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Abstract— This paper presents the novel insight that the
SLAM information matrix is exactly sparse in a delayed-
state framework. Such a framework is used in view-based
representations of the environment which rely upon scan-
matching raw sensor data. Scan-matching raw data results in
virtual observations of robot motion with respect to a place
its previously been. The exact sparseness of the delayed-state
information matrix is in contrast to other recent feature-
based SLAM information algorithms like Sparse Extended
Information Filters or Thin Junction Tree Filters. These
methods have to make approximations in order to force
the feature-based SLAM information matrix to be sparse.
The benefit of the exact sparseness of the delayed-state
framework is that it allows one to take advantage of the
information space parameterization without having to make
any approximations. Therefore, it can produce equivalent
results to the “full-covariance” solution.

Index Terms— Delayed states, EIF, SLAM.

I. INTRODUCTION

Good navigation is often a prerequisite for many of the
tasks assigned to mobile robots. For example, much of the
deep-water science over the past two decades has relied
upon Remotely Operated Vehicles (ROVs) to be the hands
and eyes of humans. Scientists who use these vehicles often
want to be able to co-locate the data they collect spatially
and temporally such as in: studies of bio-diversity [1],
coral reef health [2], and archeology [3]. Since GPS signals
do not penetrate the ocean surface engineers mainly rely
upon acoustic-beacon networks to obtain bounded-error
triangulated vehicle positions for large-area navigation [4].
The disadvantage of this method is that it requires the
deployment, calibration, and recovery of the transponder
net. This is often an acceptable trade-off for long-term
deployments, but frequently it is the bane of short-term
surveys. In more recent years underwater vehicles have
seen advances in their dead-reckoning abilities. The advent
of sensors such as the acoustic Doppler velocity log [5] and
north seeking ring laser gyro [6] have improved the ability
of near-seafloor vehicles to navigate with reported error
bounds of less than 1% of distance traveled [7]. However,
in the absence of an external reference, error continues to
grow unbounded as a monotonic function of time.

Eustice, Pizarro and Singh [8] presented a simultaneous
localization and mapping (SLAM) technique for near sea-
floor navigation called Visually Augmented Navigation

(VAN). This technique incorporates pairwise camera con-
straints from low-overlap imagery to constrain the vehicle
position estimate and “reset” the accumulated navigation
drift error. In this framework, the camera provides mea-
surements of the 6 DOF relative coordinate transforma-
tion between poses modulo scale. The method recursively
incorporates these relative pose constraints by estimating
the global poses which are consistent with the camera
measurements and navigation prior. These global poses cor-
respond to samples from the robot’s trajectory acquired at
image acquisition and, therefore, unlike the typical feature-
based SLAM estimation problem which keeps track of the
current robot pose and an associated landmark map, the
VAN state vector consists entirely of delayed vehicle states
corresponding to the vehicle poses at the times the images
were captured. This delayed-state approach corresponds to
a view-based representation of the environment which can
be traced back to a batch scan-matching method by Lu
and Milios [9] using laser data and hybrid batch/recursive
formulations by Fleischer [10] and McLauchlan [11] using
camera images.

The VAN technique proposed the use of an Extended
Kalman Filter (EKF) as the fusion framework for merging
the navigation and camera sensor measurements. This is
a well known approach whose application to SLAM was
developed by Smith, Self, and Cheeseman [12] and Moutar-
lier and Chatila [13]. The EKF maintains the joint correla-
tions over all elements in the state vector and therefore can
“optimally” update estimates of all the elements involved
in key events like loop closure. However, maintaining these
joint correlations also represent a major computational
burden since each measurement update requires quadratic
complexity in the size of the state vector. This limits the
online use of an EKF to relatively small maps — for
the VAN approach this translates into an upper bound of
approximately one hundred 6-element poses.

The quadratic computational complexity associated with
the EKF has been a long recognized issue in the SLAM
community. One popular method for reducing the com-
putational burden is to decouple the estimation problem
into a series of manageable submaps [14]–[16]. In this
approach each map is limited to a fixed number of elements
and therefore the computational burden of updating each
map has an upper bound. However, the trade-off these
techniques make is a reduced rate of convergence since



measurements do not optimally update the entire network
of submaps [16].

