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Detailed observation of the movement of individual
animals offers the potential to understand spatial popu-
lation processes as the ultimate consequence of individ-
ual behaviour, physiological constraints and fine-scale
environmental influences. However, movement data
from individuals are intrinsically stochastic and often
subject to severe observation error. Linking such com-
plex data to dynamical models of movement is a major
challenge for animal ecology. Here, we review a statisti-
cal approach, state–space modelling, which involves
changing how we analyse movement data and draw
inferences about the behaviours that shape it. The stat-
istical robustness and predictive ability of state–space
models make them the most promising avenue towards
a new type of movement ecology that fuses insights
from the study of animal behaviour, biogeography and
spatial population dynamics.

The importance and challenges of understanding
individual animal movement
Movement is a fundamental, yet relatively poorly
understood population process. Although population
ecology has traditionally concentrated on understanding
temporal fluctuations in abundance [1], more recently the
focus has shifted to spatially explicit approaches, leading
to a greater appreciation of the importance of movement
[2]. Moreover, it has been acknowledged that some
important population phenomena depend not only on
spatial changes in average population density, but also
on individual movement behaviour [3,4]. Examples span
both marine and terrestrial systems and include the
spread of diseases [5–7] and invasive species [8], meta-
population ecology [9,10], home-range characterisation
[11] and reserve design [12]. However, interactions
between life history, physiology, behaviour and habitat
make individual movement an exceptionally complex
phenomenon.

Crucially, our understanding of movement is also
affected by errors in the observation process. Separating

real biological signals from observation error in data
remains challenging and methods that admit uncertainty
in movement data when estimating dynamical movement
models have been lacking up to this point. The state–space
model (SSM, see Glossary) enables this by coupling a
statistical model of the observation method with a model
of themovement dynamics, which can include effects owing
to behaviour and to the environment. Here, we provide an
overview of the current use of SSMs in animal movement
analysis. We first consider the nature of movement data
and other approaches to movement analysis. We then
describe howSSMs estimate, predict and provide biological
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Glossary

Behavioural mode: A particular manner of movement that is assumed to be
related to a behaviour type. For example, an animal foraging intensively on a
productive patch of food might move slowly with much turning.
Hidden Markov model (HMM): A SSM with discrete (i.e. discontinuous) hidden
states. Examples include classifying movements as ‘transit’ or ‘resident’ and
assigning spatial locations to discrete habitat patches. Typically, movement
HMMs do not consider observation error on location, but treat the data as the
stochastic outcome of a particular behavioural state.
Markov process: A Markov process is a stochastic process in which the
probability that the system will be in a particular state in the next time unit is
purely a function of its current and past states. This is known as the Markov
condition. First-order processes only depend on the current state, whereas
higher-order Markov processes incorporate dependencies at greater time lags.
Movement metric: Quantities that might be calculated directly from raw,
uncorrected and unprocessed movement data. These include step length
(distance between successive locations), speed, the turning angle between
locations and so on.
Observation model: In SSMs, this refers to a probabilistic model of the
sampling process. In movement data, this might refer to a model that describes
telemetry precision or spatiotemporal variation in recapture effort.
Process model: In movement SSMs, a model of the dynamics of the movement
through time and space.
Random walk (RW): a mathematical description (often a Markov process) for
generating a trajectory in space from a starting position.
State: A quantity that describes a true, but not necessarily known, attribute of a
system. For a movement SSM, this might be location, behavioural state,
energetic or physiological condition. The variables are time-indexed and might
be collected together into a state-vector (e.g. location, behavioural mode and
energetic reserves could feasibly be grouped into a state vector).
State–space model (SSM): A time-series model that predicts the future state of
a system from its previous states probabilistically, via a process model. The
SSM describes mathematically how observations of the state of the system are
generated via an observation model.
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inference about movements. Finally, we outline the
challenges in future research. We conclude that SSMs
provide a powerful analytical foundation for animal move-
ment ecology by simultaneously capturing the essential
ecological, physiological and environmental factors driving
movements.

The nature of movement data
Empirical data onmovement take the form of time-indexed
positions of individual animals. Despite the difficulties in
predicting andmodelling individualmovement, it is easy to
quantify movement from data in terms of movement
metrics (see Glossary), that is, the basic geometric or
quantitative properties of the path of an animal. Examples
of movement metrics include speed, heading, turning
angles between subsequent locations and rates of move-
ment between regions. The values taken by these metrics
are partly a result of animal behaviour. For example, over
the same amount of time, a bird that is foraging will make
shorter movements, with many sharp changes in direction
(turning angle), compared with when it makes rapid and
directed trips between patches of foraging habitat. Given
only movement data from the bird, it is tempting to derive
behavioural inferences solely from movement metrics.
However, such inferences are confounded by the effects
of observation error and changes in environmental con-
ditions.

