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Abstract

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase
in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed pres-
ence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence dat
are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling
species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple
and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In
order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a
lowland species of slottBradypus variegatus, and a small montane murid rodemicroryzomys minutus. \We compared Maxent
predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction
(GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining
localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline
maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver
operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating
better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present
form for many applications with presence-only datasets, and merits further research and development.
© 2005 Elsevier B.V. All rights reserved.
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nigue in analytical biology, with applications in con- (Hutchinson, 1957)The species’ realized niche may
servation and reserve planning, ecology, evolution, be smaller than its fundamental niche, due to human
epidemiology, invasive-species management and otherinfluence, biotic interactions (e.g., inter-specific com-
fields (Corsi et al., 1999; Peterson and Shaw, 2003; petition, predation), or geographic barriers that have
Peterson et al., 1999; Scott et al., 2002; Welk et hindered dispersal and colonization; such factors may
al., 2002; Yom-Tov and Kadmon, 1998jometimes prevent the species from inhabiting (or even encoun-
both presence and absence occurrence data are availtering) conditions encompassing its full ecological po-
able for the development of models, in which case tential(Pulliam, 2000; Anderson and Manez-Meyer,
general-purpose statistical methods can be used (for an2004) We assume here that occurrence localities are
overview of the variety of techniques currently in use, drawn from source habitat, rather than sink habitat,
seeCorsi et al., 2000; Elith, 2002; Guisan and Zim- which may contain a given species without having the
merman, 2000; Scott et al., 200Blowever, while vast  conditions necessary to maintain the population with-
stores of presence-only data exist (particularly in nat- out immigration; this assumption is less realistic with
ural history museums and herbaria), absence data arehighly vagile taxgPulliam, 2000) By definition, then,
rarely available, especially for poorly sampled tropical environmental conditions at the occurrence localities
regions where modeling potentially has the most value constitute samples from the realized niche. A niche-
for conservatior{Anderson et al., 2002; Ponder et al., based model thus represents an approximation of the
2001; Sobewn, 1999) In addition, even when absence species’ realized niche, in the study area and environ-
data are available, they may be of questionable value mental dimensions being considered.

in many situationgAnderson et al., 2003Modeling If the realized niche and fundamental niche do not
techniques thatrequire only presence data are thereforefully coincide, we cannot hope for any modeling al-
extremely valuabléGraham et al., 2004) gorithm to characterize the species’ full fundamental
niche: the necessary information is simply not present
1.1. Niche-based models from presence-only data in the occurrence localities. This problem is likely ex-

acerbated when occurrence records are drawn from too

We are interested in devising a model of a species’ small a geographic area. In a larger study region, how-
environmental requirements from a set of occurrence ever, spatial variation exists in community composi-
localities, together with a set of environmental vari- tion (and, hence, in the resulting biotic interactions)
ables that describe some of the factors that likely as well as in the environmental conditions available to
influence the suitability of the environment for the the species. Therefore, given sufficient sampling effort,
species(Brown and Lomolino, 1998; Root, 1988) modeling in a study region with a larger geographic
Each occurrence locality is simply a latitude—longitude extent is likely to increase the fraction of the funda-
pair denoting a site where the species has been ob-mental niche represented by the sample of occurrence
served; such georeferenced occurrence records ofterlocalities(Peterson and Holt, 2003nd is preferable.
derive from specimens in natural history museums and In practice, however, the departure between the fun-
herbaria(Ponder et al., 2001; Stockwell and Peterson, damental niche (a theoretical construct) and realized
2002a) The environmental variables in GIS format all niche (which can be observed) of a species will remain
pertain to the same geographic area, the study area,unknown.
which has been patrtitioned into a grid of pixels. The Although a niche-based model describes suitabil-
task of a modeling method is to predict environmen- ity in ecological space, it is typically projected into
tal suitability for the species as a function of the given geographic space, yielding a geographic area of pre-
environmental variables. dicted presence for the species. Areas that satisfy the

A niche-based model represents an approximation conditions of a species’ fundamental niche represent
of a species’ ecological niche in the examined envi- its potential distribution, whereas the geographic ar-
ronmental dimensions. A species’ fundamental niche eas it actually inhabits constitute its realized distribu-
consists of the set of all conditions that allow for its tion. As mentioned above, the realized niche may be
long-term survival, whereas its realized niche is that smaller than the fundamental niche (with respect to
subset of the fundamental niche thatit actually occupies the environmental variables being modeled), in which
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case the predicted distribution will be smaller than the influence species distributions at the micro-scale. The
full potential distribution. However, to the extent that choice of variables to use for modeling also affects
the model accurately portrays the species’ fundamen- the degree to which the model generalizes to regions
tal niche, the projection of the model into geographic outside the study area or to different environmental
space will represent the species’ potential distribution. conditions (e.g., other time periods). This is important
Whether or notamodel captures aspecies’ full niche for applications such as invasive-species management
requirements, areas of predicted presence will typically (e.g.,Peterson and Robins, 200&8nd predicting the
be larger than the species’ realized distribution. Due impact of climate change (e.grhomas et al., 2004
to many possible factors (such as geographic barriers Bioclimatic and soil-type variables measure availabil-
to dispersal, biotic interactions, and human modifica- ity of the fundamental primary resources of light, heat,
tion of the environment), few species occupy all areas water and mineral nutrientéMackey and Linden-
that satisfy their niche requirements. If required by the mayer, 2001) Their impact, as measured in one study
application at hand, the species’ realized distribution area or time frame, should generalize to other situa-
can often be estimated from the modeled distribution tions. On the other hand, variables representing latitude
through a series of steps that remove areas that theor elevation will not generalize well; although they are
species is known or inferred not to inhabit. For ex- correlated with variables that have biophysical impact
ample, suitable areas that have not been colonized dueon the species, those correlations vary over space and
to contingent historical factors (e.g., geographic barri- time.
ers) can be excludgdPeterson et al., 1999; Anderson, A number of other serious potential pitfalls may af-
2003) Similarly, suitable areas not inhabited due to bi- fect the accuracy of presence-only modeling; some of
otic interactions (e.g., competition with closely related these also apply to presence—absence modeling. First,
morphologically similar species) can be identified and occurrence localities may be biased. For example, they
removed from the predictiofAnderson et al., 2002) are often highly correlated with the nearby presence
Finally, when a species’ present-day distribution is de- of roads, rivers or other access condfeddy and
sired, such as for conservation purposes, a current land-Davalos, 2003)The location of occurrence localities
cover classification derived from remotely sensed data may also exhibit spatial auto-correlation (e.qg., if a re-
can be used to exclude highly altered habitats (e.qg., re-searcher collects specimens from several nearby local-
moving deforested areas from the predicted distribution ities in a restricted area). Similarly, sampling intensity
of an obligate-forest specieAnderson and Mamez- and sampling methods often vary widely across the
Meyer, 2004. study aregAnderson, 2003)In addition, errors may
There are implicit ecological assumptions in the existinthe occurrence localities, be it due to transcrip-
set of environmental variables used for modeling, tion errors, lack of sufficient geographic detail (espe-
so selection of that set requires great care. Temporalcially in older records), or species misidentification.
correspondence should exist between occurrenceFrequently, the number of occurrence localities may
localities and environmental variables; for example, be too low to estimate the parameters of the model re-
a current land-cover classification should not be used liably (Stockwell and Peterson, 2002l8imilarly, the
with occurrence localities that derive from museum set of available environmental variables may not be
records collected over many decad@siderson and  sufficient to describe all the parameters of the species’
Martinez-Meyer, 2004)Secondly, the variables should  fundamental niche that are relevant to its distribution at
affect the species’ distribution at the relevant scale, the grain of the modeling task. Finally, errors may be
determined by the geographic extent and grain of the present in the variables, perhaps due to errors in data
modeling task(Pearson et al., 2004Jor example, manipulation, or due to inaccuracies in the climatic
using the terminology oMackey and Lindenmayer models used to generate climatic variables, or inter-
(2001) climatic variables such as temperature and pre- polation of lower-resolution data. In sum, determining
cipitation are appropriate at global and meso-scales; and possibly mitigating the effects of these factors rep-
topographic variables (e.qg., elevation and aspect) likely resent worthy topics of research for all presence-only
affect species distributions at meso- and topo-scales; modeling techniques. With these caveats, we proceed
and land-cover variables like percent canopy cover to introduce a modeling approach that may prove use-
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ful whenever the above concerns are adequately ad-generalized additive models (GLM and GAM), in the

dressed. absence of interactions between variables, additivity
of the model makes it possible to interpret how each
1.2. Maxent environmental variable relates to suitabil{yudik et

al., 2004; Phillips et al., 2004}5) Over-fitting can be

Maxent is a general-purpose method for making avoided by using:-regularization (Sectio.1.2. (6)
predictions or inferences from incomplete information. Because dependence of the Maxent probability distri-
Its origins lie in statistical mechani¢daynes, 1957) bution on the distribution of occurrence localities is ex-
and it remains an active area of research with an Annual plicit, there is the potential (in future work) to address
Conference, Maximum Entropy and Bayesian Meth- the issue of sampling bias formally, as Zadrozny
ods, that explores applications in diverse areas such(2004) (7) The output is continuous, allowing fine dis-
as astronomy, portfolio optimization, image recon- tinctions to be made between the modeled suitability
struction, statistical physics and signal processing. We of different areas. If binary predictions are desired, this
introduce it here as a general approach for presence-allows great flexibility in the choice of threshold. If the
only modeling of species distributions, suitable for all application is conservation planning, the fine distinc-
existing applications involving presence-only datasets. tions in predicted relative environmental suitability can
The idea of Maxent is to estimate a target probability be valuable to reserve planning algorithms. (8) Maxent
distribution by finding the probability distribution of  could also be applied to species presence/absence data
maximum entropy (i.e., that is most spread out, or by using a conditional model (asBerger etal., 1996
closest to uniform), subject to a set of constraints that as opposed to the unconditional model used here. (9)
represent our incomplete information about the target Maxent is a generative approach, rather than discrim-
distribution. The information available about the target inative, which can be an inherent advantage when the
distribution often presents itself as a set of real-valued amount of training data is limited (see Sect@n.4.
variables, called “features”, and the constraints are that (10) Maximum entropy modeling is an active area of re-
the expected value of each feature should match its em-search in statistics and machine learning, and progress
pirical average (average value for a set of sample pointsin the field as a whole can be readily applied here. (11)
taken from the target distribution). When Maxentis ap- As a general-purpose and flexible statistical method,
plied to presence-only species distribution modeling, we expect that it can be used for all the applications
the pixels of the study area make up the space on whichoutlined in Sectiorl above, and at all scales.
the Maxent probability distribution is defined, pixels Some drawbacks of the method are: (1) It is not as
with known species occurrence records constitute the mature a statistical method as GLM or GAM, so there
sample points, and the features are climatic variables, are fewer guidelines for its use in general, and fewer
elevation, soil category, vegetation type or other methods for estimating the amount of error in a predic-
environmental variables, and functions thereof. tion. Our use of an “unconditional” model (cf. advan-