Two other approaches which have gained recent attention
are the Sparse Extended Information Filter (SEIF) [17] and
the Thin Junction-Tree Filter (TJTF) [18]. The authors of
these algorithms make the important empirical observation
that when the feature-based SLAM posterior is cast in the
form of the Extended Information Filter (EIF), (i.e. the dual
of the EKF), many of the off-diagonal elements in the in-
formation matrix are near zero when properly normalized.
SEIFs and TJTFs approximate the posterior with a sparse
representation which prevents these weak inter-landmark
links from forming. Their approaches effectively limit the
density of the information matrix and as each shows —
allows for constant time updates. However, the delicate and
nontrivial issue that must be dealt with is how to sparsify
the information matrix.

In the remainder of this paper we will first illustrate
why the feature-based SLAM information matrix is nat-
urally dense and therefore, why SEIFs and TJTFs have
to approximate the SLAM posterior with a sparse repre-
sentation. We’ll then proceed to show the novel insight
that the information form is exactly sparse for a delayed-
state representation. In turn, we show this sparse property
allows us to cast the delayed-state framework in an efficient
representation, but without any sparse approximation error.

II. INFORMATION FORM

The information form is often called the canonical or
natural representation of the Gaussian distribution. This
notion of a “natural” representation stems from expanding
the quadratic in the exponential of the Gaussian distribution
as shown in (1). The result is that rather than parame-
terizing the normal distribution in terms of its mean and
covariance as in N

(
ξt;µt,Σt

)
, it is instead parametrized

in terms of its information vector and information matrix,
N−1

(
ξt;ηt,Λt

)
[19]. Equation (2) shows how the two

forms are related.

p (ξt) = N
(
ξt;µt,Σt

)
∝ exp

{
− 1
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>Σ−1
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}

= exp
{
− 1

2 (ξ>t Σ−1
t ξt − 2µ>

t Σ−1
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t Σ−1
t µt)

}
∝ exp

{
− 1

2ξ>t Σ−1
t ξt + µ>

t Σ−1
t ξt

}
= exp

{
− 1

2ξ>t Λtξt + η>t ξt

}
∝ N−1

(
ξt;ηt,Λt

)
(1)

where the proportionality sign accounts for the normaliza-
tion constant and

Λt = Σ−1
t ηt = Λtµt (2)

A. Marginalization and Conditioning

The covariance and information representations lead to
very different computational characteristics with respect to
the fundamental probabilistic operations of marginalization
and conditioning. This is important because these two
operations appear at the core of any SLAM algorithm,

for example motion prediction and measurement updates.
Table I summarizes these operations on a Gaussian distri-
bution where we see that the covariance and information
representations exhibit a dual relationship with respect to
marginalization and conditioning. For example, marginal-
ization is easy in covariance form since it corresponds to
extracting the appropriate sub-block from the covariance
matrix while in information form it is hard because it in-
volves calculating the Schur complement over the variables
we wish to keep. Note that the opposite relation holds true
for conditioning which is easy in the information form and
hard in covariance form.

TABLE I
SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS

ON A GAUSSIAN DISTRIBUTION EXPRESSED IN COVARIANCE AND

INFORMATION FORM

p (α, β) = N
`h

µα
µβ

i
,
h

Σαα Σαβ

Σβα Σββ

i´
= N−1

`h
ηα
ηβ

i
,
h

Λαα Λαβ

Λβα Λββ

i´
MARGINALIZATION CONDITIONING

p (α) =
R

p (α, β) dβ p (α | β) = p (α, β) /p (β)

COV.
FORM

µ = µα µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ = Σαα Σ′ = Σαα − ΣαβΣ−1
ββ Σβα

INFO.
FORM

η = ηα − ΛαβΛ−1
ββ ηβ η′ = ηα − Λαββ

Λ = Λαα − ΛαβΛ−1
ββ Λβα Λ′ = Λαα

B. Information Form and Feature-Based SLAM

Most SLAM approaches are feature-based which as-
sumes that the robot can extract an abstract representation
of features in the environment from its sensor data and then
use re-observation of these features for localization [12]. In
this approach a landmark map is explicitly built and main-
tained. The process of concurrently performing localization
and feature map building are inherently coupled. The robot
must then represent a joint-distribution over landmarks and
current pose. Using the EKF to represent these coupled
errors requires maintaining the cross-correlations in the
covariance matrix — in which there are quadratically many.
Updating the joint correlations over map and robot leads
to an O(N2) complexity per update, with N being the
number of landmarks in the map.

