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Maximum entropy modeling of species geographic distributions
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Abstract

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase
in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed pres-
ence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data
are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling
species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple
and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In
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order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical ma
lowland species of sloth,Bradypus variegatus, and a small montane murid rodent,Microryzomys minutus. We compared Maxent
predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Pre
(GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the r
localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded
maps available in field guides. All models were significantly better than random in both binomial tests of omission and r
operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, in
better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in i
form for many applications with presence-only datasets, and merits further research and development.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Predictive modeling of species geographic distrib
tions based on the environmental conditions of sit
of known occurrence constitutes an important tec
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nique in analytical biology, with applications in con-
servation and reserve planning, ecology, evolution,
epidemiology, invasive-species management and other
fields (Corsi et al., 1999; Peterson and Shaw, 2003;
Peterson et al., 1999; Scott et al., 2002; Welk et
al., 2002; Yom-Tov and Kadmon, 1998). Sometimes
both presence and absence occurrence data are avail-
able for the development of models, in which case
general-purpose statistical methods can be used (for an
overview of the variety of techniques currently in use,
seeCorsi et al., 2000; Elith, 2002; Guisan and Zim-
merman, 2000; Scott et al., 2002). However, while vast
stores of presence-only data exist (particularly in nat-
ural history museums and herbaria), absence data are
rarely available, especially for poorly sampled tropical
regions where modeling potentially has the most value
for conservation(Anderson et al., 2002; Ponder et al.,
2001; Sobeŕon, 1999). In addition, even when absence
data are available, they may be of questionable value
in many situations(Anderson et al., 2003). Modeling
techniques that require only presence data are therefore
extremely valuable(Graham et al., 2004).

1.1. Niche-based models from presence-only data

We are interested in devising a model of a species’
environmental requirements from a set of occurrence
localities, together with a set of environmental vari-
ables that describe some of the factors that likely
influence the suitability of the environment for the
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(Hutchinson, 1957). The species’ realized niche may
be smaller than its fundamental niche, due to human
influence, biotic interactions (e.g., inter-specific com-
petition, predation), or geographic barriers that have
hindered dispersal and colonization; such factors may
prevent the species from inhabiting (or even encoun-
tering) conditions encompassing its full ecological po-
tential(Pulliam, 2000; Anderson and Martı́nez-Meyer,
2004). We assume here that occurrence localities are
drawn from source habitat, rather than sink habitat,
which may contain a given species without having the
conditions necessary to maintain the population with-
out immigration; this assumption is less realistic with
highly vagile taxa(Pulliam, 2000). By definition, then,
environmental conditions at the occurrence localities
constitute samples from the realized niche. A niche-
based model thus represents an approximation of the
species’ realized niche, in the study area and environ-
mental dimensions being considered.

If the realized niche and fundamental niche do not
fully coincide, we cannot hope for any modeling al-
gorithm to characterize the species’ full fundamental
niche: the necessary information is simply not present
in the occurrence localities. This problem is likely ex-
acerbated when occurrence records are drawn from too
small a geographic area. In a larger study region, how-
ever, spatial variation exists in community composi-
tion (and, hence, in the resulting biotic interactions)
as well as in the environmental conditions available to
the species. Therefore, given sufficient sampling effort,
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n practice, however, the departure between the
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Although a niche-based model describes suita
ty in ecological space, it is typically projected in
eographic space, yielding a geographic area of
icted presence for the species. Areas that satisf
onditions of a species’ fundamental niche repre
ts potential distribution, whereas the geographic
as it actually inhabits constitute its realized distr
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case the predicted distribution will be smaller than the
full potential distribution. However, to the extent that
the model accurately portrays the species’ fundamen-
tal niche, the projection of the model into geographic
space will represent the species’ potential distribution.

Whether or not a model captures a species’ full niche
requirements, areas of predicted presence will typically
be larger than the species’ realized distribution. Due
to many possible factors (such as geographic barriers
to dispersal, biotic interactions, and human modifica-
tion of the environment), few species occupy all areas
that satisfy their niche requirements. If required by the
application at hand, the species’ realized distribution
can often be estimated from the modeled distribution
through a series of steps that remove areas that the
species is known or inferred not to inhabit. For ex-
ample, suitable areas that have not been colonized due
to contingent historical factors (e.g., geographic barri-
ers) can be excluded(Peterson et al., 1999; Anderson,
2003). Similarly, suitable areas not inhabited due to bi-
otic interactions (e.g., competition with closely related
morphologically similar species) can be identified and
removed from the prediction(Anderson et al., 2002).
Finally, when a species’ present-day distribution is de-
sired, such as for conservation purposes, a current land-
cover classification derived from remotely sensed data
can be used to exclude highly altered habitats (e.g., re-
moving deforested areas from the predicted distribution
of an obligate-forest species;Anderson and Martı́nez-
Meyer, 2004).
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influence species distributions at the micro-scale. The
choice of variables to use for modeling also affects
the degree to which the model generalizes to regions
outside the study area or to different environmental
conditions (e.g., other time periods). This is important
for applications such as invasive-species management
(e.g.,Peterson and Robins, 2003) and predicting the
impact of climate change (e.g.,Thomas et al., 2004).
Bioclimatic and soil-type variables measure availabil-
ity of the fundamental primary resources of light, heat,
water and mineral nutrients(Mackey and Linden-
mayer, 2001). Their impact, as measured in one study
area or time frame, should generalize to other situa-
tions. On the other hand, variables representing latitude
or elevation will not generalize well; although they are
correlated with variables that have biophysical impact
on the species, those correlations vary over space and
time.

A number of other serious potential pitfalls may af-
fect the accuracy of presence-only modeling; some of
these also apply to presence–absence modeling. First,
occurrence localities may be biased. For example, they
are often highly correlated with the nearby presence
of roads, rivers or other access conduits(Reddy and
Dávalos, 2003). The location of occurrence localities
may also exhibit spatial auto-correlation (e.g., if a re-
searcher collects specimens from several nearby local-
ities in a restricted area). Similarly, sampling intensity
and sampling methods often vary widely across the
study area(Anderson, 2003). In addition, errors may
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ful whenever the above concerns are adequately ad-
dressed.

1.2. Maxent

Maxent is a general-purpose method for making
predictions or inferences from incomplete information.
Its origins lie in statistical mechanics(Jaynes, 1957),
and it remains an active area of research with an Annual
Conference, Maximum Entropy and Bayesian Meth-
ods, that explores applications in diverse areas such
as astronomy, portfolio optimization, image recon-
struction, statistical physics and signal processing. We
introduce it here as a general approach for presence-
only modeling of species distributions, suitable for all
existing applications involving presence-only datasets.
The idea of Maxent is to estimate a target probability
distribution by finding the probability distribution of
maximum entropy (i.e., that is most spread out, or
closest to uniform), subject to a set of constraints that
represent our incomplete information about the target
distribution. The information available about the target
distribution often presents itself as a set of real-valued
variables, called “features”, and the constraints are that
the expected value of each feature should match its em-
pirical average (average value for a set of sample points
taken from the target distribution). When Maxent is ap-
plied to presence-only species distribution modeling,
the pixels of the study area make up the space on which
the Maxent probability distribution is defined, pixels
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generalized additive models (GLM and GAM), in the
absence of interactions between variables, additivity
of the model makes it possible to interpret how each
environmental variable relates to suitability(Dud́ık et
al., 2004; Phillips et al., 2004). (5) Over-fitting can be
avoided by using�1-regularization (Section2.1.2). (6)
Because dependence of the Maxent probability distri-
bution on the distribution of occurrence localities is ex-
plicit, there is the potential (in future work) to address
the issue of sampling bias formally, as inZadrozny
(2004). (7) The output is continuous, allowing fine dis-
tinctions to be made between the modeled suitability
of different areas. If binary predictions are desired, this
allows great flexibility in the choice of threshold. If the
application is conservation planning, the fine distinc-
tions in predicted relative environmental suitability can
be valuable to reserve planning algorithms. (8) Maxent
could also be applied to species presence/absence data
by using a conditional model (as inBerger et al., 1996),
as opposed to the unconditional model used here. (9)
Maxent is a generative approach, rather than discrim-
inative, which can be an inherent advantage when the
amount of training data is limited (see Section2.1.4).
(10) Maximum entropy modeling is an active area of re-
search in statistics and machine learning, and progress
in the field as a whole can be readily applied here. (11)
As a general-purpose and flexible statistical method,
we expect that it can be used for all the applications
outlined in Section1 above, and at all scales.
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tudy area or to future or past climatic conditions
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software is required, as Maxent is not available in stan-
dard statistical packages.

1.3. Existing approaches for presence-only
modeling

Many methods have been used for presence-only
modeling of species distributions, and we only attempt
here to give a broad overview of existing methods.
Some methods use only presences to derive a model.
BIOCLIM (Busby, 1986; Nix, 1986)predicts suitable
conditions in a “bioclimatic envelope”, consisting of
a rectilinear region in environmental space represent-
ing the range (or some percentage thereof) of observed
presence values in each environmental dimension. Sim-
ilarly, DOMAIN (Carpenter et al., 1993)uses a similar-
ity metric, where a predicted suitability index is given
by computing the minimum distance in environmental
space to any presence record.

Other techniques use presence and background
data. General-purpose statistical methods such as
generalized linear models (GLMs) and generalized
additive models (GAMs) are commonly used for
modeling with presence–absence datasets. Recently,
they have been applied to presence-only situations by
taking a random sample of pixels from the study area,
known as “background pixels” or “pseudo-absences”,
and using them in place of absences during model-
ing (Ferrier and Watson, 1996; Ferrier et al., 2002).
A sample of the background pixels can be chosen
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absences. It is similar to principal components analysis,
involving a linear transformation of the environmental
space into orthogonal “marginality” and “specializa-
tion” factors. Environmental suitability is then modeled
as a Manhattan distance in the transformed space.