Animal movement data come from various indirect
sources ranging from mark release recapture (MRR) data
to individual movements observed in situ using electronic
tagging and telemetry technology. Advances in technol-
ogies such as satellite and Global Positioning System
(GPS) transmitters [13], harmonic radar tracking [14]
and electronic data storage tags [15] have led to a vast
influx of data on the movement of tagged individuals [13]
from a diverse range of species in habitats where direct
observation is often impossible [16–18]. Each observation
method is subject to its own types of error. MRR suffers
from variation in the recapture of individuals, owing to
biases in sampling schemes (e.g. commercial fishery tag
returns might reflect fisher behaviour rather than fish
behaviour) or behavioural reactions to observation
methods [19,20]. Electronic tagging and telemetry data
often suffer from substantial positional imprecision.
Light-based geolocation, used for many marine species,
relies on estimating position from day length and esti-
mates of noon or midnight. However, diving or cloud cover
affects the light measurements, introducing sizable errors
[21]. Satellite telemetry is degraded by factors such as
satellite coverage and interference [22]. Radio-tracking
requires error-prone triangulation procedures for estimat-
ing the location of the animal [23]. In some cases the
statistical properties of these errors can be assessed from
calibration experiments (e.g. by examining reported
locations for electronic tags held at known coordinates)
[21,22]. Each source of error has the potential to bias our
ecological interpretation of movements. For example pla-
cing the animal in the wrong location might lead to incor-
rect conclusions about usage of habitat or of a reserve.
Therefore, handling location error becomes central when
analysing movement data.

Animal movement analysis: a random walk?
Movement ecology has yet to define a set of standard
analytical methods. Furthermore, the complexity of move-
ment data has often led researchers to seek out methods
that avoid its complexities rather than embrace them.
Awareness of the need to avoid breaking the independence
and linearity assumptions of standard biometrical tech-
niques (e.g. significance tests and ANOVA), has meant
crucial features of the movement process (such as spatio-
temporal autocorrelation) are often treated as nuisance
factors [24,25]. Commonly the complexity of the data has
been dealt with by subsampling (throwing away) data to
reduce autocorrelation between locations [1] and by ad hoc
treatments of observation error [26].

As a result, many analyses can be broken down into
three stages: error-correction; calculation of movement
metrics from corrected paths; and either pattern identifi-
cation or statistical analysis for biological inference. Such
analyses have been used to identify modes of behaviour
[27–30], to support hypotheses about search behaviour
[31–33], or to classify individuals into subgroups based
on their movements [34,35]. Crucially, all error-correction
methods [36–38] used in these analyses contain implicit
assumptions about how animals move. No matter how
simple these assumptions are (e.g. only assuming a maxi-
mum plausible travel speed) they might contaminate the
error-corrected data and prejudice the results of statistical
analysis. For example, Bradshaw et al. [39] found that
location error could result in incorrect conclusions regarding
movement behaviour. Moreover, this compartmentalised
approach of error correction, description and ecological
interpretation does not separate the effects of observation
error from the statistical properties of movement when
performing or interpreting statistical analyses [39,40].

As a rejoinder, not all analyses of movement follow this
exact recipe. For example, movement data might be suffi-
ciently accurate (e.g. GPS data) for error correction not to
be required [41,42]. However, the ability of correlative,
pattern-based or hypothesis-testing approaches to directly
incorporate underlying ecological mechanisms is limited.
Fitting mechanistic models directly to data is a more
powerful approach, but more-sophisticated analysis
methods are required for this.