Recently, some substantial papers have been published
in which the authors explore re-parameterizing the feature-
based SLAM posterior in the information form [17], [18],
[20]. For example, Thrun et al. [17] make the observation
that when the EIF is used for inference, measurement
updates are additive and efficient. The downside of the EIF
is that motion prediction is generally O(N3). However, in
[17], the authors show that if the information matrix obeys
a certain sparse structure, the EIF motion prediction can
be performed in constant time. To obtain this sparse struc-
ture, the authors make an important empirical observation
regarding the architecture of the feature-based SLAM infor-
mation matrix. They show that when properly normalized,
many of the inter-landmark constraints in the information



matrix are redundant and weak. Based upon this insight, the
methods presented in [17] and [18] try to approximate the
information matrix with a sparse representation in which
these weak inter-landmark constraints have been eliminated
allowing for the development of efficient SLAM algorithms
like SEIFs and TJTFs.

The delicate issue that must be dealt with in these
methods, however, is how to perform the necessary ap-
proximation step which is required to keep the infor-
mation matrix sparse. In fact, the sparsification step is
an important issue not to be glossed over because the
feature-based SLAM information matrix associated with
the joint-posterior over robot pose xt and landmark map M
given sensor measurements zt and control inputs ut (i.e.,
p (xt,M | zt,ut)) is naturally fully dense. As we show
next, this density arises from marginalizing out past robot
poses.

To see this consider the diagram shown in Fig. 1.
We begin with the schematic shown to the upper left
which represents the robot xt at time t connected to three
landmarks L1, L2 and L3 in the context of a non-directed
Bayes-Net [21]. This diagram is a graphical representa-
tion of the conditional independencies in the distribution
p (xt,L1:3 | zt,ut) and shows that the only constraints
which exists are between robot and landmark, no inter-
landmark constraints appear. This lack of inter-landmark
constraints should be correctly interpreted to mean that
each landmark is conditionally independent given the robot
pose as described in [22], [23]. The intuition behind this
comes from viewing the noise of each sensor reading
as being independent, and therefore, determining each
landmark position is an independent estimation problem
given the known location of the sensor.

Shown directly below each Bayes-Net in Fig. 1 is
an illustration of the corresponding information matrix.
Here we see that the nonzero off-diagonal elements
encode the robot/landmark constraints while the zeros
in the information matrix encode the lack of direct
inter-landmark constraints [18]. The diagram shown
in the middle of Fig. 1 represents the intermediate
distribution p (xt+1,xt,L1:4 | zt,ut). This distribution
represents a time-propagation of the previous distribution
by augmenting the state vector to include the term xt+1

which represents the new robot pose at time t + 1,
re-observation of feature L3, and observation of a new
landmark L4. Because the robot state evolves according
to a Markov process, we see that the new robot state xt+1

is only linked to the previous robot state xt, and that
observation of the landmarks L3 and L4 add two additional
constraints to xt+1. In the typical feature-based SLAM
approach only the current robot pose is estimated and not
the complete trajectory. Therefore, we always marginalize
out the previous robot pose xt during our time-projection
step to give us the distribution over current pose and map
p (xt+1,L1:4 | zt,ut) =

∫
p (xt+1,xt,L1:4 | zt,ut) dxt.

Recalling the formula for marginalization applied to a
Gaussian in the information form (see Table I), we note

that it is the the outer product of ΛαβΛ−1
ββΛ>αβ

1 that causes
the information matrix to fill in and become dense as
shown in the illustration to the far right of Fig. 1.

Intuitively, the landmarks L1, L2, L3, which used to
be indirectly connected via a direct relationship with xt,
must now represent that indirect relationship directly by
creating new links between each other. Therefore, the
penalty for a feature-based SLAM representation which
always marginalizes out the robot trajectory is that the
landmark Bayes-Net becomes fully connected and the
associated information matrix becomes fully dense (though
as previously mentioned , [17] makes the empirical obser-
vation that many of the off-diagonal elements are relatively
small).

p
“
xt, L1:3 | zt, ut

”
p

“
xt+1, xt, L1:4 | zt+1, ut+1

”
p

“
xt+1, L1:4 | zt+1, ut+1

”

Fig. 1. A graphical explanation of why the feature-based SLAM
information matrix is naturally fully dense. Refer to the text of §II-B
for a detailed discussion. (left) The posterior over robot pose xt and
landmarks L1:3 given sensor measurements zt and control inputs ut is
represented as a non-directed Bayes-Net. The corresponding information
matrix is shown directly below and encodes the Bayes-Net link structure
within the non-zero off-diagonal elements. (middle) The time-propagation
of the posterior is now shown where the state vector has been augmented
to include the robot pose at time t + 1 (i.e., xt+1), re-observation
of landmark L3, and observation of a new landmark L4. Appropriate
sub-blocks of the information matrix have been colored to indicate the
different portions involved in marginalizing out the past robot pose xt.
Referring to Table I, Λαα is blue, Λββ is red, and Λαβ = Λ>βα is green.
(right) This posterior reflects the effect of marginalizing out the past robot
state xt and its consequent “fill in” of the information matrix.