As a first step in the evaluation of Maxent, we chose
to compare it with GARP, as the latter has recently
seen extensive use in presence-only studies (Anderson,
2003; Joseph and Stockwell, 2002; Peterson and Kluza,
2003; Peterson and Robins, 2003; Peterson and Shaw,
2003 and references therein). While further stud-
ies are needed comparing Maxent with other widely
used methods that have been applied to presence-only
datasets, such studies are beyond the scope of this pa-
per.

2. Methods

2.1. Maxent details

2.1.1. The principle
When approximating an unknown probability dis-

tribution, the question arises, what is the best approx-
imation? E.T. Jaynes gave a general answer to this
question: the best approach is to ensure that the ap-
proximation satisfies any constraints on the unknown
distribution that we are aware of, and that subject to
those constraints, the distribution should have max-
imum entropy(Jaynes, 1957). This is known as the
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l., 2004). Similarly, a Bayesian approach(Aspinall,
992) proposed modeling presence versus a ran
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enetic algorithms. It produces a set of positive
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ignificance (compared with random prediction) ba
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nvironmental-Niche Factor Analysis (ENFA,Hirzel
t al., 2002) uses presence localities together w
nvironmental data for the entire study area, with
equiring a sample of the background to be treated
aximum-entropy principle. For our purposes, the
nown probability distribution, which we denoteπ, is
ver a finite setX, (which we will later interpret as th
et of pixels in the study area). We refer to the indi
al elements ofX as points. The distributionπ assigns
non-negative probabilityπ(x) to each pointx, and

hese probabilities sum to 1. Our approximation ofπ is
lso a probability distribution, and we denote itπ̂. The
ntropy ofπ̂ is defined as

(π̂) = −
∑
x∈X

π̂(x) ln π̂(x)

here ln is the natural logarithm. The entropy is n
egative and is at most the natural log of the num
f elements inX. Entropy is a fundamental conce

n information theory: in the paper that originated t
eld,Shannon (1948)described entropy as “a meas
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of how much ‘choice’ is involved in the selection of an
event”. Thus a distribution with higher entropy involves
more choices (i.e., it is less constrained). Therefore,
the maximum entropy principle can be interpreted as
saying that no unfounded constraints should be placed
on π̂, or alternatively,

The fact that a certain probability distribution maxi-
mizes entropy subject to certain constraints represent-
ing our incomplete information, is the fundamental
property which justifies use of that distribution for
inference; it agrees with everything that is known,
but carefully avoids assuming anything that is not
known(Jaynes, 1990).

2.1.2. A machine learning perspective
The maximum entropy principle has seen recent

interest in the machine learning community, with a
major contribution being the development of effi-
cient algorithms for finding the Maxent distribution
(seeBerger et al., 1996for an accessible introduction
andRatnaparkhi, 1998for a variety of applications and
a favorable comparison with decision trees). The ap-
proach consists of formalizing the constraints on the
unknown probability distributionπ in the following
way. We assume that we have a set of known real-
valued functionsf1, . . . , fn onX, known as “features”
(which for our application will be environmental vari-
ables or functions thereof). We assume further that the
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served empirically, i.e.

π̂[fj] = π̃[fj], for each featurefj (1)

It turns out that the mathematical theory of convex
duality can be used(Della Pietra et al., 1997)to show
that this characterization uniquely determinesπ̂, and
thatπ̂ has an alternative characterization, which can be
described as follows. Consider all probability distribu-
tions of the form

qλ(x) = eλ·f (x)

Zλ
(2)

whereλ is a vector ofn real-valued coefficients or fea-
ture weights,f denotes the vector of alln features, and
Zλ is a normalizing constant that ensures thatqλ sums
to 1. Such distributions are known as Gibbs distribu-
tions. Convex duality shows that the Maxent probabil-
ity distribution π̂ is exactly equal to the Gibbs prob-
ability distribution qλ that maximizes the likelihood
(i.e., probability) of them sample points. Equivalently,
it minimizes the negative log likelihood of the sample
points

π̃[− ln(qλ)] (3)

which can also be written lnZλ − 1
m

∑m
i=1 λ · f (xi)

and termed the “log loss”.
As described so far, Maxent can be prone to over-

fitting the training data. The problem derives from the
fact that the empirical feature means will typically not
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eneral, for any probability distributionp and function
, we use the notationp[f ] to denote the expectatio
f f underp.

The feature expectationsπ[fj] can be approximate
sing a set of sample pointsx1, . . . , xm drawn inde
endently fromX (with replacement) according to t
robability distributionπ. The empirical average offj

s 1
m

∑m
i=1 fj(xi), which we can write as̃π[fj] (where

˜ is the uniform distribution on the sample points),
se as an estimate ofπ[fj]. By the maximum entrop
rinciple, therefore, we seek the probability distri

ion π̂ of maximum entropy subject to the constra
hat each featurefj has the same mean underπ̂ as ob-
qual the true means; they will only approximate th
herefore the means underπ̂ should only be restricte

o be close to their empirical values. One way this
e done is to relax the constraint in(1) above(Dud́ık
t al., 2004), replacing it with

π̂[fj] − π̃[fj]| ≤ βj, for each featurefj (4)

or some constantsβj. This also changes the dual ch
cterization, resulting in a form of�1-regularization

he Maxent distribution can now be shown to be
ibbs distribution that minimizes

˜ [− ln(qλ)] +
∑

j

βj|λj| (5)

here the first term is the log loss (as in(3) above)
hile the second term penalizes the use of l
alues for the weightsλj. Regularization forces Ma
nt to focus on the most important features, and�1-
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regularization tends to produce models with few non-
zeroλj values(Williams, 1995). Such models are less
likely to overfit, because they have fewer parameters;
as a general rule, the simplest explanation of a phe-
nomenon is usually best (the principle of parsimony,
Occam’s Razor). Note that�1 regularization has also
been applied to GLM/GAMs, and is called the “lasso”
in that context (Guisan et al., 2002and references
therein).

This maximum likelihood formulation suggests a
natural approach for finding the Maxent probability
distribution: start from the uniform probability distri-
bution, for whichλ = (0, . . . , 0), then repeatedly make
adjustments to one or more of the weightsλj in such
a way that the regularized log loss decreases. Regular-
ized log loss can be shown to be a convex function of the
weights, so no local minima exist, and several convex
optimization methods exist for adjusting the weights in
a way that guarantees convergence to the global min-
imum (see Section2.2 for the algorithm used in this
study).

The above presentation describes an “uncondi-
tional” maximum entropy model. “Conditional” mod-
els are much more common in the machine learning
literature. The task of a conditional Maxent model is
to approximate a joint probability distributionp(x, y)
of the inputsx and output labely. Both presence and
absence data would be required to train a conditional
model of a species’ distribution, which is why we use
unconditional models.
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and record 1 if the species is present there, and 0 other-
wise. If we denote the response variable asy, then under
this sampling strategy,π is the probability distribution
p(x|y = 1). By applying Bayes’ rule, we get thatπ is
proportional to probability of occurrence,p(y = 1|x),
although with presence-only data we cannot determine
the constant of proportionality.

However, most presence-only datasets derive from
surveys where the data model is much less well-defined
that the idealized model presented above. The various
sampling biases described in Section1seriously violate
this data model. In practice, then,π (andπ̂) can be more
conservatively interpreted as a relative index of envi-
ronmental suitability, where higher values represent a
prediction of better conditions for the species (similar
to the relaxed interpretation of GLMs with presence-
only data inFerrier et al. (2002)).

The critical step in formulating the ecological model
is defining a suitable set of features. Indeed, the con-
straints imposed by the features represent our ecologi-
cal assumptions, as we are asserting that they represent
all the environmental factors that constrain the geo-
graphical distribution of the species. We consider five
feature types, described inDud́ık et al. (2004). We did
not use the fourth in our present study, as it may require
more data than were available for our study species.

1. A continuous variablef is itself a “linear feature”.
It imposes the constraint on̂π that the mean of the
environmental variable,̂π[f ], should be close to its
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.1.3. Application to species distribution modeling
Austin (2002)examines three components nee

or statistical modeling of species distributions: an e
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sed, a data model concerning collection of the d
nd a statistical model concerning the statistical
ry. Maxent is a statistical model, and to apply i
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he notation of Section2.1.2, we define the setX to
e the set of pixels in the study area, and interpre
ecorded presence localities for the species as sa
ointsx1, . . . , xm taken from an unknown probabili
istributionπ. The data model consists of the meth
y which the presence localities were collected.

dealized sampling strategy is to pick a random pi
observed value, i.e., its mean on the sample lo
ties.

. The square of a continuous variablef is a “quadratic
feature”. When used with the corresponding lin
feature, it imposes the constraint onπ̂ that the vari
ance of the environmental variable should be c
to its observed value, since the variance is equ
π̂[f 2] − π̂[f ]2. It models the species’ tolerance
variation from its optimal conditions.

. The product of two continuous environmental v
ablesf andg is a “product feature”. Together with t
linear features forf andg, it imposes the constrai
that the covariance of those two variables sh
be close to its observed value, since the covari
is π̂[fg] − π̂[f ]π̂[g]. Product features therefore
corporate interactions between predictor variab

. For a continuous environmental variablef, a “thresh
old feature” is equal to 1 whenf is above a give
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threshold, and 0 otherwise. It imposes the following
constraint: the proportion ofπ that has values forf
above the threshold should be close to the observed
proportion. All possible threshold features forf to-
gether allow Maxent to model an arbitrary response
curve of the species tof, as any smooth function can
be approximated by a linear combination of thresh-
old functions.