Maxent offers many advantages, and a few draw- tage 8) is rare in machine learning. (2) The amount of
backs; a comparison with other modeling methods will regularization (see Secti@l.2 requires further study
be made in Sectio.1.4 after the Maxent approach (e.g., sehillips et al., 2004 as does its effectiveness
is described in detail. The advantages include the fol- in avoiding over-fitting compared with other variable-
lowing: (1) It requires only presence data, together selection methods (for alternatives, seeisan et al.,
with environmental information for the whole study 20032. (3) It uses an exponential model for probabil-
area. (2) It can utilize both continuous and categorical ities, which is not inherently bounded above and can
data, and canincorporate interactions between different give very large predicted values for environmental con-
variables. (3) Efficient deterministic algorithms have ditions outside the range presentin the study area. Extra
been developed that are guaranteed to converge to thecare is therefore needed when extrapolating to another
optimal (maximum entropy) probability distribution. study area or to future or past climatic conditions (for
(4) The Maxent probability distribution has a concise example, feature values outside the range of values in
mathematical definition, and is therefore amenable to the study area should be “clamped”, or reset to the ap-
analysis. For example, as with generalized linear and propriate upper or lower bound). (4) Special-purpose
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software is required, as Maxent is not available in stan- absences. Itis similar to principal components analysis,

dard statistical packages. involving a linear transformation of the environmental
space into orthogonal “marginality” and “specializa-

1.3. Existing approaches for presence-only tion” factors. Environmental suitability is then modeled

modeling as a Manhattan distance in the transformed space.

As afirst step in the evaluation of Maxent, we chose

Many methods have been used for presence-only to compare it with GARP, as the latter has recently
modeling of species distributions, and we only attempt seen extensive use in presence-only studiesiérson,
here to give a broad overview of existing methods. 2003; Joseph and Stockwell, 2002; Peterson and Kluza,
Some methods use only presences to derive a model.2003; Peterson and Robins, 2003; Peterson and Shaw,
BIOCLIM (Bushy, 1986; Nix, 1986predicts suitable =~ 2003 and references therein). While further stud-
conditions in a “bioclimatic envelope”, consisting of ies are needed comparing Maxent with other widely
a rectilinear region in environmental space represent- used methods that have been applied to presence-only
ing the range (or some percentage thereof) of observeddatasets, such studies are beyond the scope of this pa-
presence values in each environmental dimension. Sim-per.
ilarly, DOMAIN (Carpenter etal., 1998)es a similar-
ity metric, where a predicted suitability index is given
by computing the minimum distance in environmental 2. Methods
space to any presence record.

Other techniques use presence and background2.l. Maxent details
data. General-purpose statistical methods such as
generalized linear models (GLMs) and generalized 2.1.1. The principle
additive models (GAMs) are commonly used for When approximating an unknown probability dis-
modeling with presence—absence datasets. Recentlyfribution, the question arises, what is the best approx-
they have been applied to presence-only situations byimation? E.T. Jaynes gave a general answer to this
taking a random sample of pixels from the study area, question: the best approach is to ensure that the ap-
known as “background pixels” or “pseudo-absences”, proximation satisfies any constraints on the unknown
and using them in place of absences during model- distribution that we are aware of, and that subject to
ing (Ferrier and Watson, 1996; Ferrier et al., 2002) those constraints, the distribution should have max-
A sample of the background pixels can be chosen imum entropy(Jaynes, 1957)This is known as the
purely at random (sometimes excluding sites with maximum-entropy principle. For our purposes, the un-
presence record§raham et al., 2004 or from sites known probability distribution, which we denote is
where sampling is known to have occurred or from a over a finite seX, (which we will later interpret as the
model of such siteZaniewski et al., 2002; Engler et  set of pixels in the study area). We refer to the individ-
al., 2004) Similarly, a Bayesian approad/spinall, ual elements ok as points. The distribution assigns
1992) proposed modeling presence versus a randoma non-negative probabilityt(x) to each pointr, and
sample. The Genetic Algorithm for Rule-Set Predic- these probabilities sum to 1. Our approximatioras
tion (Stockwell and Noble, 1992; Stockwell and Peters, also a probability distribution, and we denot&itThe
1999)uses an artificial-intelligence framework called entropy of7 is defined as
genetic algorithms. It produces a set of positive and
negative rules that together give a binary prediction; g (z) = — Z;[(x) In 7(x)
rules are favored in the algorithm according to their ex
significance (compared with random prediction) based
on a sample of background pixels and presence pixels.where In is the natural logarithm. The entropy is non-
Environmental-Niche Factor Analysis (ENFHjrzel negative and is at most the natural log of the number
et al., 2002 uses presence localities together with of elements inX. Entropy is a fundamental concept
environmental data for the entire study area, without in information theory: in the paper that originated that
requiring a sample of the background to be treated like field, Shannon (1948&Jescribed entropy as “a measure
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of how much ‘choice’ is involved in the selection of an
event”. Thus a distribution with higher entropy involves

more choices (i.e., it is less constrained). Therefore,
the maximum entropy principle can be interpreted as

S.J. Phillips et al. / Ecological Modelling 190 (2006) 231-259

served empirically, i.e.

alfil = 7l fils 1)

It turns out that the mathematical theory of convex

for each featuref;

saying that no unfounded constraints should be placed qajity can be useDella Pietra et al., 199%p show

on 7, or alternatively,

The fact that a certain probability distribution maxi-

that this characterization uniquely determirfgsand
thatz has an alternative characterization, which can be
described as follows. Consider all probability distribu-

mizes entropy subject to certain constraints represent-tions of the form

ing our incomplete information, is the fundamental
property which justifies use of that distribution for
inference; it agrees with everything that is known,
but carefully avoids assuming anything that is not
known (Jaynes, 1990)

2.1.2. A machine learning perspective

The maximum entropy principle has seen recent
interest in the machine learning community, with a
major contribution being the development of effi-
cient algorithms for finding the Maxent distribution
(seeBerger et al., 199€or an accessible introduction
andRatnaparkhi, 1998r a variety of applications and

a favorable comparison with decision trees). The ap- 7[—In(g)]

proach consists of formalizing the constraints on the
unknown probability distributionr in the following

way. We assume that we have a set of known real-

valued functionsfy, . .., f, onX, known as “features”
(which for our application will be environmental vari-

exf(x)
Zy

q(x) = @
wherel is a vector of: real-valued coefficients or fea-
ture weights f denotes the vector of allfeatures, and
Z, is a normalizing constant that ensures fhasums

to 1. Such distributions are known as Gibbs distribu-
tions. Convex duality shows that the Maxent probabil-
ity distribution 77 is exactly equal to the Gibbs prob-
ability distribution ¢, that maximizes the likelihood
(i.e., probability) of then sample points. Equivalently,

it minimizes the negative log likelihood of the sample
points

®3)

which can also be written I, — 2 37 & - f(x)
and termed the “log loss”.

As described so far, Maxent can be prone to over-
fitting the training data. The problem derives from the

ables or functions thereof). We assume further that the fact that the empirical feature means will typically not

information we know about is characterized by the
expectations (averages) of the features undeétere,
each featuref; assigns a real valug;(x) to each point
x in X. The expectation of the featurg underr is
defined asy .y 7(x) f;j(x) and denoted byt[ f;]. In
general, for any probability distributignand function
f, we use the notatiop[ /] to denote the expectation
of funderp.

The feature expectationg f;] can be approximated
using a set of sample poinis, ..., x, drawn inde-
pendently fromX (with replacement) according to the
probability distributionz. The empirical average of;
is 1 5™ | f;(x;), which we can write a&[ f;] (where
7t is the uniform distribution on the sample points), and
use as an estimate of f;]. By the maximum entropy
principle, therefore, we seek the probability distribu-
tion 7 of maximum entropy subject to the constraint
that each featur¢; has the same mean undeas ob-

equal the true means; they will only approximate them.
Therefore the means undeishould only be restricted
to be close to their empirical values. One way this can
be done is to relax the constraint(h) above(Dudik

et al., 2004)replacing it with

1ZLfi] = =Lfill < B (4)

for some constanis;. This also changes the dual char-
acterization, resulting in a form df;-regularization:
the Maxent distribution can now be shown to be the
Gibbs distribution that minimizes

A[—In(g)] + D _ BjlAjl
J

for each featuregf;

®)

where the first term is the log loss (as(i8) above),
while the second term penalizes the use of large
values for the weights ;. Regularization forces Max-
ent to focus on the most important features, dnd
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regularization tends to produce models with few non-
zero) ; values(Williams, 1995) Such models are less
likely to overfit, because they have fewer parameters;
as a general rule, the simplest explanation of a phe-
nomenon is usually best (the principle of parsimony,
Occam’s Razor). Note thdh regularization has also
been applied to GLM/GAMSs, and is called the “lasso”
in that context Guisan et al., 2002nd references
therein).

This maximum likelihood formulation suggests a
natural approach for finding the Maxent probability
distribution: start from the uniform probability distri-
bution, forwhichk = (0, .. ., 0), then repeatedly make
adjustments to one or more of the weightsin such
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and record 1 if the species is present there, and 0 other-
wise. If we denote the response variable,dasen under

this sampling strategy; is the probability distribution
p(x|y = 1). By applying Bayes’ rule, we get thatis
proportional to probability of occurrence(y = 1|x),
although with presence-only data we cannot determine
the constant of proportionality.