III. EXACTLY SPARSE DELAYED-STATE FILTERS

An alternative formulation of the SLAM problem is to
use a view-based representation rather than a feature-based
approach [9]. View-based representations such as [8], [9]
do not explicitly model landmark features in the environ-
ment, instead the estimation problem consists of keeping
track of the current robot pose as well as a sampling of
key past poses from it’s trajectory. The associated posterior
in this case is defined over a collection of delayed-states
[8]–[10], [24]. In the the view-based representation, raw
sensor data is registered to provide virtual observations
of pose displacements. For example, in [9] these virtual
observation come from scan-matching laser range data
while in our application [8] a camera is used to provide
pairwise constraints.

1Here α = {xt+1,L1:4} and β = xt



A. State Augmentation

We begin by describing the method of state augmentation
which is how we “grow” the state vector to contain a new
delayed-state; this operation occurs whenever we have a
new key robot pose that we wish to store. For example,
in the VAN framework we add a delayed-state for each
acquired image of the environment that we wish to be able
to revisit at a later time. Assume for the moment that our
estimate at time t is described by the distribution in (3)
expressed in both covariance and information form.

p
(
xt,M | zt,ut

)
= N

([µxt

µM

]
,

[
Σxtxt

ΣxtM

ΣMxt
ΣMM

])
= N−1

([ηxt

ηM

]
,

[
Λxtxt ΛxtM

ΛMxt ΛMM

])
(3)

This distribution represents a map and current robot state,
M and xt respectively, given all measurements zt and
control inputs ut. Here the map variable M is used in
a general sense, for example it could represent a collection
of delayed-states or a set of landmark features in the
environment. For now we don’t care, because we want to
show what happens when we augment our representation to
include the new robot state xt+1 obtaining the distribution
p

(
xt+1,xt,M | zt,ut+1

)
which can be factored as

p
(
xt+1,xt,M | zt,ut+1

)
= p

(
xt+1 | xt,M, zt,ut+1

)
p

(
xt,M | zt,ut+1

)
Markov= p (xt+1 | xt,ut+1) p

(
xt,M | zt,ut

)
(4)

In (4) we factored the posterior into the product of a
probabilistic state-transition multiplied by our prior using
the common assumption that the robot state evolves ac-
cording to a Markov process. Equation (5) describes the
general nonlinear Markov robot motion model we assume
and (6) its first-order linearized form where F is the
Jacobian evaluated at µxt

and wt ∼ N
(
0,Q

)
is the white

process noise. Note that in general our state description xt

consists of pose (i.e., position, orientation) and kinematic
components (e.g., body-frame velocities, angular rates).

xt+1 = f(xt,ut+1) + wt (5)
≈ f(µxt

,ut+1) + F(xt − µxt
) + wt (6)

Under the linearized approximation in (6) the augmented
state distribution given in (4) is also Gaussian and in
covariance form its result is given by (7) [12].

p
(
xt+1,xt,M | zt,ut+1

)
= N

(
µ′

t+1,Σ
′
t+1

)
µ′

t+1 =

f(µxt
,ut+1)

µxt

µM


Σ′

t+1 =

(FΣxtxt
F> + Q) FΣxtxt

FΣxtM

Σxtxt
F> Σxtxt

ΣxtM

ΣMxt
F> ΣMxt

ΣMM

 (7)

The lower-right 2×2 sub-block of Σ′
t+1 corresponds to the

covariance between the delayed robot state element xt and
the map M and has remained unchanged from the prior.

Meanwhile, the first row and column contain the cross-
covariances associated with the time propagated robot state
xt+1 which includes the effect of the process model.

