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Abstract—This paper shows results from our development of an
extended MATLAB image processing toolbox, which implements
some useful optical image processing and mosaicking algorithms
found in the literature. We surveyed and selected algorithms from
the field which showed promise in application to the underwater
environment. We then extended these algorithms to explicitly deal
with the unique constraints of underwater imagery in the building
of our toolbox. As such, the algorithms implemented include:

• contrast limited adaptive histogram specification (CLAHS)
to deal with the inherent nonuniform lighting in underwater
imagery.

• Fourier based methods for scale, rotation, and translation re-
covery which provide robustness against dissimilar image re-
gions.

• local normalized correlation for image registration to handle
the low-feature, unstructured environment of the seafloor.

• multiresolution pyramidal blending of images to form a com-
posite seamless mosaic without blurring or loss of detail near
image borders.

In this paper we highlight the mathematical formulation behind
each of these algorithms using consistent notation and a unified
framework. We depict some of our MATLAB toolbox results with
an assortment of underwater imagery.

Index Terms—Image processing, mosaicking, MATLAB.

I. INTRODUCTION

ONE aspect of our research here at the Deep Submergence
Laboratory of the Woods Hole Oceanographic Institution

is optical image processing and mosaicking. Production of the
high resolution, large area imagery of the seafloor required by
our end user community, (geologists, biologists, archaeologists,
. . . ) would be impossible were it not for the technique of pho-
tomosaicking whereby a large area image is assimilated from
tens to hundreds of smaller-footprint, overlapping images. The
propagation of visible light underwater suffers from rapid at-
tenuation and scattering, which in combination with a limited
camera-to-light separation available on most vehicle platforms,
places strong constraints on the ability to image large areas of
the seafloor optically. Special consideration must be given to
the unique constraints associated with the underwater environ-
ment.

Our research in underwater image processing and photomo-
saicking deals explicitly with these constraints. In this paper
we cover some successful techniques in the literature for image
processing and mosaicking which have been extended to deal
with unique peculiarities of the underwater environment. The
algorithms and order of sections presented in this paper are:

• contrast limited adaptive histogram specification
(CLAHS) to deal with the inherent nonuniform lighting in
underwater imagery.

• Fourier based methods for scale, rotation, and translation
recovery which provide robustness against dissimilar im-
age regions.

• local normalized correlation for image registration to
handle the low-feature, unstructured environment of the
seafloor.

• multiresolution pyramidal blending of images to form a
composite seamless mosaic without blurring or loss of de-
tail near image borders.

As MATLAB has evolved into a very common and standard
tool for rapidly prototyping and testing algorithms in the aca-
demic and scientific communities, we present results of our
recently developed MATLAB toolbox. This toolbox provides
extended image processing and mosaicking capabilities to the
standard MATLAB imaging toolbox. This toolbox is freely
available to the user community and can be obtained by con-
tacting the authors.

II. HISTOGRAM SPECIFICATION

Deep sea imaging requires that vehicles carry their own light
sources with them as ambient light is nonexistent. Differ-
ent power requirements for different vehicle architectures (i.e.
ROVs vs. AUVs) results in vastly different lighting patterns and
large differences in the amount of energy expended in lighting
the scenery. This, in conjunction with the rapid attenuation of
light underwater, often results in low-contrast, non-uniformly
lit imagery. The lighting artifacts present in the imagery pose an
additional challenge to the image registration process as many
conventional algorithms will “lock on” to these artifact inten-
sity gradients created by the vehicle lighting.

To compensate for the low-contrast, nonuniform illumina-
tion present in the raw imagery, we employ the technique of
contrast limited adaptive histogram specification (CLAHS) as a
preprocessing step. The basis of the technique is described in
[1] where it was first applied to low-contrast medical imagery.
The idea behind the technique is to first subdivide the original
image into equal area contextual regions. Each region is then
histogram equalized whereby a monotonically nondecreasing
gray level transform, g = T [f ], is determined for each region
which maps the local gray level histogram to an ideal gray level
distribution [2]. To limit the amount of contrast enhancement,
specifically in homogeneous regions, the concept of a clip limit
is used. The clip limit is defined as a multiple of the average
histogram contents. Defining a clip limit results in limiting the
contents of any individual histogram bin to contain at most the
clip limit multiple of the average histogram contents, excess



pixels are then uniformly distributed to the remaining bins. The
overall effect is to limit the slope of the cumulative histogram
which is used in the calculation of the gray level transform.

We’ve experimented with different ideal gray level distribu-
tions such as uniform, exponential, and Rayleigh distributions.
Our results seem to suggest that the Rayleigh distribution is
most suited to underwater imagery. Figures 1(a) and 1(b) de-
pict typical low-contrast, nonuniformly illuminated AUV im-
agery and the processed CLAHS results, respectively. Global
gray level histograms of the pre and post processed images are
also shown highlighting the increased effective use of the im-
age’s dynamic range.

III. FOURIER BASED IMAGE REGISTRATION

One of the fundamental tasks in photomosaicking is image
registration. Many methods exist with some of the most preva-
lent being: correlation based methods which use pixel values
directly, fast Fourier methods which use frequency domain in-
formation, and feature based methods which use low-level fea-
tures such as edges and corners.

