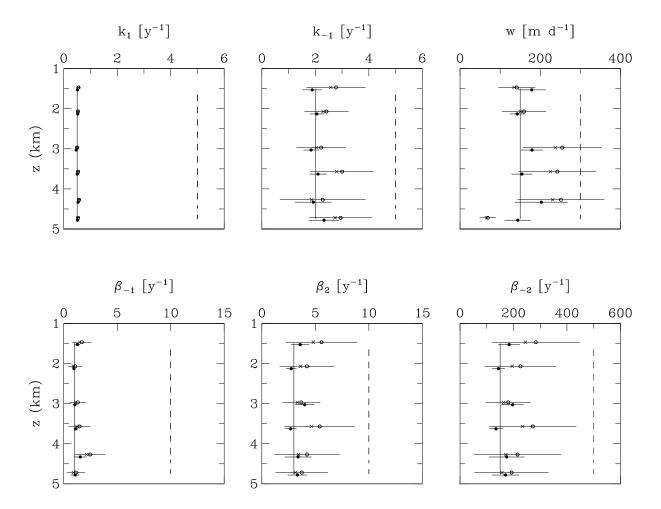


Figure 7: Rate constants of Th and particle cycling estimated with varying data errors. The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in an inversion where data have a relative error of 5% (reference inversion). The open circles (crosses) with horizontal bars show the means (medians) with their errors estimated in an inversion where data have a relative error of ≤ 20 %. In both inversions, data are available at all depths and model errors are assumed to be very small ($p = 10^{-5}$). The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

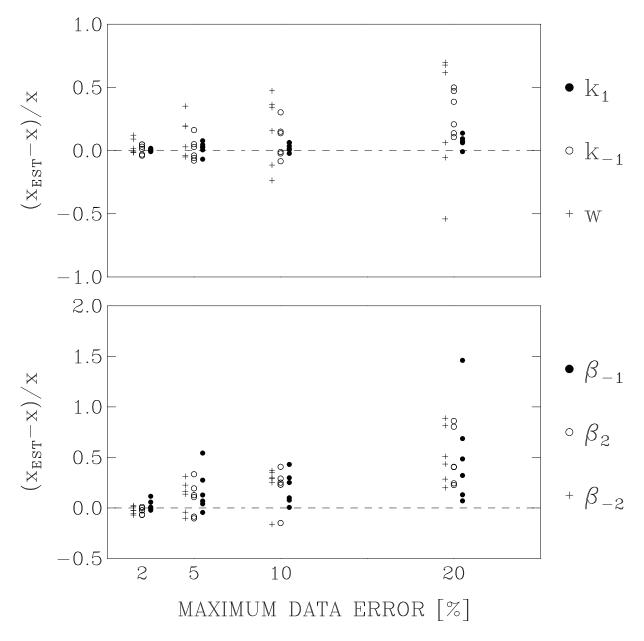


Figure 8: Effect of maximum data error on the accuracy of the rate constants of Th and particle cycling estimated by inversion. The accuracy is measured by the difference between the estimated value and the actual value, divided by the actual value.

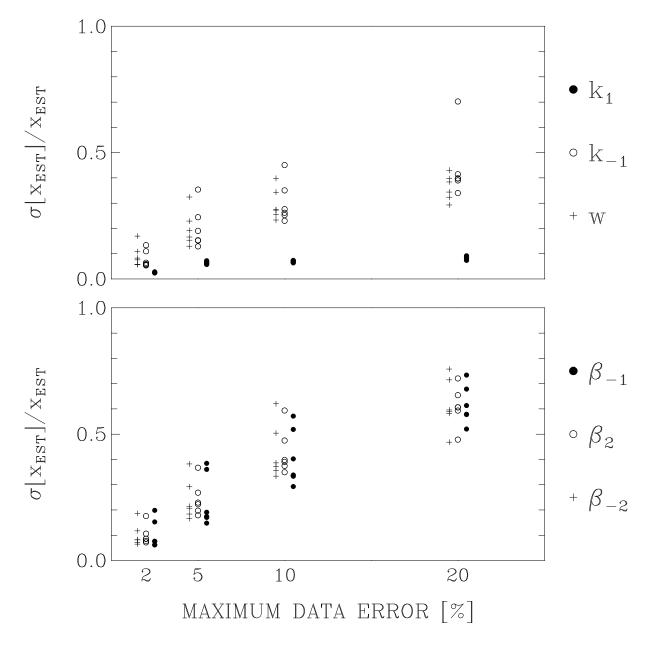


Figure 9: Effect of maximum data error on the precision of the rate constants of Th and particle cycling estimated by inversion. The precision is measured by the ratio between the standard deviation of the estimated value and the estimated value.