However, most presence-only datasets derive from
surveys where the data modelis much less well-defined
that the idealized model presented above. The various
sampling biases described in Secti@eriously violate
this data model. In practice, then(andr) can be more
conservatively interpreted as a relative index of envi-
ronmental suitability, where higher values represent a

a way that the regularized log loss decreases. Regular-prediction of better conditions for the species (similar

izedlog loss can be shownto be a convex function of the
weights, so no local minima exist, and several convex
optimization methods exist for adjusting the weights in

a way that guarantees convergence to the global min-

imum (see SectioR.2 for the algorithm used in this
study).

The above presentation describes an “uncondi-
tional” maximum entropy model. “Conditional” mod-
els are much more common in the machine learning
literature. The task of a conditional Maxent model is
to approximate a joint probability distribution(x, y)
of the inputsx and output labe). Both presence and
absence data would be required to train a conditional
model of a species’ distribution, which is why we use
unconditional models.

2.1.3. Application to species distribution modeling

Austin (2002)examines three components needed
for statistical modeling of species distributions: an eco-
logical model concerning the ecological theory being
used, a data model concerning collection of the data,
and a statistical model concerning the statistical the-
ory. Maxent is a statistical model, and to apply it to
model species distributions successfully, we must con-
sider how it relates to the two other modeling com-
ponents (the data model and ecological model). Using
the notation of Sectio2.1.2 we define the seX to
be the set of pixels in the study area, and interpret the

recorded presence localities for the species as sample

pointsx, ..., x, taken from an unknown probability

distributionz. The data model consists of the method
by which the presence localities were collected. One
idealized sampling strategy is to pick a random pixel,

to the relaxed interpretation of GLMs with presence-
only data inFerrier et al. (2002)

The critical step in formulating the ecological model
is defining a suitable set of features. Indeed, the con-
straints imposed by the features represent our ecologi-
cal assumptions, as we are asserting that they represent
all the environmental factors that constrain the geo-
graphical distribution of the species. We consider five
feature types, described Dudik et al. (2004) We did
not use the fourth in our present study, as it may require
more data than were available for our study species.

1. A continuous variablg¢is itself a “linear feature”.

It imposes the constraint ohthat the mean of the
environmental variablez[ f], should be close to its
observed value, i.e., its mean on the sample locali-
ties.

The square of a continuous variapiea “quadratic
feature”. When used with the corresponding linear
feature, itimposes the constraint srthat the vari-
ance of the environmental variable should be close
to its observed value, since the variance is equal to
#[ £2 — #[ f1%. It models the species’ tolerance for
variation from its optimal conditions.

The product of two continuous environmental vari-
ablegandgis a “product feature”. Together with the
linear features fof andg, it imposes the constraint
that the covariance of those two variables should
be close to its observed value, since the covariance
is 7] fg] — 7[ f]17[g]. Product features therefore in-
corporate interactions between predictor variables.
Foracontinuous environmental variabke“thresh-

old feature” is equal to 1 whefis above a given

2.

3.

4.
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threshold, and 0 otherwise. It imposes the following restrict our discussion téy-regularized unconditional
constraint: the proportion of that has values fgf Maxent, as described in Secti@rl.2
above the threshold should be close to the observed = Theoretically, Maxent is most similar to GLMs and
proportion. All possible threshold features fdo- GAMs. In what follows, we use the terminologyéée
gether allow Maxent to model an arbitrary response and Mitchell (1991) A frequently-used GLM is the
curve of the species foas any smooth functioncan  Guassian logit model, in which the logit of the predicted
be approximated by a linear combination of thresh- probability of occurrence is
old functions. 2 2

5. For a categorical environmental variable that takes ¢ T Brfa(x) + 1 fil)” 4 Bu fu(x) + Y S )
on valuesv;...v, we usek “binary features”, (6)
where theith feature is 1 wherever the variable
equalsv;, and 0 otherwise. As with threshold fea- Where thef; are environmental variables, g; and
tures, these binary features constrain the proportion ¥; are fitted coefficients, and the logit function is de-

of 7 in each category to be close to the observed fined by logit(p) = In(¢%;). The expression if6) is
proportion. the same form as the log (rather than logit) of the prob-

ability of the pixelx in a Maxent model with linear

For each of these feature types, the Corresponding and quadratic features. A common method for mod-
regu|arization parametej'j governs how close the ex- eling interactions between variables in a GLM is to
pectation undeft is required to be to the observed create product variables, which is analogous to the use
value; without regularization, they are required to be ©f product features in Maxent.
equal (Sectior2.1.9. The above list of features types In the same way, if probability of occurrence is mod-
is not exhaustive, and additional feature types could be €led with a GAM using a logit link function, the logit
derived from the same environmental variables. The Of the predicted probability has the form
features used should be those that likely constrain the
geographic distribution of the species. 81(f1(x)) + ... + gn(fu(x))

The applicability of the maximum entropy prin-
ciple to species distributions is supported by ther- where thef; are again environmental variables. The
modynamic theories of ecological procesgé®ki, are smooth functions fit by the model, with the amount
1989; Schneider and Kay, 1994fhe second law  of smoothing controlled by a width parameter. This is
of thermodynamics specifies that in systems with- the same form as the log probability of the pixeh a
out outside influences, processes move in a direction Maxent model with threshold features, and regulariza-
that maximizes entropy. Thus, in the absence of in- tion has an analogous effect to smoothing on the oth-
fluences other than those included as constraints inerwise arbitrary functiong;. In both cases, the shape
the model, the geographic distribution of a species of the response curve to each environmental variable is
will indeed tend toward the distribution of maximum determined by the data.

entropy. Despite these similarities, important differences
exist between GLM/GAMs and Maxent, causing them
2.1.4. Relationships to other modeling approaches to make different predictions. When GLM/GAMs

Maxent has strong similarities to some existing are used to model probability of occurrence, absence
methods for modeling species distributions, in partic- data are required. When applied to presence-only
ular, generalized linear models (GLMs), generalized data, background pixels must be used instead of true
additive models (GAMs) and machine learning meth- absenceqFerrier and Watson, 1996; Ferrier et al.,
ods such as Bayesian approaches and neural networks2002) However, the interpretation of the result is less
GLMs, GAMs, Bayesian approaches and neural net- clear-cut—it must be interpreted as a relative index of
works are all broad classes of techniques, and we referenvironmental suitability. In contrast, Maxent models
here only to the way they have been applied to presence-a probability distribution over the pixels in the study
only modeling of species distributions. Similarly, Max- region, and in no sense are pixels without species
ent generally refers to a class of techniques, but we records interpreted as absences. In addition, Maxent
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is a generative approach, whereas GLM/GAMs are ability is typically extremely small. Although these
discriminative, and generative methods may give “raw” probabilities are an optional output, by default
better predictions when the amount of training data is our software presents the probability distribution in an-
small (Ng and Jordan, 2001Jor a joint probability other form that is easier to use and interpret, namely
distribution p(x, y), a discriminative classifier models a “cumulative” representation. The value assigned to a
the posterior probabilityp(y|x) directly, in order to pixel is the sum of the probabilities of that pixel and all
choose the most likely label for given inputsx. other pixels with equal or lower probability, multiplied
Typically, a generative classifier models the distribu- by 100to give a percentage. The cumulative representa-
tion p(x, y) or p(x|y), and relies on Bayes’ rule to tioncan be interpreted as follows: if we resample pixels
determinep(y|x). Our unconditional Maxent models according to the modeled Maxent probability distribu-
are generative: we model a distributip(x|y = 1). tion, then% of the resampled pixels will have cumula-
Maxent shares with other machine learning methods tive value oft or less. Thus, if the Maxent distribution
an emphasis on probabilistic reasoning. Regulariza- 7 is a close approximation of the probability distribu-
tion, which penalizes the use of large values of model tion x that represents reality, the binary model obtained
parameters, can be interpreted as the use of a Bayesiafy setting a threshold of will have approximately
prior (Williams, 1995) However, Maxent is quite dif- % omission of test localities and minimum predicted
ferent from the particular Bayesian species modeling area among all such models (cf. the “minimal predicted
approach ofAspinall (1992) The latter approach is  area” evaluation measure Bhgler et al. (2009) This
known as “naive Bayes” in the machine learning liter- provides a theoretical foundation that aids in the selec-
ature, and assumes independence of the environmentation of a threshold when a binary prediction is required.
variables. This assumption is frequently not met for Our Maxent implementation has a straightforward
environmental data. graphical user interfac&{g. 1). It also has a command-
The data requirements of Maxent are closestto thoseline interface, allowing it to be run automatically
of environmental niche factor analysis (ENFA), which from scripts for batch processing. It is written in
also uses presence data in combination with environ- Java, so it can be used on all modern comput-
mental data for the whole study area (although both ing platforms, and is freely available on the world-
could use only a random sample of background pixels wide web athttp://www.cs.princeton.edw/schapire/

to improve running time). maxent The user-specified parameters and their
default values (which we used in all runs de-

2.2. A Maxent implementation for modeling scribed below) are: convergence thresheld0—>,

species distributions maximum iterations= 1000, regularization valug =

104, and use of linear, quadratic, product and binary

In order to make the Maxent method available for features. The first two parameters are conservative val-
modeling species geographic distributions, we imple- ues that allow the algorithm to get close to conver-
mented an efficient algorithm together with a choice of gence. The small value ¢fhas minimal effect on the
feature types that are well suited to the task. Ourimple- prediction but avoids potential numerical difficulties
mentation uses a sequential-update algoribodik et by keepingi values from tending to infinity; how to
al., 2004)hat iteratively picks a weight; and adjusts ~ choose the best regularization parameters is a topic of
it so as to minimize the resulting regularized log loss. ongoing research (s&udik et al. (2004).
The algorithm is deterministic, and is guaranteed to
conV(_erge to the Maxent prObablllty_ distribution. T_he "1 Alater version of the software, Version 1.8.1, was posted on the
algorithm stops when a user-specified number of iter- wep site during review of this paper. It allows eaghto depend
ations has been performed, or when the change in logon observed variability in the corresponding feature, as described
loss in an iteration falls below a user-specified value in Dudik et al. (2004) The recommended regularization is now ob-
(convergence), whichever happens first. tained by setting the regularization parameter to “auto”, allowing the