Frequency domain methods approach the problem of image
registration from a signal processing perspective. The major
advantages of their approach are: (1) processing speed which
is gained through exploitation of the Fast-Fourier-Transform’s
computational efficiency, and (2) robustness to narrowband fre-
quency dependent noise such as low frequency shifts in mean
image intensity [3]. By transforming the original image coordi-
nates to a coordinate system where rotations and scaling appear
as shifts, we can make use of the Fourier phase shifting prop-
erty to recover image translations, scaling, and rotation [4]. Our
particular implementation for transforming coordinate systems
is based upon [5], but has been modified to use normalized cor-
relation for determination of image translations [6].

Translation Only

The underlying property that’s being exploited is the phase
shifting property of Fourier transforms. Consider two images
f1 and f2, which differ only by a translational offset

f2(x, y) = f1(x − x0, y − y0) (1)

Via the shifting property, their Fourier transforms are related by

F2(ω1, ω2) = F1(ω1, ω2)e
−j(ω1x0+ω2y0) (2)

The translational offset can be recovered by locating the im-
pulse associated with the inverse transform of the cross-power
spectrum of the two images

F2(ω1, ω2) · F1(ω1, ω2)
∗

‖F2(ω1, ω2) · F1(ω1, ω2)∗‖
= e−j(ω1x0+ω2y0) (3)

F
−1

= δ(x − x0, y − y0) (4)

Rotation Only

This same property can be exploited for images which are
rotated and scaled by representing them in a coordinate system

where scale and rotations appear as shifts. For example, when
f2 is a rotated version of f1

f2(x, y) = f1(x cos θ0 + y sin θ0,−x sin θ0 + y cos θ0) (5)

their Fourier transforms are related by

F2(ω1, ω2) = F1(ω1 cos θ0+ω2 sin θ0,−ω1 sin θ0+ω2 cos θ0) (6)

Using only the magnitudes of the Fourier transforms and con-
verting to polar coordinates, we see that the rotation can be rep-
resented as a shift

M2(ρ, θ) = M1(ρ, θ − θ0) (7)

Scaling Only

Similarly, when two images are related by a scale factor, a,
then their Fourier transforms are related by

F2(ω1, ω2) =
1

a2
F1(ω1/a, ω2/a) (8)

Taking the logarithm of the frequency axes results in the scale
appearing as a shift (ignoring the 1/a2 scale factor)

F2(log ω1, log ω2) = F1(log ω1 − log a, log ω2 − log a) (9)

Translation, Rotation, and Scaling

When translation, rotation, and scaling are all present be-
tween the two images, we see that representing the magnitudes
in a log-polar coordinate system results in

M2(ρ, θ) = M1(ρ/a, θ − θ0) (10)

M2(log ρ, θ) = M1(log ρ − log a, θ − θ0) (11)

Rotation and scaling can now both be recovered using the
Fourier phase shifting property. After recovery of those param-
eters, image f2 can be warped to compensate for the rotation
and scaling. Finally, the standard phase correlation technique
can be applied to recover the remaining translational offset be-
tween f1 and f2.

Implementation

The raw images are all first preprocessed using CLAHS to
minimize lighting effects present in the imagery. The image is
cosine windowed and then edge enhanced using a Laplacian of
Gaussian filter. Mapping of the Fourier magnitude from Carte-
sian to polar coordinates only requires the top half of the spectra
due to complex conjugate symmetry. Recovery of the transla-
tions θ and log a is achieved through normalized correlation of
the two log-polar magnitudes M1 and M2. The image M2 is
then rotated and scaled according to the results. Finally, the
warped M2 is normalized correlated with M1 to recover the
translational offsets.

The parameters used allow us to, theoretically, resolve ro-
tations of 0.3◦ and 0.44% change in scaling. Figure 2 shows
example underwater imagery from the Derbyshire data set and
the resulting warped imagery after recovery of the parameters.
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Fig. 1. (a) Original imagery collected by the AUV ABE acquired at a geological site of interest in the East Pacific Rise. (b) Adaptive histogram equalized
imagery. While this technique compensates very well for the nonuniform lighting pattern, it cannot (as seen in the lower right corner of the image) compensate
for parts of the image where the light intensity levels are of the order of the sensitivity of the camera. (c) Histogram of the original image. (d) Histogram of the
CLAHS processed image.

IV. LOCAL NORMALIZED CORRELATION

Normalized correlation is a practical measure of similarity
[3]. Normalized correlation of two signals is invariant to
local changes in mean and contrast. When two signals are
linearly related, their normalized correlation is 1, as seen in
Equation 12 below. When two signals are not linearly related,
but do contain similar spatial variations, normalized correlation
will still yield a value close to unity [7].