State–space models
Recently, the SSM has become more prominent in move-
ment ecology. SSMs bypass the shortcomings of previous
approaches by coupling a hypothetical mechanistic model
of individual movement (see next section and Box 1),
known as the process model, to an observation model.
The observation model gives the probability of obtaining
a particular observation conditional on the animal’s true
position, or in SSM parlance, its state. The state simply
consists of one or more variables, such as the animal’s
spatial location, and possibly a behavioural mode, such as
foraging, migrating and so on. Essentially, the process
model predicts the future state of an animal, given its
current state – an assumption known in mathematics as
theMarkov condition. The observation model then weights
these predictions by the likelihood of data, thereby linking
the process model to the observations.
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The major advantage offered by the SSM approach is
that it integrates the three analysis phases – error correc-
tion, calculation of metrics and statistical analysis. By
explicitly including the observation model, the SSM
enables statistical inferences that account for uncertain-
ties in the input data, rather than hiding them in a
‘pre-processing’ stage. The SSM enables estimation of
probabilities of states (e.g. spatial location and mode of
movement), process model parameters (e.g. mean speed or
turning rate) and observation model parameters (e.g. var-
iance of observation errors). Although joint estimation of
observation and process components [43] can be challen-
ging, prior knowledge of observation error can be incorp-
orated from independent studies [22,40,44,45]. This avoids
the need to discard imprecise (but costly and valuable)
data. Above all, SSMs are flexible. Process models might
take environmental or other data as inputs, meaning that
the predicted state of the animal is influenced by habitat
variables in a biologically realistic way.

SSM methods originated in engineering, but have been
applied in a range of disciplines, including population
ecology, to estimate population trajectories from imprecise
or incomplete survey data [46,47]. Because they are a more
powerful way to handle movement data, SSMs have been
applied to a variety of situations. Comparing several SSMs,
Morales and colleagues [42] found that elk (Cervus ela-
phus) displayed ‘encamped’ (slow and variable) movements
interspersed with ‘exploratory’ (faster and directed) move-
ments. The encamped mode was associated with open
woodland and agricultural habitat. Using state–space
analysis of the migration paths of leatherback turtles
(Dermochelys coriacea), Jonsen et al. [48] found distinct
diurnal differences inmovement rates. These were hypoth-
esized to result from easier daytime navigation or
increased foraging on gelatinous plankton by night, a
conclusion that might have implications for managing
fisheries interactions for this critically endangered species.
Similar models highlighted sex-specific foraging areas in
grey seals (Halichoerus grypus) [49]. SSMs that use non-
spatial data (temperature, pressure and salinity) from
electronic tags in conjunction with ocean-model output
have been used to estimate the locations of Atlantic cod
(Gadus morhua) [50] and from this, their time spent in
marine reserves. Other applications range from estimating
movements of tuna [51–53] and butterflies [9] to determin-
ing behavioural switches from movement data on pigeons
[54] and wolves [55]. Without SSM these analyses would
require direct observations of behaviour, which are often
impossible to obtain. In addition, artifacts from error in
locationswould not be differentiated from truemovements.

Mechanistic models of individual movement
All movement analyses implicitly or explicitly assume
some type of movement model. To be useful as the process
model component (Box 1, Equation Ia) of an SSM, the
model must relate stochastic animal movement to single
movement decisions. Describing a path through space
requires either locations, or speeds and directions between
locations. For instance, we could model an insect moving
along a linear habitat (e.g. a hedgerow) [56] with one of
the simplest movement models, the one-dimensional

Box 1. Examples of SSMs

A SSM consists of coupled stochastic models (Figure I): a process
model

x t ¼ gðx t#1;htÞ [Equation Ia]

describing the state of an animal (e.g. position xt = {xlongitude,tt,xlati-
tude,t}) at time t and an observation model

y t ¼ hðx t; etÞ [Equation Ib]

describing the observation of the state, yt (e.g. observed position,
inferred behaviour etc.). The process model gð Þ includes process
error parameters ht describing the inherent ‘randomness’ in move-
ment and the observation model hð Þ includes observation error
parameters et. Examples of a correlated random walk (CRW) process
model are

x latitude;tþ1

x longitude;tþ1

ftþ1

0

@

1

A ¼
x latitude;t þ dtþ1sinftþ1

x longitude;t þ dtþ1cosftþ1

f ðftÞ

0

@

1

A [Equation II]

where f(ft)&VonMises(ft,k) and dt&Lognormal(m,s2). Here,ft+1 is the
heading to the next location with mean heading ft and dispersion
parameter K, and dt+1 is the distance to the next location with log-
mean m and log-variance s2. More-sophisticated process models
might include:
(i) Switching between behavioural modes. The SSM might include

a ‘resident’ mode, with smaller mean displacement and large
directional variance, and a ‘transit’ mode with higher displace-
ment and lower directional variance. Mode at time t+1 depends
on mode at time t via a matrix of switching probabilities
(Figure 1).