. . . . program to select an amount of regularization that is appropriate for
As described in Sectio.1, Maxent assigns a non- the types of features used and the number of sample localities. The

negative probability tO. ??—Ch pixel in the study area. yersion of the software used in the present study (Version 1.0, also
Because these probabilities must sum to 1, each prob-available on the web site) uses the same valier all §;.
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& Maximum Entropy Species Distribution Modeling

I Envi ntal layers
File|samples.rlramLucalmes.csv | Browse Diredoly‘cwerages
[vi bradypus_variegatus vl cld6190_ann.asc Continuous
[Vl bradypus_variegatus_1 ¥l dtr6190_ann.asc Continuous
(v bradypus_variegatus_2 vl ecoreg.asc Categorical
v bradypus_variegatus_3 [¥| frs6190_ann.asc Continuous
[ bradypus_variegatus_4 [vi h_dem.asc Continuous
v braypus_variegatus_5 vl pre6190_ann.asc Continuous
V] bratypus_variegatus_6 V] pre6190_I1.asc Continuous
(v bradypus_variegatus_ 7 vl pre6190_110.asc Continuous b
v] bradypus_variegatus_8 Vi pre6190_M.asc Continuous -
[l bradypus_variegatus_9 =] | pre6t90 ase o ==

Convergence threshold 1.0E-5

[v] Linear features [
Maximum iterations 1000

= Regularization value ;1.0E-4
[v| Quadratic features iy S
Output format | Cumulative ¥

Output directory ‘outpuls Browse

[v Product features
Projection direcmry‘ Browse

{ Run || Help

Fig. 1. User interface for the Maxent application (Version 1.0) for modeling species geographic distributions using georeferenced occurrence
records and environmental variables. The interface allows for the use of both continuous and categorical environmental data, and linear, quadratic
and product features. See Sectifor further documentation.

2.3. GARP (0.01 convergence limit, 1000 maximum iterations, and
allowing the use of atomic, range, negated range and

In its simplest form, GARP seeks a collection of logit rules). We then eliminated all models with more
rules that together produce a binary prediction. Posi- than 5% intrinsic omission (of training localities). If at
tive rules predict suitable conditions for pixels satis- most 10 models remained, they then constituted the best
fying some set of environmental conditions; similarly, subset (this happened 4 out of 44 times, yielding best
negative rules predict unsuitable conditions. Rules are subsets with 5, 7, 8 and 9 models). In all other cases,
favored in the algorithm according to their significance we determined the median value of the predicted area
(compared with random prediction) based on a sample of the remaining models, and selected the 10 models
of 1250 presence pixels and 1250 background pixels, whose predicted area was closest to the median. Fi-
sampled with replacement. Some pixels may receive no nally, we combined the best-subset models to make a
prediction, if no rule in the rule-set applies to them, and composite GARP prediction, in which the value of a
some may require resolution of conflicting predictions. pixel was equal to the number of best-subset models in
A genetic algorithm is used to search heuristically for which the pixel was predicted present (0-10).
a good rule-sefStockwell and Noble, 1992)

There is considerable random variability in GARP  2.4. Data sources
predictions, so we implemented the best-subset model
selection procedure as follows, similarReterson and  2.4.1. Study species
Shaw (2003grnd following the general recommenda- The brown-throated three-toed sl@hdypus var-
tions ofAnderson et al. (2003Jirst, we generated 100 iegarus (Xenarthra: Bradypodidae) is a large arbo-
binary models, with pixels that did not received a pre- real mammal (3—6 kg) that is widely distributed in the
diction interpreted as predicted absence, using GARP Neotropics from Honduras to northern Argentina. It is
version 1.1.3 with default values for its parameters found primarily in lowland areas but also ranges up to
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middle elevations. It has been documented in regions occupies generally higher elevations in much of this re-
of deciduous forest, evergreen rainforest and montanegion, but occasionally the two have been found in sym-
forest, but is absent from xeric areas and non-forested patry.M. minutus has not been encountered in lowland
regions(Anderson and Handley, 20Q1Jhree other regions (below approximately 1000 m). Likewise, it is
species are known inthe genBspygmaeusis endemic apparently absent from opewramo far from forests,
to Isla Escudo on the Caribbean coast of Panama, anddry puna habitat above treeline, and obviously from
two species have geographic distributions restricted to permanent glaciers on the highest mountain peaks.
South AmericaB. tridactylus in the Guianan region These two species hold several characteristics con-
andB. rorquatus in the Atlantic forests of Brazil. The  ducive to their use in evaluating the utility of Maxentin
latter two species show geographic distributions that modeling species distributions. First of all, they show
likely come into contact (or did historically) with that ~ widespread geographic distributions with clear ecolog-
of B. variegatus, but areas of sympatry are apparently ical/environmental patterns. Secondly, they have been
minimal. the subject of recent taxonomic revisions by specialists.
Microryzomys minutus (Rodentia: Muridae) is a  Finally, those revisions provide a reasonable number
small-bodied rodent (10-20 g) known from middle-to- of georeferenced occurrence localities for each species
high elevations of the Andes and associated moun- based on confirmed museum specimens (128Bfor
tain chains from Venezuela to BolivigCarleton and variegatus, Anderson and Handley, 20088 for M.
Musser, 1989)It occupies an elevational range of ap- minutus, Carleton and Musser, 198Big. 2).
proximately 1000-4000 m and has been recorded pri-
marily in wet montane forests, although sometimes in 2.4.2. Environmental variables
mesicpdramo habitats above treeline (in thramo- We examine the species’ potential distributions in
forest ecotone). A congeneric specigs, altissimus, the Neotropics from southeastern Mexico to Argentina

AR 60° W

-a Bradypus variegatus

Microryzomys minutus

vt

Pacific
Ocean

- 30°S Atlantic
Ocean

1000 2000

kilometers

Fig. 2. Occurrence records fBradypus variegatus (triangles; left, 116 records) amdicroryzomys minutus (circles; right, 88 records) used in
this study. Data derive from vouchered museum specimens reported in recent taxonomic reAigiensan and Handley, 200Carleton and
Musser, 1989
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(2355° N -5605° S, 948° W — 34.2° W), including

the Caribbean from Cuba southward. The environmen-

tal variables fallinto three categories: climate, elevation
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data differed slightly from the description and map
in Dinerstein et al. (1995py having 15 rather than
11 major habitat types. The differences arise from

and potential vegetation. All variables are recorded at the addition of a snow/ice/glaciers/rock category,

a pixel size of 05° by 0.05°, yielding a 1212x 1592
grid, with 648,658 pixels containing data for all vari-
ables.

The climatic variables derive from data provided

a tundra category and a water category; deletion
of the restingas category; splitting of grassland

savannas and shrublands into temperate versus tropi-
cal/subtropical categories; and splitting of temperate

by the Intergovernmental Panel on Climate Change forests into temperate coniferous and temperate

(IPCC;New et al., 1999 The original variables have
a resolution of ®&° by 0.5°, and were produced us-
ing thin-plate spline interpolation based on readings
taken at weather stations around the world from 1961

to 1990. They describe mean monthly values of various

broadleaf and mixed forests. The processed climatic
variables (at the original resolution), all resampled
variables, and the occurrence localities are available
at http://www.cs.princeton.edwschapire/maxent

variables, which we processed to convert to ascii raster 2.5. Model building

grid format, as required by GARP and Maxent. From

these monthly data, we also created annual variables

by averaging or taking the minimum or maximum as
appropriate.

Of the many monthly and annual variables avail-
able, we selected the following twelve, based on our

For each species, we made 10 random partitions of
the occurrence localities. Each partition was created
by randomly selecting 70% of the occurrence localities
as training data, with the remaining 30% reserved for
testing the resulting models. Twelve of the original 128

assessmentthatthey would likely have relevance for the localities for B. variegatus lay in coastal areas or on

species being modeled (see dterson and Cohoon,
1999: annual cloud cover; annual diurnal temperature

range; annual frost frequency; annual vapor pressure;

January, April, July, October and annual precipitation;

islands that were missing data for one or more of the
environmental variables, and were excluded from this
study. Each partition foB. variegarus thus held 81
training localities and 35 test localities, and thoseMor

and minimum, maximum and mean annual tempera- minutus held 61 training localities and 27 test localities.

ture. We used bilinear interpolation to resample to a
pixel size of 005° by 0.05°. Although this resampling
clearly does not actually increase the resolution of the
data, bilinear interpolation is likely more realistic than
simply using nearest-neighbor interpolation.

Two other variables were used in addition to the
climatic data. An elevation variable was derived from
USGS HYDRO1k datdUSGS, 2001y resampling
from the original finer resolution (1 km pixels) to0®°
by 0.05°. Finally, we used a potential vegetation vari-
able, consisting of a partition of Latin America and the
Caribbean into “major habitat types”, produced as part
of a terrestrial conservation assessmébinerstein
et al., 1995) This variable does not take into account
historical (contingent) biogeographic information

We made 10 random patrtitions rather than a single
one in order to assess the average behavior of the algo-
rithms, and to allow for statistical testing of observed
differences in performance (via Wilcoxon signed-rank
tests). In addition, the algorithms were also run on the
full set of occurrence localities, taking advantage of all
available data to provide best estimates of the species’
potential distributions for visual interpretation.