5. For a categorical environmental variable that takes
on valuesv1 . . . vk, we usek “binary features”,
where theith feature is 1 wherever the variable
equalsvi, and 0 otherwise. As with threshold fea-
tures, these binary features constrain the proportion
of π̂ in each category to be close to the observed
proportion.

For each of these feature types, the corresponding
regularization parameterβj governs how close the ex-
pectation under̂π is required to be to the observed
value; without regularization, they are required to be
equal (Section2.1.2). The above list of features types
is not exhaustive, and additional feature types could be
derived from the same environmental variables. The
features used should be those that likely constrain the
geographic distribution of the species.

The applicability of the maximum entropy prin-
ciple to species distributions is supported by ther-
modynamic theories of ecological processes(Aoki,
1989; Schneider and Kay, 1994). The second law
of thermodynamics specifies that in systems with-
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restrict our discussion to�1-regularized unconditional
Maxent, as described in Section2.1.2.

Theoretically, Maxent is most similar to GLMs and
GAMs. In what follows, we use the terminology ofYee
and Mitchell (1991). A frequently-used GLM is the
Guassian logit model, in which the logit of the predicted
probability of occurrence is

α + β1f1(x) + γ1f1(x)2 + . . . + βnfn(x) + γnfn(x)2

(6)

where thefj are environmental variables,α, βj and
γj are fitted coefficients, and the logit function is de-
fined by logit(p) = ln( p

1−p
). The expression in(6) is

the same form as the log (rather than logit) of the prob-
ability of the pixel x in a Maxent model with linear
and quadratic features. A common method for mod-
eling interactions between variables in a GLM is to
create product variables, which is analogous to the use
of product features in Maxent.

In the same way, if probability of occurrence is mod-
eled with a GAM using a logit link function, the logit
of the predicted probability has the form

g1(f1(x)) + . . . + gn(fn(x))

where thefi are again environmental variables. Thegi

are smooth functions fit by the model, with the amount
of smoothing controlled by a width parameter. This is
the same form as the log probability of the pixelx in a
M iza-
t oth-
e pe
o le is
d

ces
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d only
d true
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c x of
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r cies
r xent
ut outside influences, processes move in a dire
hat maximizes entropy. Thus, in the absence o
uences other than those included as constrain
he model, the geographic distribution of a spe
ill indeed tend toward the distribution of maximu
ntropy.

.1.4. Relationships to other modeling approaches
Maxent has strong similarities to some exist

ethods for modeling species distributions, in pa
lar, generalized linear models (GLMs), generali
dditive models (GAMs) and machine learning me
ds such as Bayesian approaches and neural netw
LMs, GAMs, Bayesian approaches and neural
orks are all broad classes of techniques, and we
ere only to the way they have been applied to prese
nly modeling of species distributions. Similarly, Ma
nt generally refers to a class of techniques, bu
.

axent model with threshold features, and regular
ion has an analogous effect to smoothing on the
rwise arbitrary functionsgi. In both cases, the sha
f the response curve to each environmental variab
etermined by the data.

Despite these similarities, important differen
xist between GLM/GAMs and Maxent, causing th
o make different predictions. When GLM/GAM
re used to model probability of occurrence, abs
ata are required. When applied to presence-
ata, background pixels must be used instead of
bsences(Ferrier and Watson, 1996; Ferrier et
002). However, the interpretation of the result is l
lear-cut—it must be interpreted as a relative inde
nvironmental suitability. In contrast, Maxent mod
probability distribution over the pixels in the stu

egion, and in no sense are pixels without spe
ecords interpreted as absences. In addition, Ma
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is a generative approach, whereas GLM/GAMs are
discriminative, and generative methods may give
better predictions when the amount of training data is
small (Ng and Jordan, 2001). For a joint probability
distributionp(x, y), a discriminative classifier models
the posterior probabilityp(y|x) directly, in order to
choose the most likely labely for given inputsx.
Typically, a generative classifier models the distribu-
tion p(x, y) or p(x|y), and relies on Bayes’ rule to
determinep(y|x). Our unconditional Maxent models
are generative: we model a distributionp(x|y = 1).

Maxent shares with other machine learning methods
an emphasis on probabilistic reasoning. Regulariza-
tion, which penalizes the use of large values of model
parameters, can be interpreted as the use of a Bayesian
prior (Williams, 1995). However, Maxent is quite dif-
ferent from the particular Bayesian species modeling
approach ofAspinall (1992). The latter approach is
known as “naive Bayes” in the machine learning liter-
ature, and assumes independence of the environmental
variables. This assumption is frequently not met for
environmental data.

The data requirements of Maxent are closest to those
of environmental niche factor analysis (ENFA), which
also uses presence data in combination with environ-
mental data for the whole study area (although both
could use only a random sample of background pixels
to improve running time).

2.2. A Maxent implementation for modeling
s

for
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m e of
f ple-
m
a s
i ss.
T d to
c he
a iter-
a n log
l lue
(

n-
n rea.
B prob-

ability is typically extremely small. Although these
“raw” probabilities are an optional output, by default
our software presents the probability distribution in an-
other form that is easier to use and interpret, namely
a “cumulative” representation. The value assigned to a
pixel is the sum of the probabilities of that pixel and all
other pixels with equal or lower probability, multiplied
by 100 to give a percentage. The cumulative representa-
tion can be interpreted as follows: if we resample pixels
according to the modeled Maxent probability distribu-
tion, thent% of the resampled pixels will have cumula-
tive value oft or less. Thus, if the Maxent distribution
π̂ is a close approximation of the probability distribu-
tionπ that represents reality, the binary model obtained
by setting a threshold oft will have approximately
t% omission of test localities and minimum predicted
area among all such models (cf. the “minimal predicted
area” evaluation measure ofEngler et al. (2004)). This
provides a theoretical foundation that aids in the selec-
tion of a threshold when a binary prediction is required.

Our Maxent implementation has a straightforward
graphical user interface (Fig. 1). It also has a command-
line interface, allowing it to be run automatically
from scripts for batch processing. It is written in
Java, so it can be used on all modern comput-
ing platforms, and is freely available on the world-
wide web athttp://www.cs.princeton.edu/∼schapire/
maxent. The user-specified parameters and their
default values (which we used in all runs de-
scribed below) are: convergence threshold= 10−5,
m
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In order to make the Maxent method available
odeling species geographic distributions, we im
ented an efficient algorithm together with a choic

eature types that are well suited to the task. Our im
entation uses a sequential-update algorithm(Dud́ık et
l., 2004)that iteratively picks a weightλj and adjust

t so as to minimize the resulting regularized log lo
he algorithm is deterministic, and is guarantee
onverge to the Maxent probability distribution. T
lgorithm stops when a user-specified number of
tions has been performed, or when the change i

oss in an iteration falls below a user-specified va
convergence), whichever happens first.

As described in Section2.1, Maxent assigns a no
egative probability to each pixel in the study a
ecause these probabilities must sum to 1, each
aximum iterations= 1000, regularization valueβ =
0−4, and use of linear, quadratic, product and bin

eatures. The first two parameters are conservative
es that allow the algorithm to get close to con
ence. The small value ofβ has minimal effect on th
rediction but avoids potential numerical difficult
y keepingλ values from tending to infinity; how
hoose the best regularization parameters is a top
ngoing research (seeDud́ık et al. (2004)).1

1 A later version of the software, Version 1.8.1, was posted o
eb site during review of this paper. It allows eachβj to depend
n observed variability in the corresponding feature, as desc

n Dud́ık et al. (2004). The recommended regularization is now
ained by setting the regularization parameter to “auto”, allowin
rogram to select an amount of regularization that is appropria

he types of features used and the number of sample localities
ersion of the software used in the present study (Version 1.0
vailable on the web site) uses the same valueβ for all βj .

http://www.cs.princeton.edu/~schapire/maxent
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Fig. 1. User interface for the Maxent application (Version 1.0) for modeling species geographic distributions using georeferenced occurrence
records and environmental variables. The interface allows for the use of both continuous and categorical environmental data, and linear, quadratic,
and product features. See Section2 for further documentation.

2.3. GARP

In its simplest form, GARP seeks a collection of
rules that together produce a binary prediction. Posi-
tive rules predict suitable conditions for pixels satis-
fying some set of environmental conditions; similarly,
negative rules predict unsuitable conditions. Rules are
favored in the algorithm according to their significance
(compared with random prediction) based on a sample
of 1250 presence pixels and 1250 background pixels,
sampled with replacement. Some pixels may receive no
prediction, if no rule in the rule-set applies to them, and
some may require resolution of conflicting predictions.
A genetic algorithm is used to search heuristically for
a good rule-set(Stockwell and Noble, 1992).

There is considerable random variability in GARP
predictions, so we implemented the best-subset model
selection procedure as follows, similar toPeterson and
Shaw (2003)and following the general recommenda-
tions ofAnderson et al. (2003). First, we generated 100
binary models, with pixels that did not received a pre-
diction interpreted as predicted absence, using GARP
version 1.1.3 with default values for its parameters

(0.01 convergence limit, 1000 maximum iterations, and
allowing the use of atomic, range, negated range and
logit rules). We then eliminated all models with more
than 5% intrinsic omission (of training localities). If at
most 10 models remained, they then constituted the best
subset (this happened 4 out of 44 times, yielding best
subsets with 5, 7, 8 and 9 models). In all other cases,
we determined the median value of the predicted area
of the remaining models, and selected the 10 models
whose predicted area was closest to the median. Fi-
nally, we combined the best-subset models to make a
composite GARP prediction, in which the value of a
pixel was equal to the number of best-subset models in
which the pixel was predicted present (0–10).