(ii) Edge-mediated behaviour. The animal has a high probability of
turning back when it moves from a patch to unsuitable habitat
(Figure 2). In highly fragmented landscapes, edge-mediated
behaviour constrains animals to spend much of their time within
patches of preferred habitat [9].

Data sources and observation models
The observation model (Equation Ib) specifies how the data we
observe relates to the states in the process model. The appropriate
model depends on the data. Two major sources of data are:
(i) Electronic tagging and telemetry. Data typically consist of many

noisy location observations from few tagged individuals. To
capture anomalously large errors in satellite locations, location
error can be modelled (e.g. by the bivariate Student’s
t-distribution, with small degrees of freedom) [45]. Here,
yt & tdist2ðxt; S; dÞ where the subscript 2 denotes a bivariate
distribution, xt is the process model prediction, S is a variance-
covariance matrix describing the dependence between long-
itude and latitude errors and d is the degrees of freedom.

(ii) Mark-release-recapture data typically consist of few, spatially
accurate, repeat observations on many marked individuals. The
record of whether and where each individual was observed is
called a capture history. The observation model accounts for
the probability of individuals remaining undetected when
present. In such cases, each capture occasion is a Bernoulli
trial for each individual giving the probability of capture given
presence in a particular patch.

Figure I. General structure of SSMs. The yt are the data observed given the
true, but unobserved, state xt. Horizontal arrows depict the process model
prediction of the true state of the animal (Equation Ia) through time.
Vertical arrows the observation model (Equation Ib).
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random-walk. This describes the probability of a decision
to move in either direction from the current position or to
remain in the same place along a single spatial axis.

We can alter the rules of this simple model to obtain
increasingly complex behaviour in two-dimensional space.
For instance, instead of directions being equiprobable, the
movements might be biased towards the left or right
(known as a biased random-walk or random-walk with
drift). Mathematically, process models can often be
described as continuous- or discrete-time Markov pro-
cesses. Also, instead of being fixed, movement distances
and directions can be drawn from probability distributions.

In simple cases, the distribution of many random walk-
ers can be derived analytically as diffusionmodels from the

parameters of individual movement, thereby linking indi-
vidual decisions to population distribution [1]. If we
assume discrete behavioural modes, such as foraging ver-
sus searching, we can use a separate speed or turning
distribution for each (Box 2). One mode might model fora-
ging behaviour with sharp turns and low speeds whereas
the other might describe the movements between foraging
patches [42]. Switches between modes could also be
modelled as functions of time (to capture the effect of
age or season), internal state (energetics, life history sta-
tus) [57] or environmental characteristics (navigational
cues, resources, habitat selection) [42]. For example, Pries-
ler et al. [58] usedMarkovian movement models (albeit not
SSMs) incorporating a range of habitat features to charac-
terize cyclical movements of elk. Distances to food patches,
streams and roads as well as the time of day were all found
to effect elk movements.

As with non-statistical behavioural classification tech-
niques (e.g. [59,60]) SSM approaches can be used to fit
movement models and simultaneously estimate beha-
vioural modes. For instance, SSM analysis can use the
characteristics of the track (e.g. speed or turning angle) to
calculate the probability of the animal being in a beha-
vioural mode such as foraging [42,61] (Figure 1). Because
of the simultaneous estimation of observation and bio-
logical processes, state predictions (e.g. location) can be
improved by using a behaviour-dependent model [43].
Moreover, instead of providing simple categorisations
of behaviour, the probability of being in a particular
mode is estimated (Figure 1 inset) making uncertainty
about behavioural categorizations explicit. Additionally,
the process model can be constructed so that the beha-
vioural mode of an animal depends on covariates such as
habitat type [43]. For example, Ovaskainen [9] modelled
butterfly movements with a diffusion model assuming
habitat-specific movement and mortality rates and
habitat selection at edges between the habitat types
(Figure 2).

Estimation and prediction for SSMs
Although the SSM concept has existed for some time,
computational issues have, until recently, obstructed its
wider application in ecology. The revolutionary increase in
the speed of personal computers has facilitated the appli-
cation of the computationally intensive statistical methods
that are often required to fit SSMs. However, the math-
ematical and computational aspects of SSM estimation
methods are not straightforward (Box 2), requiring one
of various maximum-likelihood estimation approaches
[52,53,55,61–63] or Bayesian simulation [45,51]. An
example of the computer-intensive nature of the methods
required is that to fit a diffusion process by maximum
likelihood to MRR data from a heterogeneous landscape,
Ovaskainen [9] had to solve a largematrix equation several
million times. Bayesian simulation approaches, such as
MCMC [43,45,48,49] or particle filters [51,50] also require
hundreds of thousands of simulations of the random
quantities in the model to enable reliable inference
(Figure 1).