Having obtained the delayed-state distribution in covari-
ance form, we can now transform (7) to its information
form (8) via (2). This requires inversion of the 3×3 block
covariance matrix Σ′

t+1 whose derivation we omit here due
to space limitation.

p
(
xt+1,xt,M | zt,ut+1

)
= N−1

(
η′t+1,Λ

′
t+1

)
η′t+1 =

 Q−1
(
f(µxt

,ut+1)− Fµxt

)
ηxt

− F>Q−1
(
f(µxt

,ut+1)− Fµxt

)
ηM


Λ′t+1 =

 Q−1 −Q−1F 0
−F>Q−1 (Λxtxt + F>Q−1F) ΛxtM

0 ΛMxt
ΛMM

 (8)

Equation (8) yields a key insight into the structure of the
information matrix regarding delayed-states. We see that
augmenting our state vector to include the new robot state
xt+1 introduces shared information between the new state
xt+1 and the previous robot state xt. Moreover, we see
that the shared information between xt+1 and the map M
is always zero irrespective of what M abstractly represents
(i.e., it doesn’t matter whether M represents a set of
feature landmarks or a collection of delayed-states the
result will always be zero). This sparsity in the augmented
state information matrix is a consequence of the Markov
property associated with the state transition probability
p (xt+1 | xt,ut+1). In terms of a Bayes diagram, xt+1 is
only serially connected to its parent node xt and therefore,
is conditionally independent of M.

By induction, a key property of state augmentation in
the information form is that if we continue to augment our
state vector with additional delayed-states we see that the
information matrix will exhibit a block tridiagonal structure
linking each delayed-state with the post and previous
states as shown in (9). Hence, the view-based delayed-
state SLAM information matrix is naturally sparse without
having to make any sparseness approximations.

Λxt+1xt+1 Λxt+1xt

Λ>xt+1xt
Λxtxt

Λxtxt−1

Λ>xtxt−1
Λxt−1xt−1 Λxt−1xt−2

. . . . . . . . .


(9)

B. Relative Pose Measurements

One of the very attractive properties of the information
form is that measurement updates are additive in the
EIF [17]. Assume the following general nonlinear mea-
surement function (10) and its first order linearized form
(11)

zt = h(ξt) + vt (10)
≈ h(µ̄t) + H(ξt − µ̄t) + vt (11)



where ξt is the predicted state vector distributed according
to ξt ∼ N

(
µ̄t, Σ̄t

)
= N−1

(
η̄t, Λ̄t

)
, vt is the white mea-

surement noise vt ∼ N
(
0,R

)
, and H is the Jacobian eval-

uated at µ̄t. Thrun et al [17] show that the corresponding
EIF update is given by (12).

Λt = Λ̄t + H>R−1H

ηt = η̄t + H>R−1
(
zt − h(µ̄t) + Hµ̄t

) (12)

Equation (12) shows that the information matrix is ad-
ditively updated by the outer product term H>R−1H. In
general, this outer product modifies all elements of the
predicted information matrix Λ̄t, however a key observation
is that the SLAM Jacobian H is always sparse [17]. For
example, in the VAN framework [8] pairwise registration
of images Ii and Ij provides a relative pose measurement
between states xi and xj resulting in a sparse Jacobian of
the form

H =
[
0 · · · ∂h

∂xi
· · · 0 · · · ∂h

∂xj
· · · 0

]
(13)

As a result only the four-block elements corresponding to
xi and xj of the information matrix need to be modified. In
particular, the information in the diagonal blocks Λ̄xixi

and
Λ̄xjxj is increased, while new information appears at Λ̄xixj

and its symmetric counterpart Λ̄xjxi . This new off-diagonal
information reflects the addition of a new constraint into
the corresponding non-directed Bayes-Net connecting the
nodes xi and xj . An important consequence of this result
is that given the natural sparse tridiagonal structure of the
delayed-state information matrix as shown in (9), we see
that the number of nonzero off-diagonal elements in the
information matrix will be linear in the number of relative
pose constraints (i.e., camera measurements).

It is worth pointing out that (10) assumes that the
measurements are corrupted by independent noise. Since
scan-matching methods rely upon registering raw data, this
criteria may be violated if data is reused. In our VAN
application, relative pose measurements are generated by
pairwise registration of images with common overlap. We
use a feature-based image registration approach built upon
extracting interest points with the Harris [25] and SIFT [26]
interest operators. To ensure measurement independence
we only use a set of image feature correspondences once
so that camera measurements remain uncorrelated.