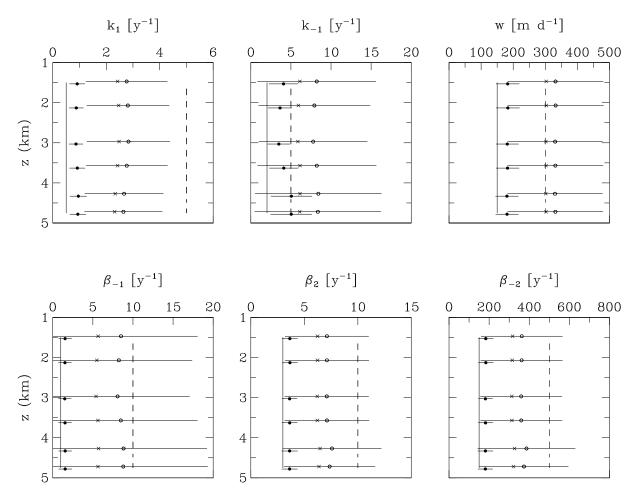


Figure 10: Rate constants of Th and particle cycling estimated with varying model errors. The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in an inversion where p = 0.1. The open circles with horizontal bars (crosses) show the means (medians) with their errors estimated in an inversion where p = 1. In both inversions, the data have no error and are available at all depths. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

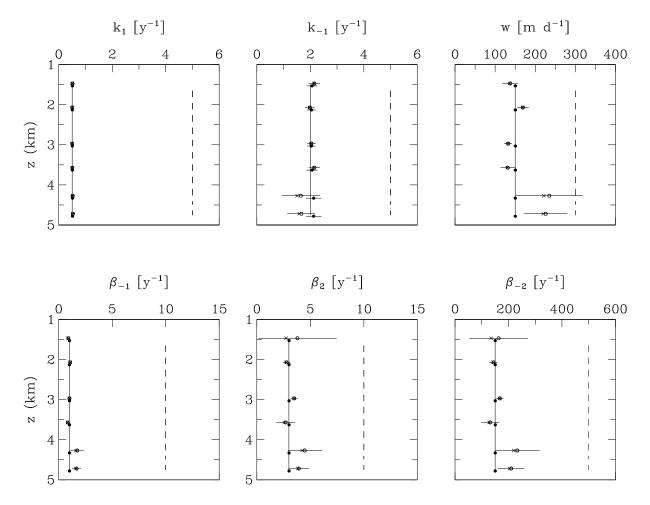


Figure 11: Rate constants of Th and particle cycling estimated with varying sampling schemes. The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in an inversion where data are available at all depths. The open circles (crosses) with horizontal bars show the means (medians) with their errors estimated in an inversion where data are interpolated or extrapolated. In both inversions, the data have no error (except in the second inversion where extrapolated values have a relative error of 1) and the factor for model errors p = 0.01. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

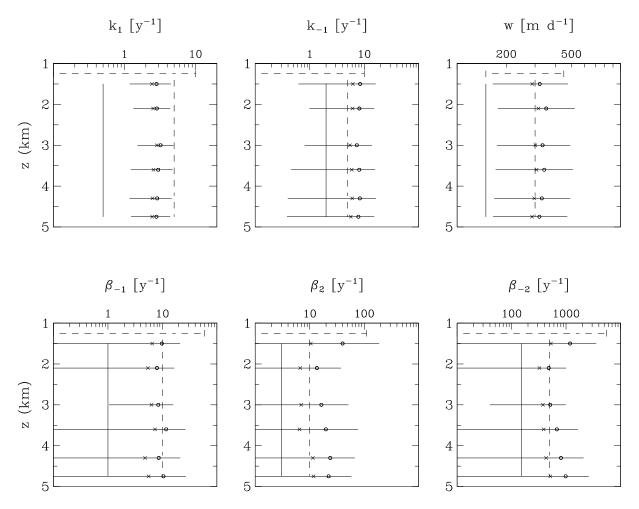


Figure 12: Rate constants of Th and particle cycling estimated in the presence of data errors, model errors, and limited sampling. The vertical solid lines indicate the values used to generate Th and particle data. The vertical (horizontal) dashed lines indicate the prior estimates (their errors) assumed in the inversions. The open circles (crosses) with horizontal bars show the means (medians) and their errors estimated in an inversion where (i) the errors and depths of the measurements would be those at GEOTRACES NA deep stations and (ii) the factor for model errors p=1. The rate constants estimated by inversion are shown at six of the pumping depths at these stations.