Predictions from SSMs take several forms. Having esti-
mated a SSM, it can be used to predict the true path of an

Box 2. Estimating SSMs

The SSM framework makes it relatively straightforward to specify a
biologically meaningful model of animal movement and to
accommodate the properties of different data-collection methods.
However, fitting these models to data is not straightforward. Here,
we describe the main approaches in what is an active area of
statistical research.

Maximum likelihood methods
Observation models specify the probability distribution of the data
given the states and parameters. Process models specify the
distribution of the states, given those in the previous time period
and other parameters. Maximum likelihood estimates (MLE) of
parameters can be computed, given data and an initial state, by
integrating across all possible states. However, tractable MLEs are
available only in the following special cases.

Some process models, such as diffusions (Figure 2b) can be
solved numerically to integrate across all possible movement paths
[9]. If the SSM is linear and the process and measurement errors are
Gaussian, then the likelihood is also Gaussian. MLEs can then be
calculated analytically using the Kalman filter [70]. This method has
been applied to radio telemetry data [62] and to estimate location
from light and sea surface temperature [52,63]. Although computa-
tionally fast, the normality and linearity assumptions are often
violated. However, several extensions have been developed that
enable approximate inference in more general cases [62,63].

Another special case in which MLE is often applied is hidden
Markov models, in which data are assumed to be generated by an
unobserved, discrete-state, Markov process. Applications to electro-
nic tagging and telemetry data generally assume movement data to
be free of error and focus on estimating behavioural switches
[54,55,61]. However, hidden Markov models can also be used to
estimate positions from noisy location data if space is divided into
discrete regions (M. Pedersen, MSc thesis, Technical University of
Denmark, 2007).

Bayesian Monte Carlo methods
Many SSMs (e.g. the correlated random walk model in Box 1) are
nonlinear and non-Gaussian, and obtaining MLEs using standard
methods is not feasible. Computer-intensive Bayesian techniques,
MCMC [43,45,48] and particle filtering (PF, also called sequential
importance sampling, SIS) [50,51,71] provide a viable alternatives
(Figure 1). MCMC simulates values of the states and parameters,
conditional on previously generated values, until the chain of
samples converges to the posterior distribution. PFs simulate
samples called ‘particles’ from the priors on the parameters and
states at the first time point. Essentially, a particle represents a
random possible combination of parameters and states (e.g. paths,
behaviours). Each particle is then projected forward by the process
model and weighted at each time point according to its likelihood.
The ’fittest’ particles (i.e. with higher weights) are selected by the
filtering algorithm. These weighted particles form a sample from the
posterior.
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animal, to interpolate missing observations or to forecast
future movement [47]. In addition, the fitted process model
can be used to predict the state of the animal (behaviour
and position) depending on covariates such as habitat type
or environmental variables, or to predict connectivity of
habitat patches (Figure 2b). Because SSMs are based on a
mechanistic movement model, they are superior to classi-
cal statistical approaches, such as linear models, for pur-
poses of extrapolation, such as predicting movements in
novel environments (Figure 2c). Importantly, predicting
from the fitted SSM implies fully utilizing the information
in the data, via the model, to forecast future movements. A
fitted SSM could serve as the basis for simulation. For
example, individual-based movement models often use
complicated hypothetical decision rules to simulate move-
ments of many individuals, often failing to replicate rea-
listic movement [64]. These could be replaced by
simulating from estimated SSMs to generate the expected
spatial distribution of the population. This approach,
demonstrated by Sibert et al. [53], could be useful in a
wide range of ecological applications.

Model selection and multi-model inference with SSMs
Determining which hypotheses are better supported by
data is central to the practice of science. In a movement
context, there are many biological questions to be asked,
such as: given noisy observational data, what was the most
likely movement path of an animal? What covariates
influenced its movement, in what way did they operate,
and can we rank their importance? Do different animals
move differently with respect to their environment? How
manymodes of movement are indicated by the data? These
questions can be used to generate a series of competing
models, and the relative support of these models by the
data can be assessed with model selection methods [65].
For example, information criteria [42,66] can be used to
select the single best available model by maximisingmodel
fit, subject to parsimony. Another option is calculating
posterior probabilities of the SSM within the Bayesian
paradigm [67]. SSMs fit naturally into the model selection
framework, enabling direct comparison and ranking of
the explanatory power of the hypotheses embedded in
the models. Although model selection methods are not