C. Motion Prediction

Motion prediction corresponds to a time propagation of
the robot’s state from time t to time t + 1. In (8) we derived
an expression in information form for the joint-distribution
between the time predicted robot pose xt+1 and its previous
state xt (i.e., p

(
xt+1,xt,M | zt,ut+1

)
). To derive the

time propagated distribution p
(
xt+1,M | zt,ut+1

)
, we

simply marginalize out the previous state xt from the joint-
distribution in (8). Referring to Table I for marginalization

of a Gaussian in information form we have2

p
(
xt+1,M | zt,ut+1

)
= N−1

(
η̄t+1, Λ̄t+1

)
=

∫
p

(
xt+1,xt,M | zt,ut+1

)
dxt

η̄t+1 =
[
Q−1

(
f(µxt

,ut+1)− Fµxt

)
ηM

]
−[

−Q−1F
ΛMxt

]
Ω−1

(
ηxt

− F>Q−1
(
f(µxt

,ut+1)− Fµxt

))
=

[
Q−1FΩ−1ηxt

+ Ψ
(
f(µxt

,ut+1)− Fµxt

)
ηM − ΛMxtΩ

−1
(
ηxt

− F>Q−1
(
f(µxt

,ut+1)− Fµxt

))]

Λ̄t+1 =
[
Q−1 0

0 ΛMM

]
−

[
−Q−1F
ΛMxt

]
Ω−1

[
−F>Q−1 ΛxtM

]
=

[
Ψ Q−1FΩ−1ΛxtM

ΛMxtΩ
−1F>Q−1 ΛMM − ΛMxtΩ

−1ΛxtM

]
(14)

where

Ψ = Q−1 −Q−1F(Λxtxt + F>Q−1F)−1F>Q−1

= (Q + FΛ−1
xtxt

F>)−1 (15)

Ω = (Λxtxt
+ F>Q−1F) (16)

An important consequence of the delayed-state frame-
work is that (14) can be implemented in constant time.
To see this we refer to Fig. 2 which illustrates the effect
of motion prediction for a collection of delayed-states.
We begin with the Bayes diagram at the top of the
figure which shows a segregated collection of delayed-
states. Our view-based “map” corresponds to the set of
states M = {xt−4,xt−3,xt−2,xt−1} which have an in-
terconnected dependence due to camera measurements
while the states xt and xt+1 are serially connected and
corresponds to the previous and predicted robot states
respectively. Referring back to Table I we see that the
bottommost portion of Fig. 2 graphically illustrates the
effect of marginalization on the information matrix. We
note that since xt is only serially connected to xt+1

and xt−1, marginalizing it out only requires modifying
the information blocks associated with these elements
(i.e., Λ′xt+1xt+1

and Λ′xt−1xt−1
shown with cross-hairs and

the symmetric blocks Λ′xt+1xt−1
= Λ′>xt−1xt+1

shown with
black dots). Therefore, since only a fixed portion of the
information matrix is ever involved in the calculation
of (14) motion prediction can be performed in constant
time. This is an important result since in practice fusion
of asynchronous navigation sensor measurements (e.g.,
odometry, compass) means that prediction is typically a
high bandwidth operation (e.g., O(10Hz)).

D. State Recovery

As discussed in §II, the information form of the Gaussian
is parameterized by its information vector and information

2Equation (15) employs the matrix inversion lemma
(A + BCB>)−1 = A−1 − A−1B

`
B>A−1B + C−1

´−1
B>A−1



Fig. 2. Graphical illustration of the effect of motion prediction within
a delayed-state framework. (top) A non-directed Bayes diagram for
a segregated collection of delayed-states. The view-based “map” M
is composed of the set M = {xt−4,xt−3,xt−2,xt−1} which is a
collection of delayed-states that are interlinked by camera constraints. The
previous and predicted robot states, xt and xt+1 respectively, are serially
linked to the map. Below the Bayes diagram is a schematic showing the
nonzero structure (colored in gray) of the associated information matrix.
(bottom) Recalling from Table I the expression for marginalization of
a Gaussian in information form we see that the bottommost schematic
illustrates this operation graphically. The end result is that only the states
which were linked to xt (i.e., xt−1 and xt+1) are effected by the
marginalization operation as indicated by the cross-hairs and black dots
superimposed on Λαα.

matrix, ηt and Λt respectively. However, the expressions
for motion prediction (14) and measurement update (12)
additionally require sub-elements from the state mean
vector µt so that the nonlinear models (5) and (10) can be
linearized. Therefore, in order for the information form to
be a computationally efficient parameterization for delayed-
states we also need to be able to easily recover portions of
the state mean vector µt. Fortunately this is the case due
to the sparse structure of the information matrix Λt.