2.4. Data sources

2.4.1. Study species
The brown-throated three-toed slothBradypus var-

iegatus (Xenarthra: Bradypodidae) is a large arbo-
real mammal (3–6 kg) that is widely distributed in the
Neotropics from Honduras to northern Argentina. It is
found primarily in lowland areas but also ranges up to
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middle elevations. It has been documented in regions
of deciduous forest, evergreen rainforest and montane
forest, but is absent from xeric areas and non-forested
regions(Anderson and Handley, 2001). Three other
species are known in the genus.B. pygmaeus is endemic
to Isla Escudo on the Caribbean coast of Panama, and
two species have geographic distributions restricted to
South America:B. tridactylus in the Guianan region
andB. torquatus in the Atlantic forests of Brazil. The
latter two species show geographic distributions that
likely come into contact (or did historically) with that
of B. variegatus, but areas of sympatry are apparently
minimal.

Microryzomys minutus (Rodentia: Muridae) is a
small-bodied rodent (10–20 g) known from middle-to-
high elevations of the Andes and associated moun-
tain chains from Venezuela to Bolivia(Carleton and
Musser, 1989). It occupies an elevational range of ap-
proximately 1000–4000 m and has been recorded pri-
marily in wet montane forests, although sometimes in
mesicpáramo habitats above treeline (in thepáramo-
forest ecotone). A congeneric species,M. altissimus,

occupies generally higher elevations in much of this re-
gion, but occasionally the two have been found in sym-
patry.M. minutus has not been encountered in lowland
regions (below approximately 1000 m). Likewise, it is
apparently absent from openpáramo far from forests,
dry puna habitat above treeline, and obviously from
permanent glaciers on the highest mountain peaks.

These two species hold several characteristics con-
ducive to their use in evaluating the utility of Maxent in
modeling species distributions. First of all, they show
widespread geographic distributions with clear ecolog-
ical/environmental patterns. Secondly, they have been
the subject of recent taxonomic revisions by specialists.
Finally, those revisions provide a reasonable number
of georeferenced occurrence localities for each species
based on confirmed museum specimens (128 forB.
variegatus, Anderson and Handley, 2001; 88 for M.
minutus, Carleton and Musser, 1989; Fig. 2).

2.4.2. Environmental variables
We examine the species’ potential distributions in

the Neotropics from southeastern Mexico to Argentina

F 116 re in
t orted i
M

ig. 2. Occurrence records forBradypus variegatus (triangles; left,
his study. Data derive from vouchered museum specimens rep
usser, 1989).
cords) andMicroryzomys minutus (circles; right, 88 records) used
n recent taxonomic revisions (Anderson and Handley, 2001; Carleton and
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(23.55◦ N – 56.05◦ S, 94.8◦ W – 34.2◦ W), including
the Caribbean from Cuba southward. The environmen-
tal variables fall into three categories: climate, elevation
and potential vegetation. All variables are recorded at
a pixel size of 0.05◦ by 0.05◦, yielding a 1212× 1592
grid, with 648,658 pixels containing data for all vari-
ables.

The climatic variables derive from data provided
by the Intergovernmental Panel on Climate Change
(IPCC;New et al., 1999). The original variables have
a resolution of 0.5◦ by 0.5◦, and were produced us-
ing thin-plate spline interpolation based on readings
taken at weather stations around the world from 1961
to 1990. They describe mean monthly values of various
variables, which we processed to convert to ascii raster
grid format, as required by GARP and Maxent. From
these monthly data, we also created annual variables
by averaging or taking the minimum or maximum as
appropriate.

Of the many monthly and annual variables avail-
able, we selected the following twelve, based on our
assessment that they would likely have relevance for the
species being modeled (see alsoPeterson and Cohoon,
1999): annual cloud cover; annual diurnal temperature
range; annual frost frequency; annual vapor pressure;
January, April, July, October and annual precipitation;
and minimum, maximum and mean annual tempera-
ture. We used bilinear interpolation to resample to a
pixel size of 0.05◦ by 0.05◦. Although this resampling
clearly does not actually increase the resolution of the
d an
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data differed slightly from the description and map
in Dinerstein et al. (1995)by having 15 rather than
11 major habitat types. The differences arise from
the addition of a snow/ice/glaciers/rock category,
a tundra category and a water category; deletion
of the restingas category; splitting of grassland
savannas and shrublands into temperate versus tropi-
cal/subtropical categories; and splitting of temperate
forests into temperate coniferous and temperate
broadleaf and mixed forests. The processed climatic
variables (at the original resolution), all resampled
variables, and the occurrence localities are available
athttp://www.cs.princeton.edu/∼schapire/maxent.

2.5. Model building

For each species, we made 10 random partitions of
the occurrence localities. Each partition was created
by randomly selecting 70% of the occurrence localities
as training data, with the remaining 30% reserved for
testing the resulting models. Twelve of the original 128
localities forB. variegatus lay in coastal areas or on
islands that were missing data for one or more of the
environmental variables, and were excluded from this
study. Each partition forB. variegatus thus held 81
training localities and 35 test localities, and those forM.
minutus held 61 training localities and 27 test localities.

We made 10 random partitions rather than a single
one in order to assess the average behavior of the algo-
rithms, and to allow for statistical testing of observed
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ata, bilinear interpolation is likely more realistic th
imply using nearest-neighbor interpolation.

Two other variables were used in addition to
limatic data. An elevation variable was derived fr
SGS HYDRO1k data(USGS, 2001)by resampling

rom the original finer resolution (1 km pixels) to 0.05◦
y 0.05◦. Finally, we used a potential vegetation va
ble, consisting of a partition of Latin America and
aribbean into “major habitat types”, produced as
f a terrestrial conservation assessment(Dinerstein
t al., 1995). This variable does not take into acco
istorical (contingent) biogeographic informat
r human-induced changes, and represents a r
truction of original vegetation types in the regi
e used digital data on 15 major habitat types

ector coverage (shape file), which we converte
grid with resolution of 0.05◦ by 0.05◦ coinciden
ith the climatic and elevational variables. The dig
ifferences in performance (via Wilcoxon signed-r
ests). In addition, the algorithms were also run on
ull set of occurrence localities, taking advantage o
vailable data to provide best estimates of the spe
otential distributions for visual interpretation.

The algorithms (Maxent and GARP) were run w
wo suites of environmental variables: first with o
limatic and elevational data, and then with those v
bles plus potential vegetation. The reasons for tre
otential vegetation separately are three-fold: (1)
atic and elevational data are readily available for
hole world (whereas potential vegetation is not),
e wished to determine whether good models ca
reated using uniformly available data. (2) The po
ial vegetation coverage is rather subjective, whe
he others are objectively produced from meas
ata. (3) Potential vegetation is the only catego
ariable, and the potential existed for the algorith

http://www.cs.princeton.edu/~schapire/maxent
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to respond differently to categorical versus continuous
data.

2.6. Model evaluation

The first step in evaluating the models produced by
the two algorithms was to verify that both performed
significantly better than random. For this purpose, we
first used a (threshold-dependent) binomial test based
on omission and predicted area. However, it does not
allow for comparisons between algorithms, as the sig-
nificance of the test is highly dependent on predicted
area. Indeed, comparison of the algorithms is made
difficult by the fact that neither gives a binary pre-
diction. Hence, we also used two comparative statisti-
cal tests that employ very different means to overcome
this complication. First, we employed a new threshold-
dependent method of model evaluation, which we term
the “equalized predicted area” test, whose purpose is to
answer the following question: at the commonly used
thresholds representing the extremes of the GARP pre-
diction, how does Maxent compare? Second, we used
(threshold-independent) receiver operating character-
istic (ROC) analysis, which characterizes the perfor-
mance of a model at all possible thresholds by a single
number, the area under the curve (AUC), which may
be then compared between algorithms.

2.6.1. Threshold-dependent evaluation
After applying a threshold, model performance can

b
i els
n
p ll
t cies.
A ent)
c
c por-
t tion
a

ine
w ntly
b
a -
t at
t from
t a
I ine

the probability of having at leastt(1 − r) successes out
of t trials, each with probabilitya. Although the prob-
abilities for such tests are often approximated using
a χ2 or z test (for large sample sizes), we calculated
exact probabilities for the binomial test usingMinitab
(1998).

The binomial test requires that thresholds be used, in
order to convert continuous Maxent and discrete GARP
predictions into binary predictions delimiting the suit-
able versus unsuitable areas for the species. A good
general rule for determining an appropriate threshold
would depend at least on the following factors: the
predicted values assigned to the training localities, the
number of training localities and the context in which
the prediction is to be used. Nevertheless, for each run
of each algorithm, we simply used the minimum pre-
dicted value assigned to any of the training localities as
the threshold. However, for four of the twenty GARP
runs, such a threshold would cause the whole study
area to be predicted (as some training localities fell in
pixels not predicted by any of the best-subset models).
In those cases, we used the smallest non-zero predicted
value among the training localities.

Because this omission test is highly sensitive to the
proportional predicted area(Anderson et al., 2003), it
cannot be used to compare model performance between
two algorithms directly. Hence, we propose an “equal-
ized predicted area” test, which chooses thresholds so
that the two binary models have the same predicted
area, allowing direct comparison of omission rates.
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e investigated using theextrinsic omission rate, which
s the fraction of the test localities that fall into pix
ot predicted as suitable for the species, and thepro-
ortional predicted area, which is the fraction of a
he pixels that are predicted as suitable for the spe

low omission rate is a necessary (but not suffici
ondition for a good model(Anderson et al., 2003). In
ontrast, it might be necessary to predict a large pro
ional area to model the species’ potential distribu
dequately.