Figure 1. Simultaneous inference of location and behaviour from noisy telemetry data. A hypothetical movement path (red) was simulated from a correlated random walk
(Box 1) that switches between two behavioural states – ‘transient’ and ‘resident’. Noisy observations (black crosses) typical of satellite telemetry [22,45] were added.
Bayesian particle-filtering techniques (Box 2) were used to estimate movement parameters, the true path and behavioural modes, given moderately informative priors on
the parameters. Posterior mean estimates of the true path (dark blue) are shown to vastly improve estimates of the true path. Importantly, uncertainty in the path is
quantified (dark to light blue shading indicates 20, 40, 60 and 80% credibility intervals). Locations estimated as being from the resident phase (where the probability of being
in resident mode was most likely, Pr[resident] >0.5) are shown as green dots. (Inset) Inferences of behavioural movement mode from the path. The blue line gives the
estimated probability of the animal being in resident mode (the probability of transit is simply 1-Pr[resident]); the square red line is the true mode.
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restricted to SSMs, in the context of animal movement this
is a major step forward because it enables assessment the
relative support for different biological hypotheses directly
from the data. Additionally, SSMs readily lend themselves
to combined inference from a set of biologically plausible
models, which is more reliable than predicting from a
single best model [65]. This can be done via model aver-
aging, using information criteria to weight each candidate
model by its relative support, or by fitting algorithms that
can sample from multiple models (e.g. reversible jump
MCMC [68]). However, such methods have not yet been
used in individual movement modelling.

An important application of these methods is that they
enable us to understand the relationship of animals to
their habitats. We cannot directly observe the majority of
habitat use for many marine fish, mammals and seabirds.
However, covariates measuring characteristics of these

habitats, such as body and ambient temperature, depth,
salinity and light level are often available from electronic
tags [13,69]. Although it is unclear a priori which covari-
ates are good predictors of preferred habitats, approaching
this question by proposing models that include alternative
covariates, and then determining the most parsimonious
model, can provide a method for determining relationships
between the animal and its environment (e.g. [42]). As yet,
SSM applications in movement research have not fully
used model selection methods to this end.

Where is animal movement modelling heading?
We have outlined four fundamental areas of interest in
movement analysis: (i) accounting for observation error;
(ii) estimation of movement parameters such as rates
and/or direction of movement; (iii) estimation of beha-
vioural modes; and (iv) prediction of (i–iii) on the basis

Figure 2. Using state–space models (SSMs) to quantify animal movement in heterogeneous landscapes. Ovaskainen et al. parameterised a diffusion-based process model
using capture-recapture data from clouded apollo butterflies (Parnassius Mnemosyne, photograph inset) acquired from the landscape of panel (a) [77]. Different habitat
types are shown with different colours, red depicting the breeding habitat, orange semi-open forests, green closed forests, and white cultivated fields. The model includes
habitat-specific movement parameters and accounts for edge-mediated behaviour (Box 1). The blue line shows a simulated movement track from the model, from which
only few observations (green circles) would be available as capture-recapture locations. (b) The fitted SSM can be used to predict movement rates. Here the colour shows
the model-predicted probability of butterflies moving from any initial location to the central patch within an individual’s lifetime. Without the influence of landscape
structure, the probability of movement would be radially symmetric around the central patch. (c)Model validation: the model with parameters estimated from landscape (a)
correctly predicts (black dots with error bars) independent capture-recapture data (red dots) acquired from a different landscape. Photograph reproduced with permission of
Iiro Ikonen.
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of environmental or physiological covariates. Of the com-
monly used techniques for individual movement analysis,
the SSM approach is the only candidate that can satisfy all
these requirements. Therefore, SSMs are the most likely
models to deliver the analytical basis for a synthesis in
movement ecology. However, the complexity of the data
and the statistical machinery of SSM mean that ecologists
researching animal movement will often need to work
closely with statistical modelers. As a consequence of this,
ecologists will be able to directly include their knowledge in
movement models, strengthening the biological founda-
tions of movement analysis.

Although SSMs offer an exciting and significant
advance in the study of individual movement, we believe
that they have yet to reach their full potential (Box 3). The
methods can focus on small-scale individual processes and
link these to large-scale population processes. In this way,

behaviour, biogeography and population dynamics might
eventually become integrated into mechanistic models
linking decision-making at the individual level with move-
ment, and, ultimately with distribution and population
structure.
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