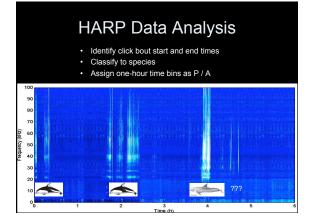
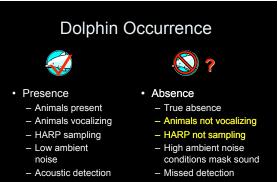
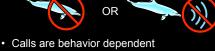
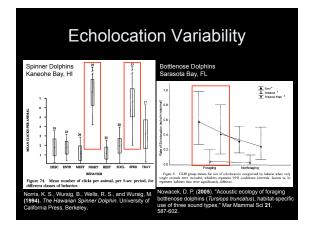
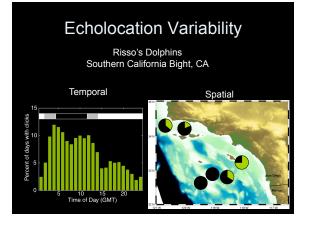

Building Delphinid Habitat Models with Passive Acoustic Monitoring Data



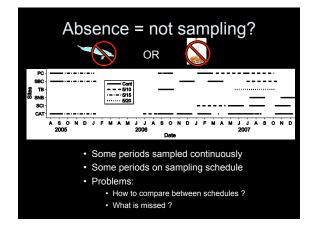


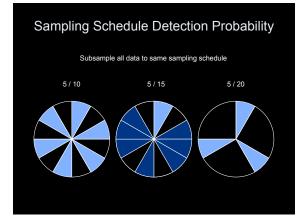


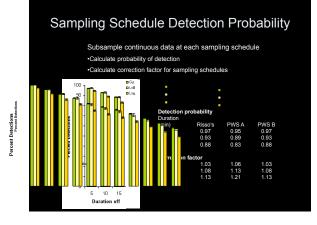




Absence = not vocalizing?

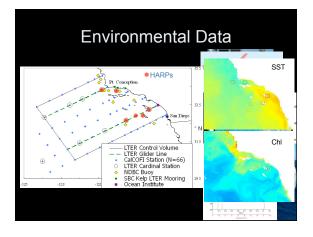

- Not necessarily vital function
- May not be produced by all population members
- May vary in temporal production
- May vary in spatial production
- e.g. whale song
- · But these do not hold for dolphin echolocation





Assumptions

- Risso's and Pacific white-sided dolphin click
 most when foraging
- · Dolphins need to forage daily
- Quality foraging habitat can be represented by the amount of time echolocating dolphins spend in it
- Absences due to high noise or observer are not biased by habitat conditions



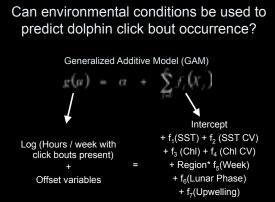
Temporal Resolution: Autocorrelation & Matching datasets

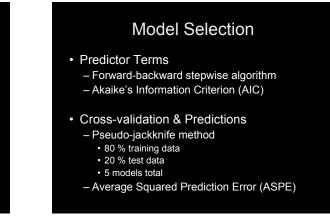
- Dolphin sampling
 - Minimum of hours per day
 - Hours per week best
- Environmental sampling
 - Variable scales
 - Daily
 - Weekly
 - Monthly
 - Quarterly

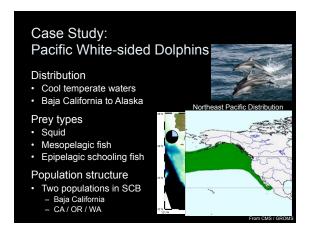
Satellite Telemtry Data

Pros

- Readily available to management
- Appropriate temporal scale
- Weekly scale ideal for coverage and autocorrelation

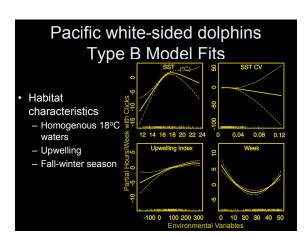

Cons

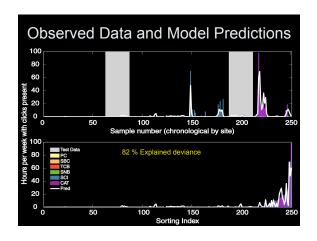

- No depth information
- Cannot sample
- zooplankton
- Cannot sample nekton


Summary of Data Included in Model

• Dependent variable

- Hours per week with dolphin clicks present
- Correction factors
 - HARP sampling schedule correction
 - Hours per week with recordings
- · Independent variables
 - Satellite Telemetry (SST & Chl)
 - Upwelling Index
 - Temporal variables Week and Lunar Phase index





Cross-validation Model Comparison										
	AIC	ASPE	Upwelling	Moon Phase	Chl residual	ChI CV	SST mean	SST CV	Week	
Model 1	367.09	500.31	s3	-	-	-	-	s3	p2	
Model 2	563.13	5.39	s3	-	-	-	s3	s3	p2	
Model 3	695.75	5.65	s3	s2			s3	s3	p2	
Model 4	529.54	111.00	-	L	L		L	s3	L	
Model 5	507.25	30.57	-	L	s3		L	s3	p2	

% Models including term

60 60 40 0 80 100 100

Case Study Conclusions

- Fall-winter season, increased upwelling, and homogenous 18°C waters
- Large confidence intervals at high SST and SST-CV
- High explained deviance compared to visual studies

Modeling Summary

- Modeling hours per week with calls provides quantitative measure of habitat importance
- Calculating detection probability effective for handling variability in sampling schedule
- Ensure appropriate temporal resolution for all model variables and consider autocorrelation

Issues

- Clicks are also used in communication and navigation
- Models represent time spent in habitat, but do not indicate number of animals
- Dolphins may produce additional unknown/unidentified click types
- Mechanisms Prey availability? Predator avoidance? Competitive interactions?

Future work

- Click production and behavior comparison
- · Quantify animals based on calls
- Develop models with in-situ data for comparison
- · Include measure of prey abundance
- Include competing species and predators
- Expand spatial coverage