A one-tailed binomial test can be used to determ
hether a model predicts the test localities significa
etter than random(Anderson et al., 2002). Say there
ret test localities, the omission rate isr, and the propor

ional predicted area isa. The null hypothesis states th
he model is no better than one randomly selected
he set of all models with proportional predicted area.
t is tested using a one-tailed binomial test to determ
ere, composite GARP models have little flexibility
he choice of threshold. On the other hand, Maxent
ictions, being continuous, can be thresholded to o
ny desired predicted area. So, we set a thresho
ach Maxent prediction to give the same predicted
s the corresponding GARP prediction. A two-ta
ilcoxon signed-rank test (a non-parametric equ

ent of a pairedt-test) can then be used to determ
hether the observed difference in omission rates

ween the two algorithms at the given predicted
s statistically significant. We used this test to comp

axent predictions with two thresholds of the co
osite GARP predictions, namely 1 (any best-su
odel) and 10 (all best-subset models; seeAnderson
nd Mart́ınez-Meyer, 2004). These are natural thres
lds for GARP that are frequently used in practice

or reasons of conciseness, we do not consider i
ediate thresholds. For some data partitions forB. var-
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iegatus, the maximum value of the composite GARP
model was less than 10 (because fewer than 10 GARP
models met the best-subset criteria), in which case we
used the maximum predicted value instead of 10.

The thresholds and resulting predicted areas used
above are not necessarily optimal for either algorithm.
Rather, they were chosen to facilitate statistical analy-
sis of the algorithms. Note that we are not suggesting
that GARP should or need be used in general to select a
threshold for Maxent predictions when binary predic-
tions are desired. Rather, we took advantage of the flex-
ibility of Maxent’s continuous outputs to allow direct
comparisons of omission rates between it and GARP.
Determining optimal thresholds for Maxent models re-
mains a topic of future research. In practice, thresholds
would currently be chosen by hand, since no general-
purpose thresholding rule has been developed yet for
either algorithm (but see Section2.2for theoretical ex-
pectations for Maxent).

2.6.2. Threshold-independent evaluation
A second common approach compares model

performance using receiver operating characteris-
tic (ROC) curves. ROC analysis was developed in
signal processing and is widely used in clinical
medicine(Hanley and McNeil, 1982, 1983; Zweig and
Campbell, 1993). The main advantage of ROC analy-
sis is that area under the ROC curve (AUC) provides
a single measure of model performance, independent
of any particular choice of threshold. ROC analysis
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1–specificity is also known as the false positive rate,
and represents commission error.

The ROC curve is obtained by plotting sensitivity
on they axis and 1–specificity on thex axis for all pos-
sible thresholds. For a continuous prediction, the ROC
curve typically contains one point for each test instance,
while for a discrete prediction, there will typically be
one point for each of the different predicted values, in
addition to the origin. The area under the curve (AUC)
is usually determined by connecting the points with
straight lines; this is called the trapezoid method (as
opposed to parametric methods, which fit a curve to
the points). The AUC has an intuitive interpretation,
namely the probability that a random positive instance
and a random negative instance are correctly ordered
by the classifier. This interpretation indicates that the
AUC is not sensitive to the relative numbers of positive
and negative instances in the test data set.

When only presence data are available, it would
appear that ROC curves are inapplicable, since with-
out absences, there seems to be no source of negative
instances with which to measure specificity (see Sec-
tion 1.1, and the discussion of real and apparent com-
mission error inAnderson et al. (2003)andKarl et al.
(2002)). However, we can avoid this problem by con-
sidering a different classification problem, namely, the
task of distinguishing presence from random, rather
than presence from absence. More formally, for each
pixel x in the study area, we define a negative instance
xrandom. Similarly, for each pixelx that is included
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as recently been applied to a variety of classifica
roblems in machine learning (for exampleProvos
nd Fawcett, 1997) and in the evaluation of mode
f species distributions(Elith, 2002; Fielding and Bel
997).

Here we will first describe ROC curves in gene
erms, followingFawcett (2003), before demonstratin
ow they apply to presence-only modeling. Cons
classification problem, where each instance is e
ositive or negative. A classifier assigns a real v

o each instance, to which a threshold may be ap
o predict class membership; for clarity we use la
Y,N} for the class predictions. Thesensitivity of a clas-
ifier for a particular threshold is the fraction of all p
tive instances that are classifiedY, while specificity is
he fraction of all negative instances that are class
. Sensitivity is also known as the true positive r
nd represents absence of omission error. The qu
n the species’ true geographic distribution, we
ne a positive instancexpresence. A species distri
ution model can then make predictions for the pi
orresponding to these instances, without seeing
abelsrandom or presence. Thus, we can mak
redictions for both a sample of positive instan
the presence localities) and a sample of negativ
tances (background pixels chosen uniformly at
om, or according to another background distribu
s described in Section1.3). Together these are su
cient to define an ROC curve, which can then
nalyzed with all the standard statistical method
OC analysis. This process can be interpreted as
seudo-absence in place of absence in the ROC
sis, as is done inWiley et al. (2003). However, we
elieve that the observation that the statistical met
f ROC analysis can be applied without prejudice
resence/random data is new.
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The above treatment differs from the use of ROC
analysis on presence/absence data in one important re-
spect: with presence-only data, the maximum achiev-
able AUC is less than 1(Wiley et al., 2003). If the
species’ distribution covers a fractiona of the pixels,
then the maximum achievable AUC can be shown to
be exactly 1− a/2. Unfortunately, we typically do not
know the value ofa, so we cannot say how close to
optimal a given AUC value is. Nevertheless, we can
still use standard methods to determine statistical sig-
nificance of the AUC, and to distinguish between the
predictive power of different classifiers. We note that
random prediction still corresponds to an AUC of 0.5.

We used AccuROC Version 2.5(Vida, 1993)for the
ROC analyses. AccuROC uses the trapezoid method, as
described above. To test if a prediction is significantly
better than random, AccuROC uses a ties-corrected
Mann–Whitney-U statistic, which it approximates us-
ing az-statistic. It uses a non-parametric test(DeLong
et al., 1988)to determine whether one prediction is
significantly better than another when using correlated
samples (i.e., with both predictions evaluated on the
same test instances), and reports the result as aχ2

statistic and correspondingp value. For each ROC
analysis, we used all the test localities for the species
as presence instances, and a sample of 10,000 pix-
els drawn randomly from the study region as random
instances.
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significance, omission rates were consistently low or
zero, never exceeding 17% (Table 1).

The results of the equalized predicted area test dif-
fered between the species (Tables 2 and 3). For B.
variegatus, the omission rates of the two algorithms
were lower for Maxent in 16 cases, equal in 15 cases,
and lower for GARP in 9 cases. However, two-tailed
Wilcoxon signed-rank tests did not reveal a significant
difference in median omission rates for either thresh-
old or either variable suite (p = 0.178 and 0.314 for
thresholds of 1 and 10, respectively, with climatic and
elevational variables;p = 0.371 and 0.155 for thresh-
olds of 1 and 10, respectively, with addition of the po-
tential vegetation variable).

Maxent almost always had equal or lower omission
than GARP forM. minutus (19 out of 20 models). The
difference in median omission rates was significant at
both thresholds on runs with climatic and elevational
variables (p = 0.036 andp = 0.014 for thresholds of 1
and 10, respectively; two-tailed Wilcoxon signed-rank
test). When the potential vegetation variable was added,
the difference in median omission rates was highly sig-
nificant for a threshold of 10, but not for a threshold of
1 (p = 0.009 and 0.345, respectively), largely because
Maxent had greater omission than before on data par-
tition 2, discussed below (Section4.3).

3.1.2. Threshold-independent tests
For all partitions of the occurrence data, the
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.1. Quantitative results

.1.1. Threshold-dependent omission tests
Both algorithms consistently produced predicti

hat were better than random. Using the sim
hreshold rule (Section2.6.1), the binomial omissio
est was highly significant (p < 0.001, one-tailed) fo
oth algorithms on all data partitions for each spe
seeTable 1for details on runs with the climatic an
levational variables; results on the variable s

ncluding potential vegetation were similar). For M
nt, the thresholds determined by the simple thres
ule ranged from 0.022 to 2.564 forB. variegatus
nd 0.543 to 3.822 forM. minutus. For GARP, the

hresholds ranged from 1 to 7 forB. variegatus and
to 10 for M. minutus. In addition to statistica
ighly statistically significant for both algorithms a
ariable suites (p < 0.0001), again indicating bette
han-random predictions. The Maxent AUC was sig
cantly greater than that of GARP (p < 0.05; two-tailed
on-parametric test ofDeLong et al., 1988; see Meth
ds) in all data partitions exceptB. variegatus-4 andB.
ariegatus-8 for models using the climatic and ele
ional variables, andB. variegatus-8 andM. minutus-2
hen potential vegetation was added (Table 4).
Addition of the potential vegetation variable sho

ncrease the AUC, since there is more informa
vailable to the classifier. This was true in genera
axent and in some cases for GARP (Table 4). For
axent onB. variegatus, the overall increase in m
ian AUC approached significance (p = 0.093, one

ailed Wilcoxon signed rank test). However, for GA
he test was not significant (p = 0.949); indeed, th
UC generally decreased. ForM. minutus, the AUC
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Table 1
Results of the threshold-dependent binomial tests of omission