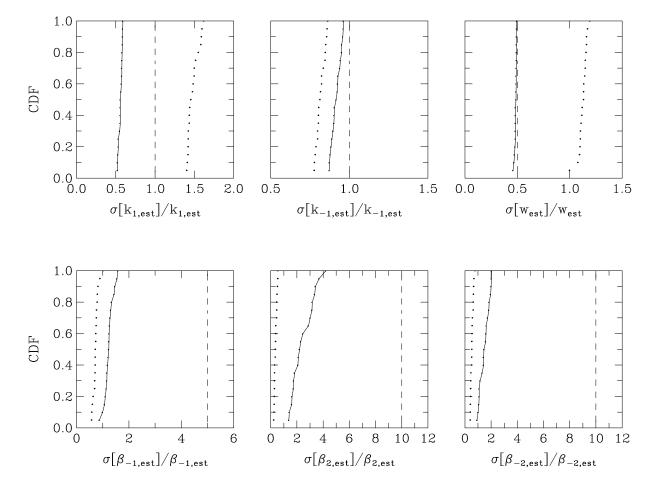


Figure 13: Cumulative distribution function (CDF) of the relative precision of the rate constants of Th and particle cycling, which are estimated in the presence of data errors, model errors, and limited sampling. The relative precision is the standard deviation of the rate constant divided by the value of the rate constant. The dashed (solid) line is the CDF for the prior (posterior) estimates. Also shown is the CDF of the difference between the estimated and actual value, divided by the standard deviation of the estimated value (dotted line). Note that the CDFs for the posterior estimates are based on values at all depths of the model grid.

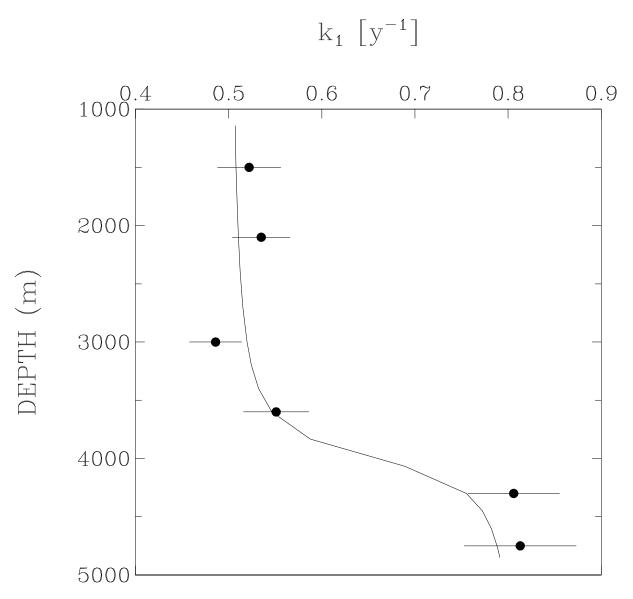


Figure 14: Recovery of vertical variations in the rate constant of Th adsorption. The solid line indicates values used to generate Th and particle data. The solid circles with horizontal bars show the means with their errors estimated in an inversion where the data have a relative error of 5%, they are available at all depths, and model errors are very small $(p = 10^{-5})$. Note that the values estimated by inversion are shown only at some of the pumping depths at GEOTRACES NA deep stations.