The algorithms (Maxent and GARP) were run with
two suites of environmental variables: first with only
climatic and elevational data, and then with those vari-
ables plus potential vegetation. The reasons for treating
potential vegetation separately are three-fold: (1) cli-
matic and elevational data are readily available for the
whole world (whereas potential vegetation is not), and

or human-induced changes, and represents a reconwe wished to determine whether good models can be
struction of original vegetation types in the region. created using uniformly available data. (2) The poten-
We used digital data on 15 major habitat types in a tial vegetation coverage is rather subjective, whereas
vector coverage (shape file), which we converted to the others are objectively produced from measured
a grid with resolution of M5° by 0.05° coincident data. (3) Potential vegetation is the only categorical
with the climatic and elevational variables. The digital variable, and the potential existed for the algorithms
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to respond differently to categorical versus continuous the probability of having at leasl — r) successes out

data. of ¢ trials, each with probability.. Although the prob-
abilities for such tests are often approximated using
2.6. Model evaluation a x2 or z test (for large sample sizes), we calculated

exact probabilities for the binomial test usikgnitab

The first step in evaluating the models produced by (1998)
the two algorithms was to verify that both performed The binomial test requires that thresholds be used, in
significantly better than random. For this purpose, we order to convert continuous Maxent and discrete GARP
first used a (threshold-dependent) binomial test basedpredictions into binary predictions delimiting the suit-
on omission and predicted area. However, it does not able versus unsuitable areas for the species. A good
allow for comparisons between algorithms, as the sig- general rule for determining an appropriate threshold
nificance of the test is highly dependent on predicted would depend at least on the following factors: the
area. Indeed, comparison of the algorithms is made predicted values assigned to the training localities, the
difficult by the fact that neither gives a binary pre- number of training localities and the context in which
diction. Hence, we also used two comparative statisti- the prediction is to be used. Nevertheless, for each run
cal tests that employ very different means to overcome of each algorithm, we simply used the minimum pre-
this complication. First, we employed a new threshold- dicted value assigned to any of the training localities as
dependent method of model evaluation, which we term the threshold. However, for four of the twenty GARP
the “equalized predicted area” test, whose purpose istoruns, such a threshold would cause the whole study
answer the following question: at the commonly used area to be predicted (as some training localities fell in
thresholds representing the extremes of the GARP pre- pixels not predicted by any of the best-subset models).
diction, how does Maxent compare? Second, we usedIn those cases, we used the smallest non-zero predicted
(threshold-independent) receiver operating character- value among the training localities.
istic (ROC) analysis, which characterizes the perfor- Because this omission test is highly sensitive to the
mance of a model at all possible thresholds by a single proportional predicted arg@&nderson et al., 2003)t
number, the area under the curve (AUC), which may cannotbe usedtocompare model performance between

be then compared between algorithms. two algorithms directly. Hence, we propose an “equal-
ized predicted area” test, which chooses thresholds so
2.6.1. Threshold-dependent evaluation that the two binary models have the same predicted
After applying a threshold, model performance can area, allowing direct comparison of omission rates.
be investigated using thetrinsic omission rate, which Here, composite GARP models have little flexibility in
is the fraction of the test localities that fall into pixels the choice of threshold. On the other hand, Maxent pre-
not predicted as suitable for the species, andpthe dictions, being continuous, can be thresholded to obtain
portional predicted area, Which is the fraction of all any desired predicted area. So, we set a threshold for

the pixels that are predicted as suitable for the species.each Maxent prediction to give the same predicted area
A low omission rate is a necessary (but not sufficient) as the corresponding GARP prediction. A two-tailed
condition for a good modd€Anderson et al., 2003)n Wilcoxon signed-rank test (a non-parametric equiva-
contrast, itmight be necessary to predict a large propor- lent of a paired-test) can then be used to determine
tional area to model the species’ potential distribution whether the observed difference in omission rates be-
adequately. tween the two algorithms at the given predicted area

A one-tailed binomial test can be used to determine is statistically significant. We used this test to compare
whether amodel predicts the test localities significantly Maxent predictions with two thresholds of the com-
better than randorfAnderson et al., 20025ay there posite GARP predictions, namely 1 (any best-subset
arertestlocalities, the omissionratei@ndthe propor-  model) and 10 (all best-subset models; seelerson
tional predicted areais The null hypothesis statesthat and Martnez-Meyer, 2004 These are natural thresh-
the model is no better than one randomly selected from olds for GARP that are frequently used in practice, so
the set of all models with proportional predicted atea  for reasons of conciseness, we do not consider inter-
Itis tested using a one-tailed binomial test to determine mediate thresholds. For some data partitionSBfowr-
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iegatus, the maximum value of the composite GARP 1-specificity is also known as the false positive rate,
model was less than 10 (because fewer than 10 GARPand represents commission error.
models met the best-subset criteria), in which case we  The ROC curve is obtained by plotting sensitivity
used the maximum predicted value instead of 10. on they axis and 1-specificity on theaxis for all pos-
The thresholds and resulting predicted areas usedsible thresholds. For a continuous prediction, the ROC
above are not necessarily optimal for either algorithm. curvetypically contains one pointfor eachtestinstance,
Rather, they were chosen to facilitate statistical analy- while for a discrete prediction, there will typically be
sis of the algorithms. Note that we are not suggesting one point for each of the different predicted values, in
that GARP should or need be used in general to select aaddition to the origin. The area under the curve (AUC)
threshold for Maxent predictions when binary predic- is usually determined by connecting the points with
tions are desired. Rather, we took advantage of the flex- straight lines; this is called the trapezoid method (as
ibility of Maxent’s continuous outputs to allow direct opposed to parametric methods, which fit a curve to
comparisons of omission rates between it and GARP. the points). The AUC has an intuitive interpretation,
Determining optimal thresholds for Maxent models re- namely the probability that a random positive instance
mains a topic of future research. In practice, thresholds and a random negative instance are correctly ordered
would currently be chosen by hand, since no general- by the classifier. This interpretation indicates that the
purpose thresholding rule has been developed yet for AUC is not sensitive to the relative numbers of positive
either algorithm (but see Secti@rRfor theoretical ex- and negative instances in the test data set.

pectations for Maxent). When only presence data are available, it would
appear that ROC curves are inapplicable, since with-
2.6.2. Threshold-independent evaluation out absences, there seems to be no source of negative

A second common approach compares model instances with which to measure specificity (see Sec-
performance using receiver operating characteris- tion 1.1, and the discussion of real and apparent com-
tic (ROC) curves. ROC analysis was developed in mission error inAnderson et al. (2003ndKarl et al.
signal processing and is widely used in clinical (2002). However, we can avoid this problem by con-
medicing(Hanley and McNeil, 1982, 1983; Zweig and  sidering a different classification problem, namely, the
Campbell, 1993)The main advantage of ROC analy- task of distinguishing presence from random, rather
sis is that area under the ROC curve (AUC) provides than presence from absence. More formally, for each
a single measure of model performance, independentpixel x in the study area, we define a negative instance
of any particular choice of threshold. ROC analysiS xrangom- Similarly, for each pixelx that is included
has recently been applied to a variety of classification in the species’ true geographic distribution, we de-
problems in machine learning (for examp®eovost fine a positive instanC@presence. A species distri-
and Fawcett, 1997and in the evaluation of models bution model can then make predictions for the pixels
of species distributiong&lith, 2002; Fielding and Bell,  corresponding to these instances, without seeing the
1997) labels random or presence. Thus, we can make

Here we will first describe ROC curves in general predictions for both a sample of positive instances
terms, followingFawcett (2003)before demonstrating  (the presence localities) and a sample of negative in-
how they apply to presence-only modeling. Consider stances (background pixels chosen uniformly at ran-
a classification problem, where each instance is either dom, or according to another background distribution
positive or negative. A classifier assigns a real value as described in Sectioh.3). Together these are suf-
to each instance, to which a threshold may be applied ficient to define an ROC curve, which can then be
to predict class membership; for clarity we use labels analyzed with all the standard statistical methods of

{v, N} for the class predictions. Thensitivity of a clas- ROC analysis. This process can be interpreted as using
sifier for a particular threshold is the fraction of all pos- pseudo-absence in place of absence in the ROC anal-
itive instances that are classifiggdwhile specificity is ysis, as is done iWiley et al. (2003) However, we

the fraction of all negative instances that are classified believe that the observation that the statistical methods
N. Sensitivity is also known as the true positive rate, of ROC analysis can be applied without prejudice to
and represents absence of omission error. The quantitypresence/random data is new.
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The above treatment differs from the use of ROC significance, omission rates were consistently low or
analysis on presence/absence data in one important rezero, never exceeding 17%zapble J).
spect: with presence-only data, the maximum achiev-  The results of the equalized predicted area test dif-
able AUC is less than {Wiley et al., 2003) If the fered between the specie¥aples 2 and B For B.
species’ distribution covers a fractianof the pixels, variegatus, the omission rates of the two algorithms
then the maximum achievable AUC can be shown to were lower for Maxent in 16 cases, equal in 15 cases,
be exactly - a/2. Unfortunately, we typically do not  and lower for GARP in 9 cases. However, two-tailed
know the value ofz, so we cannot say how close to Wilcoxon signed-rank tests did not reveal a significant
optimal a given AUC value is. Nevertheless, we can difference in median omission rates for either thresh-
still use standard methods to determine statistical sig- old or either variable suitep(= 0.178 and 0.314 for
nificance of the AUC, and to distinguish between the thresholds of 1 and 10, respectively, with climatic and
predictive power of different classifiers. We note that elevational variablesy = 0.371 and 0.155 for thresh-
random prediction still corresponds to an AUC of 0.5. olds of 1 and 10, respectively, with addition of the po-

We used AccuROC Version 2(¥ida, 1993)for the tential vegetation variable).
ROC analyses. AccuROC usesthe trapezoid method,as Maxent almost always had equal or lower omission
described above. To test if a prediction is significantly than GARP foM. minutus (19 out of 20 models). The
better than random, AccuROC uses a ties-corrected difference in median omission rates was significant at
Mann-WhitneyV statistic, which it approximates us-  both thresholds on runs with climatic and elevational
ing az-statistic. It uses a non-parametric té3eLong variables p = 0.036 andp = 0.014 for thresholds of 1
et al., 1988)to determine whether one prediction is and 10, respectively; two-tailed Wilcoxon signed-rank
significantly better than another when using correlated test). When the potential vegetation variable was added,
samples (i.e., with both predictions evaluated on the the difference in median omission rates was highly sig-
same test instances), and reports the result @& a nificant for a threshold of 10, but not for a threshold of
statistic and corresponding value. For each ROC 1 (p = 0.009 and 0.345, respectively), largely because
analysis, we used all the test localities for the species Maxent had greater omission than before on data par-
as presence instances, and a sample of 10,000 pix-tition 2, discussed below (Sectidn3).
els drawn randomly from the study region as random

instances. 3.1.2. Threshold-independent tests
For all partitions of the occurrence data, the
AUC values (calculated on extrinsic test data) were
3. Results highly statistically significant for both algorithms and

variable suites f < 0.0001), again indicating better-
than-random predictions. The Maxent AUC was signif-
icantly greater than that of GARP (< 0.05; two-tailed
non-parametric test ddelLong et al., 1988see Meth-

3.1. Quantitative results

3.1.1. Threshold-dependent omission tests

Both algorithms consistently produced predictions
that were better than random. Using the simple
threshold rule (Sectiof.6.1), the binomial omission
test was highly significanty( < 0.001, one-tailed) for
both algorithms on all data partitions for each species
(seeTable 1for details on runs with the climatic and
elevational variables; results on the variable suite
including potential vegetation were similar). For Max-

ods) in all data partitions except variegatus-4 andB.
variegatus-8 for models using the climatic and eleva-
tional variables, an@. variegatus-8 andM. minutus-2
when potential vegetation was addéddlfle 4.