Recovery of the state mean vector µt corresponds to
solving the sparse, symmetric, positive-definite, linear sys-
tem of equations

Λtµt = ηt (17)

Such systems can be iteratively solved via the classic
method of conjugate gradients [27]. In addition, the re-
cently proposed multigrid SLAM methods by Konolige
[28] and Frese et al [29] appear capable of solving this
system very efficiently incurring only linear asymptotic
complexity; moreover, an important observation regarding
the expressions for motion prediction (14) and measure-
ment updates (12) is that they only require knowing subsets
of the state mean µt. In light of this we note that rather

than solving for the entire state mean vector µt, we can
partition (17) into two sets of coupled equations as shown
in (18). [

Λ`` Λ`b

Λb` Λbb

] [
µ`

µb

]
=

[
η`

ηb

]
(18)

This partitioning of the full state vector µt into what we
call the “local portion” of the map µ` and the “benign
portion” µb, allows us to sub-optimally solve for the local
portion of the map we are interested in. By holding our
current estimate for the benign portion of the map fixed,
we can solve (18) for an estimate of the local portion µ̂` as

µ̂` = Λ−1
``

(
η` − Λ`bµ̂b

)
(19)

Equation (19) gives us a method for recovering an
estimate of the local map µ̂` provided that our estimate
for the benign portion µ̂b is a decent approximation to
the actual mean µb. Furthermore, note that only a subset
of µ̂b is actually required in the calculation of µ̂` cor-
responding to the nonzero elements in the sparse matrix
Λ`b. Adopting [17]’s notation, this active subset, denoted
µ+

b , represents the Markov blanket of µ` and corresponds
to elements which are directly connected to µ` in the
associated Bayes constraint network. Therefore, calculation
of the local map µ̂` only requires an estimate of the locally
connected delayed-state network µ̂+

b and does not depend
upon passive elements in the benign portion of the map.

In particular, (19) provides an accurate and constant-
time approximation for recovering the robot mean during
incorporation of high bandwidth navigation sensor mea-
surements since the robot state is only serially connected
to the map as discussed in section §III-C. Note though, that
(19) will only provide a good approximation as long as the
mean estimates û+

b are accurate. In the case that they are
not (e.g., as a result of loop closure) the true full mean µt

should be solved for via (17).

IV. DISCUSSION

A. Connection to Lu-Milios

The concept of a view-based map representation has
strong roots going back to a seminal paper by Lu and
Milios [9]. Their approach sidestepped difficulties associ-
ated with feature segmentation and representation by doing
away with an explicit feature-based representation of the
environment. Rather, their technique indirectly represented
a physical map via a collection of global robot poses
and raw scan data. To determine the global poses, they
formulated the nonlinear optimization problem as one of
estimating a set of global robot poses consistent with
the relative pose constraints obtained by scan matching
and odometry. They then solved this sparse nonlinear
optimization problem in an batch-iterative fashion. Our
Exactly Sparse Delayed State Filter (ESDSF) framework
essentially attempts to recursively solve the same problem.
Note though that in the ESDSF framework the nonlinear
relative pose constraints are only linearized once about the
current state when the measurement is incorporated via
(12) while in the noncausal Lu-Milios batch formulation



they are relinearized around the current best estimate of the
state at each iteration of the nonlinear optimization. This
implies that while the ESDSF solution can be performed
recursively, it will be more prone to linearization error.

B. Connection to Feature-Based SLAM

Another interesting theoretical connection involves re-
lating the delayed-state SLAM framework to feature-
based SLAM. In §II-B we saw that the feature-based
SLAM information matrix is naturally dense as a result
of marginalizing out the robot’s trajectory. On a similar
train-of-thought, we can view the off-diagonal elements
appearing in the delayed-state SLAM information matrix
as being a result of marginalizing out the landmarks.
Since landmarks are only ever locally observed, they only
create links to spatially close robot states. Therefore, each
time we eliminate a landmark, it only introduces new off-
diagonal elements into the information matrix linking all
robot states which observed that landmark. Interestingly,
this same type of constraint phenomenon also appears in
photogrammetry and in particular in large scale bundle ad-
justment techniques [30]. These techniques are based upon
a partitioned Levenberg-Marquardt algorithm which takes
advantage of the inherent sparsity between camera and
3D feature constraints in the reconstruction problem. Their
central component is based upon eliminating 3D-structure
equations to yield a coupled set of equations over camera
poses which they solve and then back-substitute to recover
the associated 3D-structure. Therefore, loosely speaking the
delayed-state information framework represents a recursive
linearized formulation of this same problem.