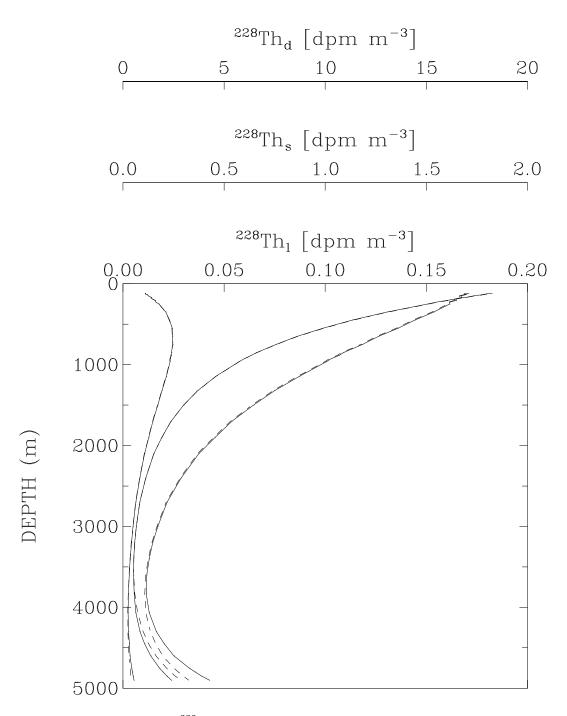


Figure 15: Vertical profiles of ²²⁸Th activity in the dissolved phase (upper horizontal axis), the small particles (middle axis), and the large particles (lower axis). The ²²⁸Th activities that are obtained by numerical solution with uniform (variable) rate of Th adsorption are shown by dashed (solid) lines (left most lines for large particles, middle lines for the dissolved phase, and right most lines for small particles).

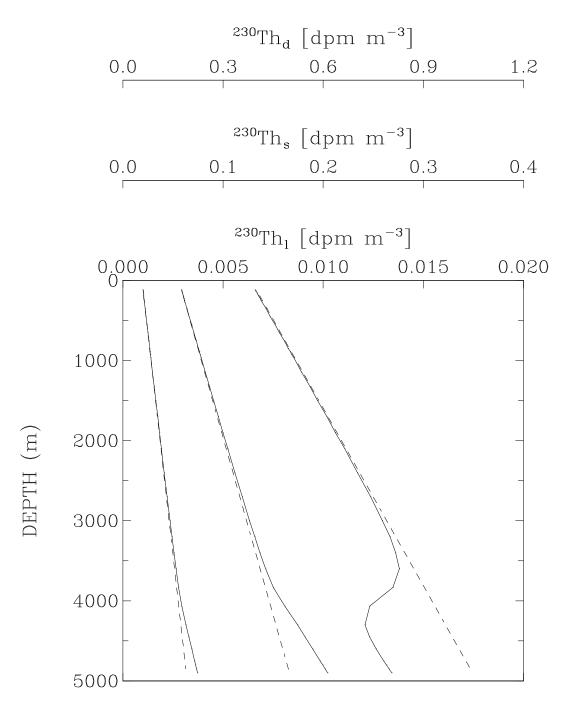


Figure 16: Same as Figure 15 but for ²³⁰Th (left most lines for large particles, middle lines for small particles, and right most lines for the dissolved phase).

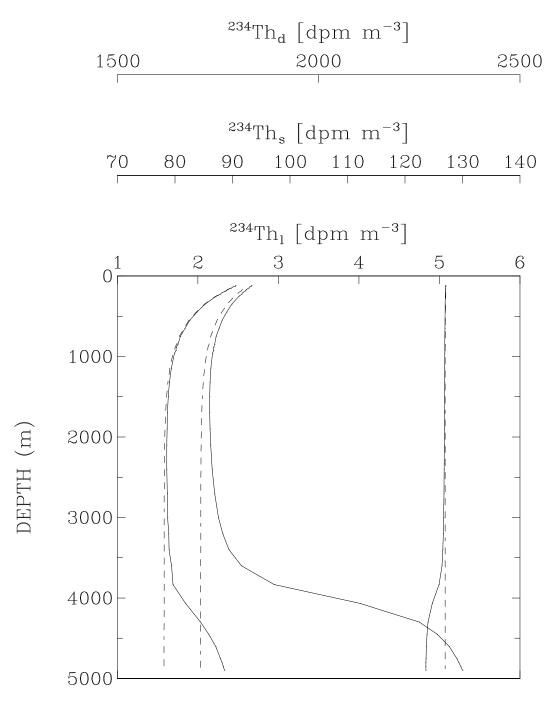


Figure 17: Same as Figure 15 but for ²³⁴Th (left most lines for large particles, middle lines for small particles, and right most lines for the dissolved phase).