Data partition Maxent GARP

Area Omission rate Area Omission rate

Bradypus variegatus-1 0.51 0.03 0.41 0.11
B. variegatus-2 0.66 0 0.56 0.06
B. variegatus-3 0.80 0 0.61 0.03
B. variegatus-4 0.42 0.17 0.51 0
B. variegatus-5 0.75 0.03 0.57 0.06
B. variegatus-6 0.62 0 0.54 0
B. variegatus-7 0.59 0 0.53 0
B. variegatus-8 0.59 0.06 0.62 0
B. variegatus-9 0.69 0 0.66 0
B. variegatus-10 0.62 0.06 0.44 0.06
Average 0.626 0.034 0.545 0.031

Microryzomys minutus-1 0.03 0.11 0.06 0.15
M. minutus-2 0.04 0.11 0.06 0.15
M. minutus-3 0.03 0.11 0.07 0.15
M. minutus-4 0.04 0.04 0.08 0.04
M. minutus-5 0.03 0.04 0.06 0.15
M. minutus-6 0.04 0.15 0.06 0.11
M. minutus-7 0.05 0 0.09 0.07
M. minutus-8 0.04 0.04 0.10 0
M. minutus-9 0.03 0.07 0.10 0
M. minutus-10 0.03 0.11 0.08 0.07
Average 0.035 0.078 0.075 0.089

Area (proportion of the study area predicted) and extrinsic omission rate (proportion of the test localities falling outside the prediction) are given
for each of 10 random data partitions for Maxent and GARP. For bothB. variegatus andM. minutus, the binomial test was highly significant for
all partitions (p < 0.001, one-tailed). Models were derived using the climatic and elevational variables for each random partition of occurrence
records, and area and omission rates were calculated using simple threshold rules based on the training localities (see Section2). The results
for models made with the addition of the potential vegetation variable were similar but are not shown here (see Section3). The omission rates
should not be compared between algorithms, as they are strongly affected by differences in predicted area. The simple threshold rule used here
for Maxent is not recommended for general use in practice; in this case, it gives too high a threshold for Maxent onB. variegatus-4, causing a
high omission rate, and too low a threshold onB. variegatus-3, resulting in too much predicted area.

usually increased for both Maxent and GARP, with re-
sults significant or nearly so for both (p = 0.051 and
0.033, respectively, although performance was poorer
for Maxent on data partition 2; see Section4.3). While
the differences in AUC values are very small, the
changes may still be meaningful biologically. For ex-
ample, the largest visual effect of adding potential veg-
etation for Maxent was to (correctly) exclude some
non-forested areas from the prediction forB. varie-
gatus (Section3.2.2). However, because of the small
geographic extent of those areas, the effect on AUC
values was small.

The ROC curves for the two algorithms showed dis-
tinct patterns, evident in the curves for the first random
data partition for each species, for models made using
climatic and elevational variables (Fig. 3). In the case

of M. minutus, the performance of Maxent was better
across the entire spectrum: for any given omission rate,
Maxent achieved that rate with a lower false positive
rate (1–specificity, which is almost identical to propor-
tional predicted area, see Section2). The results withB.
variegatus were more complex. There is a point where
the ROC curves for the two algorithms intersect, cor-
responding to a sensitivity of 0.83 (omission rate of
0.17) and a false positive rate of 0.27. At that point,
therefore, the performance of the two algorithms was
the same. A small component of the higher AUC for
Maxent was due to the lower omission rate it achieved
to the right of that point. However, most of Maxent’s
higher AUC occurred to the left of that point, where
many test localities fell in small areas very strongly
predicted by Maxent. In contrast, GARP did not differ-
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Table 2
Results of the equalized predicted area tests of omission forB. variegatus andM. minutus produced with Maxent and GARP using the climatic
and elevational variables

Data partition GARP threshold = 1 GARP threshold = 10

Area Maxent omission GARP omission Area Maxent omission GARP omission

B. variegatus-1 0.59 0.03 0.03 0.27 0.17 0.17
B. variegatus-2 0.56 0.03 0.06 0.34 0.11 0.17
B. variegatus-3 0.61 0.06 0.03 0.33 0.09 0.17
B. variegatus-4 0.63 0.14 0 0.40 0.17 0.06
B. variegatus-5 0.67 0.03 0 0.36 0.11 0.26
B. variegatus-6 0.69 0 0 0.29 0.14 0.11
B. variegatus-7 0.74 0 0 0.31 0.03 0.14
B. variegatus-8 0.69 0 0 0.33 0.17 0.11
B. variegatus-9 0.72 0 0 0.36 0.06 0.11
B. variegatus-10 0.61 0.06 0.03 0.34 0.14 0.17
Average 0.652 0.034 0.014 0.333 0.120 0.149

M. minutus-1 0.12 0 0.07 0.06 0.04 0.15
M. minutus-2 0.10 0 0.07 0.06 0.04 0.15
M. minutus-3 0.16 0 0.04 0.07 0.07 0.15
M. minutus-4 0.17 0 0.04 0.08 0.04 0.04
M. minutus-5 0.12 0 0.07 0.06 0 0.15
M. minutus-6 0.12 0 0.04 0.06 0.07 0.11
M. minutus-7 0.16 0 0 0.09 0 0.07
M. minutus-8 0.17 0 0 0.09 0 0
M. minutus-9 0.17 0 0 0.09 0 0.04
M. minutus-10 0.18 0 0 0.08 0 0.07
Average 0.146 0 0.033 0.073 0.026 0.093

Area (proportion of the study area predicted by GARP with the indicated threshold) and extrinsic omission rate (proportion of test localities
falling outside the prediction) for each algorithm are given for each random partition of occurrence records under two threshold scenarios.
Thresholds were set for the extremes of the GARP predictions: any GARP model predicting presence (GARP threshold = 1) and all 10 GARP
models predicting presence (GARP threshold = 10). To allow for direct comparison of omission rates between the algorithms, thresholds were
then set for each Maxent model to yield a binary prediction with the same area as the corresponding GARP prediction.

entiate environmental quality to the left of that point,
as all pixels there were predicted by all 10 of the best-
subset models. Results for other data partitions were
roughly similar (not shown).

3.2. Visual interpretation

The output format differs dramatically between
Maxent and GARP, so care must be taken when making
comparisons between them. Maxent produces a con-
tinuous prediction with values ranging from 0 to 100,
whereas GARP, as used here, yields a discrete compos-
ite prediction with integer values from 0 to 10. Visual
inspection of the Maxent predictions for both species
indicated that a low threshold was appropriate, and in
general terms, pixels with predicted values of at least
1 may be interpreted as a reasonable approximation of
the species’ potential distribution. This is in concor-

dance with the thresholds obtained in Section3.1.1,
and the theoretical expectation that the omission rate
for a thresholded cumulative prediction will be approx-
imately equal to the threshold value (see Section2.2).
For GARP, visual inspection suggested a higher thresh-
old in the range 5–10 was appropriate for approximat-
ing the species’ potential distribution. In the following
sections, we interpret the models under this framework.

3.2.1. Models derived from climatic and
elevational variables

When using the full set of occurrence localities for
each species, the two algorithms produced broadly
similar predictions for the potential geographic distri-
bution ofB. variegatus (Fig. 4). For this species, both
algorithms indicated suitable conditions throughout
most of lowland Central America, wet lowland areas
of northwestern South America, most of the Amazon
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Table 3
Results of the equalized predicted area tests of omission forB. variegatus andM. minutus produced with Maxent and GARP using the climatic,
elevational and potential vegetation variables

Data partition GARP threshold = 1 GARP threshold = 10

Area Maxent omission GARP omission Area Maxent omission GARP omission

B. variegatus-1 0.57 0.03 0.03 0.28 0.20 0.23
B. variegatus-2 0.58 0 0.06 0.29 0.11 0.29
B. variegatus-3 0.67 0 0.03 0.33 0.14 0.11
B. variegatus-4 0.67 0 0 0.42 0.06 0.11
B. variegatus-5 0.67 0.03 0.03 0.36 0.14 0.17
B. variegatus-6 0.71 0 0 0.28 0.17 0.17
B. variegatus-7 0.74 0 0 0.33 0.06 0.20
B. variegatus-8 0.67 0 0 0.34 0.20 0.17
B. variegatus-9 0.78 0 0 0.39 0.03 0.06
B. variegatus-10 0.67 0 0 0.36 0.14 0.17
Average 0.672 0.006 0.014 0.337 0.126 0.169

M. minutus-1 0.12 0 0.04 0.06 0.04 0.15
M. minutus-2 0.11 0.11 0.04 0.06 0.15 0.19
M. minutus-3 0.13 0 0.04 0.07 0.04 0.15
M. minutus-4 0.15 0 0.04 0.08 0.04 0.04
M. minutus-5 0.12 0 0.07 0.06 0 0.15
M. minutus-6 0.14 0 0 0.05 0.04 0.11
M. minutus-7 0.16 0 0.04 0.08 0 0.07
M. minutus-8 0.16 0 0 0.08 0 0.04
M. minutus-9 0.16 0 0 0.08 0 0.07
M. minutus-10 0.17 0 0 0.07 0 0.04
Average 0.142 0.011 0.026 0.070 0.030 0.100

Area (proportion of the study area predicted by GARP with the indicated threshold) and extrinsic omission rate (proportion of test localities
falling outside the prediction) for each algorithm are given for each random partition of occurrence records under two threshold scenarios.
Thresholds were set for the extremes of the GARP predictions: any GARP model predicting presence (GARP threshold = 1) and all 10 GARP
models predicting presence (GARP threshold = 10). To allow for direct comparison of omission rates between the algorithms, thresholds were
then set for each Maxent model to yield a binary prediction with the same area as the corresponding GARP prediction.

basin, large areas of Atlantic forests in southeastern
Brazil, and most large Caribbean islands in the study
area. The species was generally predicted absent from
high montane areas, temperate areas in southern South
America, and non-forested areas of central Brazil (e.g.,
cerrado). The algorithms differed in their predictions
for non-forested savannas in northern South America.
The composite GARP model indicated the species’
potential presence there, but Maxent excluded some
non-forested savannas in Venezuela (llanos) and the
Guianas.