Addition of the potential vegetation variable should
increase the AUC, since there is more information
available to the classifier. This was true in general for
Maxent and in some cases for GARPable 4. For

ent, the thresholds determined by the simple threshold Maxent onB. variegatus, the overall increase in me-

rule ranged from 0.022 to 2.564 fd®. variegatus
and 0.543 to 3.822 foM. minutus. For GARP, the
thresholds ranged from 1 to 7 f@&: variegatus and
2 to 10 for M. minutus. In addition to statistical

dian AUC approached significance & 0.093, one-
tailed Wilcoxon signed rank test). However, for GARP
the test was not significanp (= 0.949); indeed, the
AUC generally decreased. Fof. minutus, the AUC
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Table 1
Results of the threshold-dependent binomial tests of omission
Data partition Maxent GARP

Area Omission rate Area Omission rate
Bradypus variegatus-1 0.51 0.03 0.41 0.11
B. variegatus-2 0.66 0 0.56 0.06
B. variegatus-3 0.80 0 0.61 0.03
B. variegatus-4 0.42 0.17 0.51 0
B. variegatus-5 0.75 0.03 0.57 0.06
B. variegatus-6 0.62 0 0.54 0
B. variegatus-7 0.59 0 0.53 0
B. variegatus-8 0.59 0.06 0.62 0
B. variegatus-9 0.69 0 0.66 0
B. variegatus-10 0.62 0.06 0.44 0.06
Average 0.626 0.034 0.545 0.031
Microryzomys minutus-1 0.03 0.11 0.06 0.15
M. minutus-2 0.04 0.11 0.06 0.15
M. minutus-3 0.03 0.11 0.07 0.15
M. minutus-4 0.04 0.04 0.08 0.04
M. minutus-5 0.03 0.04 0.06 0.15
M. minutus-6 0.04 0.15 0.06 0.11
M. minutus-7 0.05 0 0.09 0.07
M. minutus-8 0.04 0.04 0.10 0
M. minutus-9 0.03 0.07 0.10 0
M. minutus-10 0.03 0.11 0.08 0.07
Average 0.035 0.078 0.075 0.089

Area (proportion of the study area predicted) and extrinsic omission rate (proportion of the test localities falling outside the predictien) are giv

for each of 10 random data partitions for Maxent and GARP. For Bothriegarus andM. minutus, the binomial test was highly significant for

all partitions (p < 0.001, one-tailed). Models were derived using the climatic and elevational variables for each random partition of occurrence
records, and area and omission rates were calculated using simple threshold rules based on the training localities (&2eT®ectesults

for models made with the addition of the potential vegetation variable were similar but are not shown here (se@)S&ttmomission rates

should not be compared between algorithms, as they are strongly affected by differences in predicted area. The simple threshold rule used her
for Maxent is not recommended for general use in practice; in this case, it gives too high a threshold for Makentr@garus-4, causing a

high omission rate, and too low a thresholdB®rvariegatus-3, resulting in too much predicted area.

usually increased for both Maxent and GARP, with re- of M. minutus, the performance of Maxent was better
sults significant or nearly so for botlp & 0.051 and across the entire spectrum: for any given omission rate,
0.033, respectively, although performance was poorer Maxent achieved that rate with a lower false positive
for Maxent on data partition 2; see Sectib3). While rate (1—specificity, which is almost identical to propor-
the differences in AUC values are very small, the tional predicted area, see Sect®)nThe results witlB.
changes may still be meaningful biologically. For ex- variegatus were more complex. There is a point where
ample, the largest visual effect of adding potential veg- the ROC curves for the two algorithms intersect, cor-
etation for Maxent was to (correctly) exclude some responding to a sensitivity of 0.83 (omission rate of
non-forested areas from the prediction fr varie- 0.17) and a false positive rate of 0.27. At that point,
gatus (Section3.2.2. However, because of the small therefore, the performance of the two algorithms was
geographic extent of those areas, the effect on AUC the same. A small component of the higher AUC for
values was small. Maxent was due to the lower omission rate it achieved
The ROC curves for the two algorithms showed dis- to the right of that point. However, most of Maxent's
tinct patterns, evident in the curves for the first random higher AUC occurred to the left of that point, where
data partition for each species, for models made using many test localities fell in small areas very strongly
climatic and elevational variableki@. 3. In the case predicted by Maxent. In contrast, GARP did not differ-
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Table 2
Results of the equalized predicted area tests of omissiab fiarriegarus andM. minutus produced with Maxent and GARP using the climatic

and elevational variables

Data partition GARP threshold = 1 GARP threshold = 10

Area Maxent omission GARP omission Area Maxent omission GARP omission
B. variegatus-1 0.59 0.03 0.03 0.27 0.17 0.17
B. variegatus-2 0.56 0.03 0.06 0.34 0.11 0.17
B. variegatus-3 0.61 0.06 0.03 0.33 0.09 0.17
B. variegatus-4 0.63 0.14 0 0.40 0.17 0.06
B. variegatus-5 0.67 0.03 0 0.36 0.11 0.26
B. variegatus-6 0.69 0 0 0.29 0.14 0.11
B. variegatus-7 0.74 0 0 0.31 0.03 0.14
B. variegatus-8 0.69 0 0 0.33 0.17 0.11
B. variegatus-9 0.72 0 0 0.36 0.06 0.11
B. variegatus-10 0.61 0.06 0.03 0.34 0.14 0.17
Average 0.652 0.034 0.014 0.333 0.120 0.149
M. minutus-1 0.12 0 0.07 0.06 0.04 0.15
M. minutus-2 0.10 0 0.07 0.06 0.04 0.15
M. minutus-3 0.16 0 0.04 0.07 0.07 0.15
M. minutus-4 0.17 0 0.04 0.08 0.04 0.04
M. minutus-5 0.12 0 0.07 0.06 0 0.15
M. minutus-6 0.12 0 0.04 0.06 0.07 0.11
M. minutus-7 0.16 0 0 0.09 0 0.07
M. minutus-8 0.17 0 0 0.09 0 0
M. minutus-9 0.17 0 0 0.09 0 0.04
M. minutus-10 0.18 0 0 0.08 0 0.07
Average 0.146 0 0.033 0.073 0.026 0.093

Area (proportion of the study area predicted by GARP with the indicated threshold) and extrinsic omission rate (proportion of test localities
falling outside the prediction) for each algorithm are given for each random partition of occurrence records under two threshold scenarios.
Thresholds were set for the extremes of the GARP predictions: any GARP model predicting presence (GARP threshold = 1) and all 10 GARP
models predicting presence (GARP threshold = 10). To allow for direct comparison of omission rates between the algorithms, thresholds were
then set for each Maxent model to yield a binary prediction with the same area as the corresponding GARP prediction.

entiate environmental quality to the left of that point, dance with the thresholds obtained in Sect®h.],

as all pixels there were predicted by all 10 of the best- and the theoretical expectation that the omission rate
subset models. Results for other data partitions were for a thresholded cumulative prediction will be approx-
roughly similar (not shown). imately equal to the threshold value (see SecH@®).

For GARP, visual inspection suggested a higher thresh-
old in the range 5-10 was appropriate for approximat-
ing the species’ potential distribution. In the following
The output format differs dramatically between sections, we interpretthe models under this framework.

Maxentand GARP, so care must be taken when making

comparisons between them. Maxent produces a con-3.2.1. Models derived from climatic and

tinuous prediction with values ranging from 0 to 100, elevational variables

whereas GARP, as used here, yields a discrete compos- When using the full set of occurrence localities for
ite prediction with integer values from 0 to 10. Visual each species, the two algorithms produced broadly
inspection of the Maxent predictions for both species similar predictions for the potential geographic distri-
indicated that a low threshold was appropriate, and in bution of B. variegatus (Fig. 4). For this species, both
general terms, pixels with predicted values of at least algorithms indicated suitable conditions throughout
1 may be interpreted as a reasonable approximation of most of lowland Central America, wet lowland areas
the species’ potential distribution. This is in concor- of northwestern South America, most of the Amazon

3.2. Visual interpretation
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Table 3
Results of the equalized predicted area tests of omissiab fariegatus andM. minurus produced with Maxent and GARP using the climatic,
elevational and potential vegetation variables

Data partition GARP threshold = 1 GARP threshold = 10
Area Maxent omission GARP omission Area Maxent omission GARP omission