S[x, y; u, v] =

∑

i,j
(f [x + i, y + j] − fW ) · (g[x + u + i, y + v + j) − gW )

√

∑

i,j
(f [x + i, y + j] − fW )2

√

∑

i,j
(g[x + u + i, y + v + j) − gW )2

(12)

The lack of rich features in underwater imagery poses diffi-
cult challenges for indirect feature based methods, and experi-
mental evidence suggests that direct correlation based methods

yield good results. We use local normalized correlation surfaces
calculated for each pixel to determine a dense set of correspon-
dences between images. This set of dense correspondences is
then pruned by only considering pixels which have a concave
correlation surface as reliable matches (We fit a quadratic sur-
face near the correlation surface peak and analytically check for
concavity as a method of outlier rejection [8]).

Figure 3 displays mosaic results when images are mosaicked
together in a globally consistent manner utilizing all available
cross-linked image pair correspondences. Local normalized
correlation was used as the similarity measure for determining
point correspondences.

V. MULTIRESOLUTION PYRAMIDAL BASED BLENDING

Due to the rapid attenuation of light underwater, the only way
to get a large area view of the seafloor is to build up a photo-
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Fig. 2. Registration of underwater imagery from the Derbyshire data set using
Fourier based methods to recover scale, rotation, and translation. The recovered
parameters are θ0 = 1.2◦, scaling = 1.1567, x0 = 18, y0 = 18.

mosaic from smaller local images as seen in Figure 3. The mo-
saic technique is used to construct an image with a far larger
field of view and greater resolution than could be obtained with
a single photograph. However, once the mosaic is generated,
differences in image intensities due to image processing or ac-
quisition can lead to clearly visible borders between images in
the mosaic. A technical problem in image representation then,
is how to join image borders so that the boundary between them
is not visible?

Fig. 3. A sequence of images which was mosaicked together in a globally con-
sistent manner utilizing all available cross-linked image pair correspondences.
To obtain good registration, especially along edges, we must compensate for
lens radial distortion. The similarity metric used for point correspondence was
local normalized correlation. The mosaic is rendered as the average of the inten-
sities of overlapping pixels. To preserve mismatches, the results are presented
without blending.

The problem can be viewed as joining two surfaces at their
border, where the gray level values of the image I(x, y) rep-
resent the surface’s height above the (x, y) plane. The goal
is to perturb each surface near the border so that they join
smoothly without distorting the original surface features too
grossly. Many methods are based upon a weighted sum tech-
nique where the size of the transition zone is an important pa-
rameter; too small of a transition zone relative to feature sizes
results in the image border still being visible, albeit blurry,
while too large of a transition zone results in a double expo-
sure effect.

We implement a multiresolution pyramidal blending ap-
proach where the images to be blended are first decomposed
into different band-pass frequency components, merged sepa-
rately in each frequency band, and then reassembled into a sin-
gle seamless composite mosaic [9]. The idea behind this tech-
nique is that the transition zone is optimally matched for feature
sizes within each frequency band of the pyramid.

First, a Gaussian pyramid is constructed for each image
where the base level in the pyramid, G0, is the original image.
Each successive level in the pyramid is a low-pass filtered and
down sampled by factor of 2 version of the previous level, i.e

Gl[i, j] =
2

∑

m=−2

2
∑

n=−2

w[m,n]Gl−1[2i + m, 2j + n] (13)

where the 5 × 5 generating kernel, w[m,n], is subject to the
following four constraints:

1) For computational convenience, the kernel is separable,
i.e. w[m,n] = ŵ[m]ŵ[n].

2) The one-dimensional function ŵ[·] is symmetric.



3) ŵ[·] is normalized, i.e.
∑2

i=−2 ŵ[i] = 1.
4) Finally, each level l node must contribute the same total

weight to level l + 1 nodes resulting in the constraint:
ŵ[0] + 2ŵ[2] = 2ŵ[1].

Next, the different band-pass components are formed by gen-
erating the Laplacian pyramid. The Laplacian pyramid is gener-
ated from the Gaussian pyramid by expanding the image at the
next higher level in the pyramid to the resolution of the current
level and then subtracting them.

Ll[i, j] = Gl[i, j] − k
2

∑

m=−2

2
∑

n=−2

Gl+1[
i + m

2
,
j + n

2
] (14)

This results in each level of the Laplacian pyramid containing
a separate one-octave, band-pass component of the original im-
age. The two Laplacian pyramids, one for each image, are then
merged at each level of the pyramid. The resulting seamless
mosaic is then constructed by compressing the merged Lapla-
cian pyramid via

Imerged =

N
∑

l=0

Ll,lmerged
(15)

where N is the number of levels in the pyramid and the notation
Ll,l implies expansion of the level Ll, l times, up to the reso-
lution of the base level, L0. Figure 4 shows before and after
results of the blending of a two image mosaic.

VI. CONCLUSIONS

This paper has presented results from our efforts to develop
an extended MATLAB image processing and mosaicking tool-
box. Proven algorithms from the land-based literature have
been adapted and applied to the unique challenges of the under-
water environment. The collection of algorithms presented in
this paper group nicely into a unified framework for underwater
imaging and mosaicking work. Our hierarchical framework of
contrast limited adaptive histogram specification, Fourier based
methods for image registration, local normalized correlation
for a similarity measure, and multiresolution pyramidal based
blending compose a core suite of functionality in a unified tool-
box.
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