In contrast, the algorithms yielded quite different
predictions forM. minutus (Fig. 4). Maxent indicated
suitable conditions for the species in the northern and
central Andes (and associated mountain chains) from
Bolivia and northern Chile to northern Colombia and
Venezuela. It also included highland areas in Jamaica,
the Dominican Republic and Haiti, as well as very

small highland areas in Brazil, southeastern Mexico,
Costa Rica and Panama. In contrast, GARP predicted
a much more extensive potential distribution for the
species. In addition to a broad highland prediction in
the northern and central Andes and the Caribbean, the
composite GARP prediction also included areas of the
southern Andes as well as extensive highland regions
in Mesoamerica, the Guianan-shield region and
southeastern Brazil. The prediction in the Brazilian
highlands extended into adjacent lowland areas of
that country as well as into Uruguay and northern
Argentina.

3.2.2. Addition of potential vegetation variable
The two algorithms responded differently to the in-

clusion of the potential vegetation variable (Fig. 5).
The Maxent prediction with potential vegetation forB.
variegatus was generally similar to the original one,
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Table 4
Results of threshold-independent receiver operating characteristic (ROC) analyses forB. variegatus andM. minutus produced with Maxent and
GARP using the climatic and elevational variables (left) and climatic, elevational and potential vegetation variables (right)

Data partition Without potential vegetation With potential vegetation

Maxent AUC GARP AUC p Maxent AUC GARP AUC p

B. variegatus-1 0.889 0.807 <0.01 0.879 0.793 <0.01
B. variegatus-2 0.892 0.765 <0.01 0.899 0.769 <0.01
B. variegatus-3 0.872 0.779 0.01 0.887 0.790 <0.01
B. variegatus-4 0.819 0.789 0.51 0.858 0.757 <0.01
B. variegatus-5 0.868 0.740 <0.01 0.885 0.753 <0.01
B. variegatus-6 0.881 0.818 <0.01 0.868 0.812 0.03
B. variegatus-7 0.902 0.812 <0.01 0.919 0.784 <0.01
B. variegatus-8 0.839 0.807 0.34 0.829 0.786 0.13
B. variegatus-9 0.903 0.794 <0.01 0.897 0.784 <0.01
B. variegatus-10 0.866 0.779 0.01 0.879 0.769 <0.01
Average 0.873 0.789 0.880 0.780

M. minutus-1 0.985 0.926 0.01 0.986 0.946 0.02
M. minutus-2 0.987 0.931 0.02 0.932 0.943 0.75
M. minutus-3 0.985 0.938 <0.01 0.987 0.939 <0.01
M. minutus-4 0.983 0.938 <0.01 0.984 0.941 <0.01
M. minutus-5 0.988 0.926 0.02 0.990 0.926 0.01
M. minutus-6 0.983 0.947 0.05 0.986 0.966 <0.01
M. minutus-7 0.989 0.950 <0.01 0.988 0.936 <0.01
M. minutus-8 0.988 0.954 <0.01 0.989 0.956 <0.01
M. minutus-9 0.989 0.952 <0.01 0.990 0.955 <0.01
M. minutus-10 0.985 0.955 <0.01 0.987 0.961 <0.01
Average 0.986 0.942 0.982 0.947

For each random partition of occurrence records, the area under the ROC curve (AUC) is given for Maxent and GARP, as well as the probability
of the observed difference in the AUC values between the two algorithms (under a null hypothesis that the true AUCs are equal). All AUC values
for both algorithms were significantly better than a random prediction (p < 0.0001; individualp values not shown). AUC values are given to
three decimal places to reveal small changes under addition of the potential vegetation coverage.

but now indicated unsuitable conditions for the species
in the llanos of Colombia and Venezuela and in other
non-forested areas in Bolivia and Brazil. On the con-
trary, the composite GARP prediction with potential
vegetation included was very similar to the original
prediction, still indicating suitable environmental con-
ditions for the species in non-forested areas of Colom-
bia, Venezuela, Guyana, Brazil, Paraguay and Bolivia.

Addition of the potential vegetation variable
changed the Maxent and GARP predictions forM.
minutus only minimally. The Maxent prediction with
potential vegetation differed principally by a sharp
reduction in the area predicted for the species along
the western slopes of the Andes in central and southern
Peru and in northern Chile. The composite GARP
prediction with potential vegetation differed from the
original one mainly by indicating a smaller area of
suitable environmental conditions for the species in
central Chile and in central-eastern Argentina.

4. Discussion and conclusions

4.1. Statistical tests

Both algorithms consistently performed signif-
icantly better than random, and Maxent frequently
achieved better results than GARP. Threshold-
dependent binomial tests (Table 1) showed low omis-
sion of test localities and significant predictions for
both algorithms across the board. The equalized pre-
dicted area test generally indicated better performance
for Maxent onM. minutus, but the test did not detect a
significant difference between the two algorithms for
B. variegatus (Tables 2 and 3). Threshold-independent
ROC analysis also showed significantly better-than-
random performance for both algorithms. The area
under the ROC curve (AUC) was significantly higher
for Maxent on almost all data partitions for both species
(Table 4). Use of the categorical potential vegetation
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Fig. 3. Extrinsic receiver operating characteristic (ROC) curves for
Maxent and GARP on the first random partition of occurrence records
of B. variegatus (left) andM. minutus (right). Models were produced
using the climatic and elevational variables. Sensitivity equals the
proportion of test localities correctly predicted present (1–extrinsic
omission rate). The quantity (1–specificity) equals the proportion of
all map pixels predicted to have suitable conditions for the species.
Note that both algorithms perform much better than random, and
that Maxent is generally superior to GARP; seeTable 4for results of
statistical analyses.B. variegatus is a wider-ranging species thanM.
minutus, so it has a smaller maximum achievable AUC in these ROC
analyses performed without true absence data (see Section2.6.2).
The curves therefore do not necessarily imply that the algorithms are
performing better onM. minutus.

variable (in addition to the continuous climatic and
elevational variables) generally improved performance
for both algorithms onM. minutus and for Maxent
on B. variegatus, but the changes had limited statis-
tical significance, likely due to the small amount of
data.

4.2. Biological interpretations

Both algorithms produced reasonable predictions of
the potential distribution forB. variegatus. The areas
predicted by 5–10 GARP models were similar geo-
graphically to those areas predicted with a value of
at least 1 (out of 100) for Maxent. Although much
research addressing the issue of operationally deter-
mining an optimal threshold remains for both algo-
rithms, these thresholds produce good maps of the
species’ potential distributions (areas of suitable en-
vironmental conditions). In particular, the models per-
form far superior to the shaded outline maps available
in standard field guides, (e.g.,Eisenberg and Redford,
1999; Emmons, 1997), and in digital compilations of
species ranges designed for use in conservation biology
and macroecological studies(Patterson et al., 2003).
Most strikingly, the models correctly indicate an ex-
pansive region of unsuitable environmental conditions
for B. variegatus in the non-forestedcerrado of Brazil,
whereas the shaded outline maps indicate continuous
distribution for the species from Amazonian forests
to coastal Atlantic forests. Although GARP has the
capacity to consider categorical variables, the inclu-
sion of the potential vegetation variable did not rectify
the deficiencies seen in the original composite GARP
prediction forB. variegatus. In contrast, Maxent suc-
cessfully integrated this additional information. This
is most evident in close-up images inFig. 4.2, where
GARP (incorrectly) predicted suitable conditions for
t
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een able to colonize them due to geographic b
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Fig. 4. Predicted potential geographic distributions forB. variegatus (top) andM. minutus (bottom) made using all occurrence records and the
climatic and elevational variables. Results are given for Maxent (left) and GARP (right). Four colors are used to indicate the strength of the
prediction for each individual map pixel. Maxent produces a continuous prediction with values ranging from 0 to 100; the values are depicted
here using white = [0,1); pale grey = [1,34); dark grey = [34,66); black = [66,100]. The best-subsets selection procedure employed here for
GARP yields a discrete prediction with integer values from 0 to 10, depicted here using white = 0; pale grey = 1–4; dark grey = 5–9; black
= 10. The strength of the predictions thus cannot be compared directly. All areas with a Maxent prediction of 1 or greater likely represent
suitable environmental conditions for the species; in contrast, areas with a GARP prediction of 5–10 probably indicate suitable conditions (see
Section3.2).
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Fig. 5. Predicted potential geographic distributions forB. variegatus (top) andM. minutus (bottom) made using all occurrence records and
climatic, elevational and potential vegetation variables. Results are given for Maxent (left) and GARP (right). Four colors are used to indicate
the strength of the prediction for each map pixel. Maxent produces a continuous prediction with values ranging from 0 to 100; the values are
depicted here using white = [0,1); pale grey = [1,34); dark grey = [34,66); black = [66,100]. The best-subsets selection procedure employed
here for GARP yields a discrete composite prediction with integer values from 0 to 10, depicted here using white = 0; pale grey = 1–4; dark
grey = 5–9; black = 10. The strength of the predictions thus cannot be compared directly. All areas with a Maxent prediction of 1 or greater
likely represent suitable environmental conditions for the species; in contrast, areas with a GARP prediction of 5–10 probably indicate suitable
conditions (see Section3.2).
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Caparáo in Brazil (Gouv̂ea and déAvila Pires, 1999;
Hershkovitz, 1998; McPherson, 1985; Paynter, 1982;
Tate, 1939). For the first four sites, July precipitation
values were at least 5 standard deviations higher than
the mean of theM. minutus occurrence localities. In
addition, the annual maximum temperature at those
sites was 1.37–3.23 standard deviations higher than
the mean of the occurrence localities. In contrast, the
Brazilian sites had July precipitation within the same
range as the occurrence localities, but the January pre-
cipitation was much higher for both (by 3.12 and 1.84
standard deviations, respectively), and maximum tem-
perature was much higher for Caparaó (by 1.95 stan-
dard deviations). Thus, Maxent’s behavior given the
data provided is correct and reasonable. However, de-
spite the differences in some environmental variables,
the forests in the six sites are probably functionally
similar to those inhabited byM. minutus. This situation
highlights the difficulty of extrapolating from a species’
realized distribution, and emphasizes that the variables
used should be chosen with care. ForM. minutus, better
extrapolation might be achieved using derived climatic
parameters that are more relevant for the species, for
example, precipitation of wettest month(Busby, 1986),
rather than values for specific months (see Section1.1).
Quite the opposite to the Maxent predictions, extensive
areas of potential distribution indicated in Mesoameri-
can, Guianan and Brazilian highland regions by GARP
surely overestimate the extent of suitable environmen-
t the
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forested regions below;Carleton and Musser, 1989).
For data partition 2, both of those latter two locali-
ties fell in the test dataset (i.e., not the training set).
Accordingly, Maxent’s prediction strongly avoided the
“montane grasslands” class. The pixels corresponding
to those two test localities thus had very low predicted
value, bringing down the AUC for that partition. This is
an artifact of under-regularization. More regularization
for categorical features would allow some prediction in
classes with no presence records, especially if the to-
tal number of presence records is small (Haffner et al.,
in preparation, and implemented in later versions of
Maxent).