B. variegatus-1 0.57 0.03 0.03 0.28 0.20 0.23
B. variegatus-2 0.58 0 0.06 0.29 0.11 0.29

B. variegatus-3 0.67 0 0.03 0.33 0.14 0.11

B. variegatus-4 0.67 0 0 0.42 0.06 0.11

B. variegatus-5 0.67 0.03 0.03 0.36 0.14 0.17
B. variegatus-6 0.71 0 0 0.28 0.17 0.17

B. variegatus-7 0.74 0 0 0.33 0.06 0.20

B. variegatus-8 0.67 0 0 0.34 0.20 0.17

B. variegatus-9 0.78 0 0 0.39 0.03 0.06

B. variegatus-10 0.67 0 0 0.36 0.14 0.17
Average 0.672 0.006 0.014 0.337 0.126 0.169
M. minutus-1 0.12 0 0.04 0.06 0.04 0.15
M. minutus-2 0.11 0.11 0.04 0.06 0.15 0.19
M. minutus-3 0.13 0 0.04 0.07 0.04 0.15
M. minutus-4 0.15 0 0.04 0.08 0.04 0.04
M. minutus-5 0.12 0 0.07 0.06 0 0.15

M. minutus-6 0.14 0 0 0.05 0.04 0.11
M. minutus-7 0.16 0 0.04 0.08 0 0.07

M. minutus-8 0.16 0 0 0.08 0 0.04

M. minutus-9 0.16 0 0 0.08 0 0.07

M. minutus-10 0.17 0 0 0.07 0 0.04
Average 0.142 0.011 0.026 0.070 0.030 0.100

Area (proportion of the study area predicted by GARP with the indicated threshold) and extrinsic omission rate (proportion of test localities
falling outside the prediction) for each algorithm are given for each random partition of occurrence records under two threshold scenarios.
Thresholds were set for the extremes of the GARP predictions: any GARP model predicting presence (GARP threshold = 1) and all 10 GARP
models predicting presence (GARP threshold = 10). To allow for direct comparison of omission rates between the algorithms, thresholds were
then set for each Maxent model to yield a binary prediction with the same area as the corresponding GARP prediction.

basin, large areas of Atlantic forests in southeastern small highland areas in Brazil, southeastern Mexico,
Brazil, and most large Caribbean islands in the study Costa Rica and Panama. In contrast, GARP predicted
area. The species was generally predicted absent froma much more extensive potential distribution for the
high montane areas, temperate areas in southern Soutlspecies. In addition to a broad highland prediction in
America, and non-forested areas of central Brazil (e.g., the northern and central Andes and the Caribbean, the
cerrado). The algorithms differed in their predictions composite GARP prediction also included areas of the
for non-forested savannas in northern South America. southern Andes as well as extensive highland regions
The composite GARP model indicated the species’ in Mesoamerica, the Guianan-shield region and
potential presence there, but Maxent excluded some southeastern Brazil. The prediction in the Brazilian
non-forested savannas in Venezudlarps) and the highlands extended into adjacent lowland areas of
Guianas. that country as well as into Uruguay and northern
In contrast, the algorithms yielded quite different Argentina.
predictions forM. minutus (Fig. 4). Maxent indicated
suitable conditions for the species in the northern and 3.2.2. Addition of potential vegetation variable
central Andes (and associated mountain chains) from  The two algorithms responded differently to the in-
Bolivia and northern Chile to northern Colombia and clusion of the potential vegetation variableid. 5).
Venezuela. It also included highland areas in Jamaica, The Maxent prediction with potential vegetation for
the Dominican Republic and Haiti, as well as very variegatus was generally similar to the original one,
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Table 4
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Results of threshold-independent receiver operating characteristic (ROC) analyBesi#aggatus andM. minutus produced with Maxent and
GARRP using the climatic and elevational variables (left) and climatic, elevational and potential vegetation variables (right)

Data partition Without potential vegetation

With potential vegetation

Maxent AUC GARP AUC p Maxent AUC GARP AUC p

B. variegatus-1 0.889 0.807 <0.01 0.879 0.793 <0.01
B. variegatus-2 0.892 0.765 <0.01 0.899 0.769 <0.01
B. variegatus-3 0.872 0.779 0.01 0.887 0.790 <0.01
B. variegatus-4 0.819 0.789 0.51 0.858 0.757 <0.01
B. variegatus-5 0.868 0.740 <0.01 0.885 0.753 <0.01
B. variegatus-6 0.881 0.818 <0.01 0.868 0.812 0.03
B. variegatus-7 0.902 0.812 <0.01 0.919 0.784 <0.01
B. variegatus-8 0.839 0.807 0.34 0.829 0.786 0.13
B. variegatus-9 0.903 0.794 <0.01 0.897 0.784 <0.01
B. variegatus-10 0.866 0.779 0.01 0.879 0.769 <0.01
Average 0.873 0.789 0.880 0.780

M. minutus-1 0.985 0.926 0.01 0.986 0.946 0.02
M. minutus-2 0.987 0.931 0.02 0.932 0.943 0.75
M. minutus-3 0.985 0.938 <0.01 0.987 0.939 <0.01
M. minutus-4 0.983 0.938 <0.01 0.984 0.941 <0.01
M. minutus-5 0.988 0.926 0.02 0.990 0.926 0.01
M. minutus-6 0.983 0.947 0.05 0.986 0.966 <0.01
M. minutus-7 0.989 0.950 <0.01 0.988 0.936 <0.01
M. minutus-8 0.988 0.954 <0.01 0.989 0.956 <0.01
M. minutus-9 0.989 0.952 <0.01 0.990 0.955 <0.01
M. minutus-10 0.985 0.955 <0.01 0.987 0.961 <0.01
Average 0.986 0.942 0.982 0.947

For each random partition of occurrence records, the area under the ROC curve (AUC) is given for Maxent and GARP, as well as the probability
of the observed difference in the AUC values between the two algorithms (under a null hypothesis that the true AUCs are equal). All AUC values

for both algorithms were significantly better than a random predictioa 0.0001; individualp values not shown). AUC values are given to
three decimal places to reveal small changes under addition of the potential vegetation coverage.

but now indicated unsuitable conditions for the species 4. Discussion and conclusions

in the llanos of Colombia and Venezuela and in other
non-forested areas in Bolivia and Brazil. On the con-
trary, the composite GARP prediction with potential
vegetation included was very similar to the original
prediction, still indicating suitable environmental con-

ditions for the species in non-forested areas of Colom-
bia, Venezuela, Guyana, Brazil, Paraguay and Bolivia.

Addition of the potential vegetation variable
changed the Maxent and GARP predictions Mr
minutus only minimally. The Maxent prediction with
potential vegetation differed principally by a sharp

4.1. Statistical tests

Both algorithms consistently performed signif-
icantly better than random, and Maxent frequently
achieved better results than GARP. Threshold-
dependent binomial test$dble J) showed low omis-
sion of test localities and significant predictions for
both algorithms across the board. The equalized pre-
dicted area test generally indicated better performance
for Maxent onM. minutus, but the test did not detect a

reduction in the area predicted for the species along significant difference between the two algorithms for
the western slopes of the Andes in central and southernB. variegatus (Tables 2 and 8 Threshold-independent

Peru and in northern Chile. The composite GARP
prediction with potential vegetation differed from the
original one mainly by indicating a smaller area of
suitable environmental conditions for the species in
central Chile and in central-eastern Argentina.

ROC analysis also showed significantly better-than-
random performance for both algorithms. The area
under the ROC curve (AUC) was significantly higher
for Maxent on almost all data partitions for both species
(Table 4. Use of the categorical potential vegetation
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Fig. 3. Extrinsic receiver operating characteristic (ROC) curves for
Maxentand GARP on the firstrandom partition of occurrence records
of B. variegatus (left) andM. minutus (right). Models were produced
using the climatic and elevational variables. Sensitivity equals the
proportion of test localities correctly predicted present (1—extrinsic
omission rate). The quantity (1—specificity) equals the proportion of
all map pixels predicted to have suitable conditions for the species.
Note that both algorithms perform much better than random, and
that Maxent is generally superior to GARP; Sedle 4for results of
statistical analyse®. variegatus is a wider-ranging species thaf
minutus, SO it has a smaller maximum achievable AUC in these ROC
analyses performed without true absence data (see S&8d).

The curves therefore do not necessarily imply that the algorithms are
performing better oM. minutus.

variable (in addition to the continuous climatic and
elevational variables) generally improved performance
for both algorithms omM. minutus and for Maxent
on B. variegatus, but the changes had limited statis-
tical significance, likely due to the small amount of
data.
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4.2. Biological interpretations

Both algorithms produced reasonable predictions of
the potential distribution foB. variegatus. The areas
predicted by 5-10 GARP models were similar geo-
graphically to those areas predicted with a value of
at least 1 (out of 100) for Maxent. Although much
research addressing the issue of operationally deter-
mining an optimal threshold remains for both algo-
rithms, these thresholds produce good maps of the
species’ potential distributions (areas of suitable en-
vironmental conditions). In particular, the models per-
form far superior to the shaded outline maps available
in standard field guides, (e.dcisenberg and Redford,
1999; Emmons, 1997and in digital compilations of
species ranges designed for use in conservation biology
and macroecological studi¢Ratterson et al., 2003)
Most strikingly, the models correctly indicate an ex-
pansive region of unsuitable environmental conditions
for B. variegatus in the non-forestederrado of Brazil,
whereas the shaded outline maps indicate continuous
distribution for the species from Amazonian forests
to coastal Atlantic forests. Although GARP has the
capacity to consider categorical variables, the inclu-
sion of the potential vegetation variable did not rectify
the deficiencies seen in the original composite GARP
prediction forB. variegatus. In contrast, Maxent suc-
cessfully integrated this additional information. This
is most evident in close-up imageshig. 4.2 where
GARRP (incorrectly) predicted suitable conditions for
the species in the non-forest&aos of Colombia and
Venezuela.