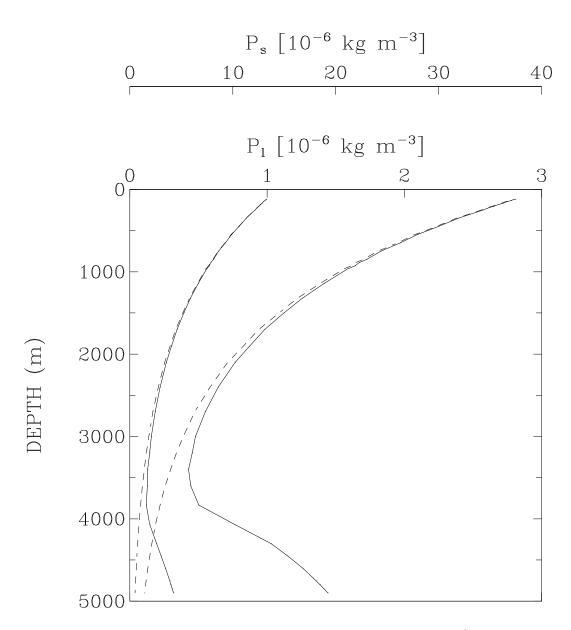


Figure 18: Same as Figure 15 but for the concentration of particles (left lines for large particles and right lines for small particles).

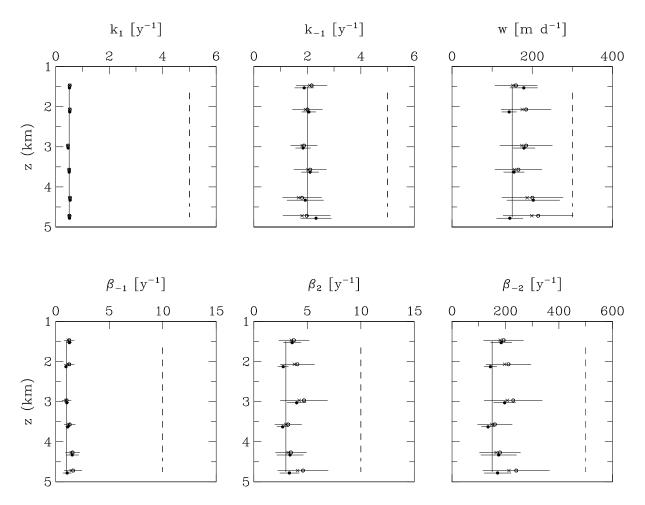


Figure 19: Rate constants of Th and particle cycling estimated with varying errors in the 228 Th equations. The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates of the rate constants assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in the reference inversion. The open circles (crosses) with horizontal bars show the means (medians) with their errors estimated in an inversion with a relatively large error for the 228 Th equations (p=1). In both inversions, the data have a relative error of 5% and are available at all depths. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.

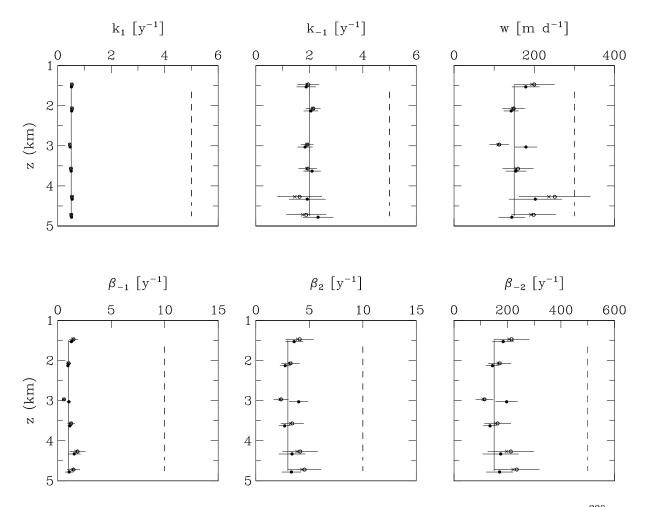


Figure 20: Rate constants of Th and particle cycling estimated with or without local 228 Ra data. The vertical solid lines indicate the values used to generate Th and particle data. The vertical dashed lines indicate the prior estimates assumed in the inversions. The solid circles with horizontal bars show the means with their errors estimated in the reference inversion. The open circles (crosses) with horizontal bars show the means (medians) with their errors estimated in an inversion where (i) 228 Ra activity is fixed to 2.4 dpm m $^{-3}$ at all depths and (ii) the error in the 228 Th_d equation is set equal to this value times the 228 Th radioactive decay constant. The rate constants estimated by inversion are shown at six of the pumping depths at GEOTRACES NA deep stations.