The behavior of Maxent is in fact reasonable in this
case, as the training data do not cover the range of
vegetation classes that the species can inhabit. Further-
more, it is better than the statistics would suggest, as
the occurrence localities falling in montane grasslands
both lie on the border with pixels of one of the other two
classes inhabited by the species, and are therefore close
to highly predicted areas. Their omission should thus
be penalized less than other test localities(Fielding and
Bell, 1997). Indeed, smoothing the prediction by twice
applying a simple 3× 3 smoothing convolution with
the following weights as a low-pass filter(Jensen, 1996)
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al conditions for the species there. In particular,
ast majority of the pixels predicted by all 10 mo
ls in southeastern Brazil lie below 1000 m, where
pecies’ presence is quite unlikely.

.3. Spatial context of errors

The performance of Maxent onM. minutus when the
otential vegetation variable was used warrants s
iscussion. The AUC for the second random data p

ion was notably lower than for the other partitions,
or the model run on the same partition without pot
ial vegetation. Most of the occurrence localities for
pecies are contained in the “tropical and subtrop
oist broadleaf forest” and “tropical and subtrop
ry broadleaf forest” classes of potential vegetat
owever, two of them fall within the “montane gra

ands” class (the species indeed can inhabit this v
ation type in mosaic habitats along the ecotone
ncreases the AUC to 0.98 for that partition, which
n line with those of the other random partitions, a
auses very little visible change to the prediction. S
ost-processing may be of general utility when sp
rror is known to exist in the data, for example

o errors in site localities or boundaries of polyg
epresenting categorical variables.

.4. Advantages of Maxent

Maxent exhibits a number of inherent advanta
see Section1). In addition, visual inspection of th
odels indicates two further possible advantage

hese analyses, areas predicted by 5–10 of the
ubset GARP models generally showed a rea
ble prediction of the species’ geographic ranges
bove). Most of those areas were predicted by a
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models. In contrast, the Maxent prediction is continu-
ous, and within those areas suitable for each species, it
further distinguishes between those with a marginally
(but sufficiently) strong prediction versus those with in-
creasingly stronger predictions. This represents an im-
portant advantage for Maxent, and explains part of its
consistently higher AUC values. The AUC for GARP
could potentially be improved by attempting to increase
the resolution at the left end of the ROC curve, namely
by creating more original binary GARP models (say
1000) and choosing a larger best subset (say 100). We
tried this for both species using all occurrence local-
ities and all variables, and found that the predictions
were virtually unchanged (in comparison to a best sub-
set of 10 out of 100 models). We also note that even
with 100 total models, GARP was already testing the
limits of the computers we used (processing all 22
datasets produced almost 20 GB of output, compared
with 285 MB for Maxent). Apart from output size, the
computational requirements of the two algorithms were
similar in this study; GARP averaged 1.95 h to produce
a single prediction (best-subset composite derived from
100 models), compared with 2.27 h for Maxent, both
on an 850 MHz Pentium 3 processor. Later versions of
Maxent available on the website use a faster algorithm
(Haffner and Phillips, in preparation); Version 1.8.1
takes a total of 70 min to process all 22 datasets on
the above-mentioned computer, or 20 min on a newer
3.2 GHz Intel Xeon computer.

Secondly, Maxent more successfully integrated fine
topographic data for both species, producing more de-
tailed (finer-grained) predictions (see close-up images
in Fig. 4.2). We propose that this is true, at least in part,
because the Maxent model exhibits additivity (while
GARP does not), with the contribution of all the vari-
ables being added at each pixel (see Eq.(2) in Sec-

Fig. 6. Close-up of northwestern South America for the predicted p
(bottom) made using all occurrence records and climatic, elevationa axent (left)
and GARP (right). For both species, note the finer grain of the Maxen ed
unsuitable conditions in the non-forested tropical savannas (llanos) of easte sence
there (even with the inclusion of the potential vegetation variable). F s. Maxent
produces a continuous prediction with values ranging from 0 to 100, = [34,66);
black = [66,100]. The best-subsets selection procedure employed for lues from 0
to 10, depicted here using white = 0; light grey = 1–4; dark grey = 5– compared
directly. All areas with a Maxent prediction of 1 or greater likely repres rast, areas
with a GARP prediction of 5–10 probably indicate suitable condition r the
species for each algorithm, Maxent indicates areas of successively s (10) to most
such areas (see Section4.4).

tion 2.1.2). We tried two approaches in an attempt to
get GARP to make finer predictions. First, we exam-
ined the composite models derived from much larger
numbers of GARP models (described above), but the
resolution did not increase noticeably. Second, we de-
creased the convergence limit, allowing GARP to re-
fine its predictions and potentially make more complex
models. Again using the full datasets, we reduced the
convergence limit from 0.01 to 0.0001, which increased
the running time five-fold. Decreasing the convergence
limit may result in overfitting in some circumstances;
however, we saw no indication of that here. In fact, it
improved the prediction forB. variegatus somewhat
(for example, reducing overprediction in some high-
land areas), but it did not increase the apparent resolu-
tion of the predictions.

4.5. Future work

Much work can be done to refine the use of Max-
ent for modeling species geographic distributions. Re-
search should determine the number of occurrence lo-
calities needed to make an adequate prediction, and to
determine how much regularization is needed to avoid
overfitting when the number of occurrence localities is
small; preliminary results regarding these issues are
presented byDud́ık et al. (2004)and Phillips et al.
(2004). Regarding the quality of the inputs to Maxent,
the effect of non-uniform sampling of species locali-
ties should be also investigated, building onZadrozny
( m-
p
e into
a than
s am-
p

otential geographic distributions ofB. variegatus (top) andM. minutus
l and potential vegetation variables. Results are given for M
t prediction. ForB. variegatus, the Maxent prediction correctly indicat
rn Colombia, but the GARP prediction continued to predict pre
our colors are used to indicate the strength of the prediction
depicted here by white = [0,1); pale grey = [1,34); dark grey
GARP yields a discrete composite prediction with integer va
9; black = 10. The strength of the predictions thus cannot be
ent suitable environmental conditions for the species; in cont

s (see Section3.2). Note that among areas predicted as suitable fo
tronger predictions, whereas GARP assigns a maximal value

2004), with an eye to estimating and limiting the i
act of sampling bias(Reddy and D́avalos, 2003). For
xample, selection of background points taking
ccount which sites have been sampled (rather
imply at random) can ameliorate the effects of s
ling bias in some cases(Zaniewski et al., 2002). As
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described in Section4.3, smoothing a prediction may
be a useful general method of reducing the negative
impact of spatial errors in localities and environmental
variables. Additionally, before modeling the species’
requirements, smoothing could also be applied to any
variables that are suspected of having spatial errors, but
it is far from a complete approach to error management.
Another possibility, which may improve performance
even in the absence of errors in the input data, would be
to use bilinear (rather than nearest-neighbor) interpo-
lation to obtain values for the environmental variables
at the training localities. Thus, training localities near
the boundary between two pixels would receive a com-
bination of the values of the two pixels; for categorical
variables, training localities very close to the boundary
between two classes would have partial membership in
both classes. Alternatively, rather than using a binary
feature to represent membership in each class, a contin-
uous feature representing distance from the class could
be used.

Research is also called for regarding the use and
application of Maxent predictions. First, a good rule
needs to be developed to set a threshold operationally
using intrinsic data (when a binary prediction is de-
sired). Future research should determine to what degree
differences in Maxent’s prediction strength correspond
to the relative environmental suitability of the various
regions, rather than the possibility that they may reflect
collection biases (areas with many occurrence records).
Additional feature types should also be considered, for
e
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