In contrast to the generally similar predictions for
B. variegatus, different deficiencies were evident in the
predictions produced by the two algorithms érmin-
utus. Maxent produced an impressive prediction within
the species’ known range. The Maxent prediction lay
almost entirely within the Andes. However, wet mon-
tane forests also exist in Mesoamerican, Guianan and
Brazilian highlands. Those areas likely contain condi-
tions suitable for the species, but it apparently has not
been able to colonize them due to geographic barri-
ers. We investigated possible reasons for Maxent’s low
prediction in these areas, by examining environmen-
tal characteristics of six classical highland sites that
are well sampled for small mammals: Monteverde and
Cerro de la Muerte in Costa Rica, Auyan-tepui and
Mount Duida in southern Venezuela, and Itatiaia and
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Fig. 4. Predicted potential geographic distributionsBovariegarus (top) andM. minutus (bottom) made using all occurrence records and the
climatic and elevational variables. Results are given for Maxent (left) and GARP (right). Four colors are used to indicate the strength of the
prediction for each individual map pixel. Maxent produces a continuous prediction with values ranging from 0 to 100; the values are depicted
here using white = [0,1); pale grey = [1,34); dark grey = [34,66); black = [66,100]. The best-subsets selection procedure employed here for
GARP yields a discrete prediction with integer values from 0 to 10, depicted here using white = 0; pale grey = 1-4; dark grey = 5-9; black
= 10. The strength of the predictions thus cannot be compared directly. All areas with a Maxent prediction of 1 or greater likely represent
suitable environmental conditions for the species; in contrast, areas with a GARP prediction of 5-10 probably indicate suitable conditions (see
Section3.2).
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Fig. 5. Predicted potential geographic distributions Bowariegatus (top) andM. minutus (bottom) made using all occurrence records and
climatic, elevational and potential vegetation variables. Results are given for Maxent (left) and GARP (right). Four colors are used to indicate
the strength of the prediction for each map pixel. Maxent produces a continuous prediction with values ranging from 0 to 100; the values are
depicted here using white = [0,1); pale grey = [1,34); dark grey = [34,66); black = [66,100]. The best-subsets selection procedure employed
here for GARP yields a discrete composite prediction with integer values from 0 to 10, depicted here using white = 0; pale grey = 1-4; dark
grey = 5-9; black = 10. The strength of the predictions thus cannot be compared directly. All areas with a Maxent prediction of 1 or greater
likely represent suitable environmental conditions for the species; in contrast, areas with a GARP prediction of 5-10 probably indicate suitable
conditions (see Sectidh?2).
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Capara in Brazil (Gouvda and dé\vila Pires, 1999;  forested regions belowCarleton and Musser, 1989
Hershkovitz, 1998; McPherson, 1985; Paynter, 1982; For data partition 2, both of those latter two locali-
Tate, 1939) For the first four sites, July precipitation ties fell in the test dataset (i.e., not the training set).
values were at least 5 standard deviations higher thanAccordingly, Maxent's prediction strongly avoided the
the mean of théM. minurus occurrence localities. In ~ “montane grasslands” class. The pixels corresponding
addition, the annual maximum temperature at those 10 those two test localities thus had very low predicted
sites was 1.37-3.23 standard deviations higher thanvalue, bringing down the AUC for that partition. This is
the mean of the occurrence localities. In contrast, the an artifact of under-regularization. More regularization
Brazilian sites had July precipitation within the same for categorical features would allow some prediction in
range as the occurrence localities, but the January pre-classes with no presence records, especially if the to-
cipitation was much higher for both (by 3.12 and 1.84 tal number of presence records is small (Haffner et al.,
standard deviations, respectively), and maximum tem- in preparation, and implemented in later versions of
perature was much higher for Capar@y 1.95 stan- ~ Maxent).
dard deviations). Thus, Maxent's behavior given the The behavior of Maxent is in fact reasonable in this
data provided is correct and reasonable. However, de-case, as the training data do not cover the range of
Spite the differences in some environmental variables, vegetation classes that the Species can inhabit. Further-
the forests in the six sites are probably functionally more, it is better than the statistics would suggest, as
similar to those inhabited by. minutus. This situation the occurrence localities falling in montane grasslands
h|gh||ghts the d|ff|Cu|ty of extrapo|ating froma Species’ both lie on the border with piXElS of one of the other two
realized distribution, and emphasizes that the variables classes inhabited by the species, and are therefore close
used should be chosen with care. Fbminutus, better ~ t0 highly predicted areas. Their omission should thus
extrapolation might be achieved using derived climatic be penalized less than other test localifféislding and
parameters that are more relevant for the species, forBell, 1997) Indeed, smoothing the prediction by twice
example, precipitation of wettest mor{Busby, 1986)  applying a simple 3« 3 smoothing convolution with
rather than values for specific months (see Sedtitin the following weights as alow-passfilfgensen, 1996)
Quite the opposite to the Maxent predictions, extensive
areas of potential distribution indicated in Mesoameri- /0.05 0.05 005
can, Guianan and Brazilian highland regions by GARP | 0.05 06 0.05
surely oye_zresnmate the ext_ent of suitable environmen- | 5 o 005 005
tal conditions for the species there. In particular, the
vast majority of the pixels predicted by all 10 mod- . . C
els in southeastern Brazil lie below 1000 m, where the N¢r€ases the AUC t0 0.98 for that part|t|or_1,_ which is
species’ presence is quite unlikely. in line with those (_)f_the other random part_ltl(_)ns, and
causes very little visible change to the prediction. Such
4.3. Spatial context of errors post-processing may be of general utility when spatial
error is known to exist in the data, for example due

The performance of Maxent d. minutus when the to errors in site localities or boundaries of polygons
potential vegetation variable was used warrants some fepresenting categorical variables.
discussion. The AUC for the second random data parti-
tion was notably lower than for the other partitions, and 4.4. Advantages of Maxent
for the model run on the same partition without poten-
tial vegetation. Most of the occurrence localities for the Maxent exhibits a humber of inherent advantages
species are contained in the “tropical and subtropical (see Sectiorl). In addition, visual inspection of the
moist broadleaf forest” and “tropical and subtropical models indicates two further possible advantages. In
dry broadleaf forest” classes of potential vegetation. these analyses, areas predicted by 5-10 of the best-
However, two of them fall within the “montane grass- subset GARP models generally showed a reason-
lands” class (the species indeed can inhabit this vege-able prediction of the species’ geographic ranges (see
tation type in mosaic habitats along the ecotone with above). Most of those areas were predicted by all 10
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models. In contrast, the Maxent prediction is continu- tion 2.1.2. We tried two approaches in an attempt to
ous, and within those areas suitable for each species, itget GARP to make finer predictions. First, we exam-
further distinguishes between those with a marginally ined the composite models derived from much larger
(but sufficiently) strong prediction versus those within- numbers of GARP models (described above), but the
creasingly stronger predictions. This represents an im- resolution did not increase noticeably. Second, we de-
portant advantage for Maxent, and explains part of its creased the convergence limit, allowing GARP to re-
consistently higher AUC values. The AUC for GARP fine its predictions and potentially make more complex
could potentially be improved by attempting toincrease models. Again using the full datasets, we reduced the
the resolution at the left end of the ROC curve, namely convergence limitfrom 0.01to 0.0001, which increased
by creating more original binary GARP models (say the running time five-fold. Decreasing the convergence
1000) and choosing a larger best subset (say 100). Welimit may result in overfitting in some circumstances;
tried this for both species using all occurrence local- however, we saw no indication of that here. In fact, it
ities and all variables, and found that the predictions improved the prediction foB. variegatus somewhat
were virtually unchanged (in comparison to a best sub- (for example, reducing overprediction in some high-
set of 10 out of 100 models). We also note that even land areas), but it did not increase the apparent resolu-
with 100 total models, GARP was already testing the tion of the predictions.
limits of the computers we used (processing all 22
datasets produced almost 20 GB of output, compared4.5. Future work
with 285 MB for Maxent). Apart from output size, the
computational requirements of the two algorithmswere ~ Much work can be done to refine the use of Max-
similar in this study; GARP averaged 1.95 h to produce ent for modeling species geographic distributions. Re-
asingle prediction (best-subset composite derived from search should determine the number of occurrence lo-
100 models), compared with 2.27 h for Maxent, both calities needed to make an adequate prediction, and to
on an 850 MHz Pentium 3 processor. Later versions of determine how much regularization is needed to avoid
Maxent available on the website use a faster algorithm overfitting when the number of occurrence localities is
(Haffner and Phillips, in preparation); Version 1.8.1 small; preliminary results regarding these issues are
takes a total of 70 min to process all 22 datasets on presented byDudik et al. (2004)and Phillips et al.
the above-mentioned computer, or 20 min on a newer (2004) Regarding the quality of the inputs to Maxent,
3.2 GHz Intel Xeon compulter. the effect of non-uniform sampling of species locali-
Secondly, Maxent more successfully integrated fine ties should be also investigated, building2edrozny
topographic data for both species, producing more de- (2004) with an eye to estimating and limiting the im-
tailed (finer-grained) predictions (see close-up images pact of sampling biagReddy and Bvalos, 2003)For
in Fig. 4.2. We propose that this is true, at least in part, example, selection of background points taking into
because the Maxent model exhibits additivity (while account which sites have been sampled (rather than
GARP does not), with the contribution of all the vari- simply at random) can ameliorate the effects of sam-
ables being added at each pixel (see &).in Sec- pling bias in some casdZaniewski et al., 2002)As

Fig. 6. Close-up of northwestern South America for the predicted potential geographic distributiBnsaefegarus (top) andM. minutus

(bottom) made using all occurrence records and climatic, elevational and potential vegetation variables. Results are given for Maxent (left)
and GARRP (right). For both species, note the finer grain of the Maxent predictioB. Fariegatus, the Maxent prediction correctly indicated
unsuitable conditions in the non-forested tropical savanirasg) of eastern Colombia, but the GARP prediction continued to predict presence
there (even with the inclusion of the potential vegetation variable). Four colors are used to indicate the strength of the predictions. Maxent
produces a continuous prediction with values ranging from 0 to 100, depicted here by white = [0,1); pale grey = [1,34); dark grey = [34,66);
black = [66,100]. The best-subsets selection procedure employed for GARP yields a discrete composite prediction with integer values from 0
to 10, depicted here using white = 0; light grey = 1-4; dark grey = 5-9; black = 10. The strength of the predictions thus cannot be compared
directly. All areas with a Maxent prediction of 1 or greater likely represent suitable environmental conditions for the species; in contrast, areas
with a GARP prediction of 5-10 probably indicate suitable conditions (see S&&riNote that among areas predicted as suitable for the
species for each algorithm, Maxent indicates areas of successively stronger predictions, whereas GARP assigns a maximal value (10) to most
such areas (see Sectiém).
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