V. EXPERIMENTAL RESULT

This section presents an initial experimental result vali-
dating the sparseness of the delayed-state information filter
framework. Our application consists of a single camera
6 DOF SLAM implementation which uses a view-based
representation of the environment. This representation is
based upon storing a collection of images of the environ-
ment and estimating their associated robot states. Details
of our implementation can be found in [8], [31].

The experimental setup consisted of a downward-looking
digital still camera mounted to a moving underwater pose
instrumented ROV at the Johns Hopkins University Hy-
drodynamic Test Facility. Their vehicle is instrumented
with a typical suite of oceanographic dead-reckoning nav-
igation sensors capable of measuring heading, attitude,
XYZ bottom-referenced Doppler velocities, and a pressure
sensor for depth. The vehicle and test facility are also
equipped with a high frequency acoustic LBL system
which provides centimeter-level bounded error XY vehicle
positions used for validation purposes only. A simulated
seafloor environment was created by placing textured car-
pet, riverbed rocks, and landscaping boulders on the tank
floor and was appropriately scaled to match a rugged
seafloor environment with considerable 3D scene relief.

Fig. 3 shows the result of estimating the ROV delayed-
states associated with a 100 image sequence using a full

covariance EKF and sparse EIF. To benchmark compare
the results of these two filters, we employed the full state
recovery technique of (17) to obtain the state mean used for
linearizing (12) and (14). For this experiment the vehicle
started near the top-left corner of the plot at (-2.5,2.75) and
then drove a course consisting of two grid-based surveys,
one oriented SW to NE and the other W to E. The top
plot shows the spatial XY pose topology, 99.9% confidence
bounds, and link network of camera constraints. Green
links correspond to temporally consecutive images which
were successfully registered while red links correspond
to spatially registered image pairs. The bottommost plot
in this figure compares the densities associated with the
full EKF covariance matrix versus the EIF information
matrix. Note that while the EKF correlation matrix is
dense, the information matrix exhibits a sparse tridiagonal
structure with the number of off-diagonal elements being
linear in the number of camera measurements. In all there
are 305 camera constraints (90 temporal / 215 spatial)
and each delayed-state is a 12 vector consisting of 6
pose and 6 kinematic components. Therefore, 100 delayed-
states results in a 1200× 1200 information matrix con-
taining 122(100 + 2 · 99) + 62(2 · 215) = 58, 392 nonzero
elements as shown. We found the EKF and EIF solutions
to be numerically equivalent, and furthermore that the
EIF only required 1/6 the storage of the EKF for this
experiment.

VI. CONCLUSIONS

In conclusion, we showed that the feature-based SLAM
information matrix is naturally dense and illustrated that
this is a consequence of marginalizing out the robot’s
trajectory. This forces algorithms like SEIFs or TJTFs to
make approximations to keep the feature-based SLAM in-
formation matrix sparse. We then showed that the delayed-
state SLAM information matrix is exactly sparse with a
tridiagonal block structure due to the Markov property of
the process model. Furthermore, the number of nonzero off-
diagonal elements in the information matrix is linear in the
number of measured relative pose constraints. This sparse
information matrix structure allows for efficient full state
recovery via recently proposed multigrid SLAM methods.
We also presented a technique for sub-optimal partial state
recovery which allows motion prediction and navigation
measurement updates to be performed in constant time.

A remaining open issue with the delayed-state infor-
mation framework is to provide efficient access to prob-
abilities, (i.e., the covariance matrix), for tasks such as
proposing link hypotheses and detecting loop closure. This
issue is currently under investigation.
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Fig. 3. This figure contrasts the exact sparsity of the delayed-state
information matrix versus the density of the full covariance matrix; refer
to §V for details. (top) Spatial topology of a 100 image sequence of
underwater images collected from the JHU ROV. In all there are 305
camera constraints. (bottom) The covariance and information matrices
associated with the delayed-state topology, left and right respectively. For
the covariance matrix, all elements above a normalized correlation score of
0.1% are shown. The thresholded covariance matrix has 350,852 nonzero
elements while the information matrix has only 58,392. The covariance
matrix and information matrix are numerically equivalent, however the
information matrix is exactly sparse.
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