Ordination as a Tool for Unraveling Species-Environment Relationships

Daniel M. Palacios^{1,2}

¹Joint Institute for Marine and Atmospheric Research, University of Hawaii ²NOAA, SWFSC, Environmental Research Division, Pacific Grove, CA

Acknowledgments: • National Oceanographic Partnership Program (ONR/NOPP)

OUTLINE

- 1. Background
- 2. Basic concepts
- 3. Preparatory steps
- 4. Ordination techniques

Background

- Concept of dimensionality reduction has been around since Pearson (1901)
- Ordination (PCA) first used in psychology (Hotelling, 1933)
- Biology: developed by vegetation scientists, 50-60's
- Earth sciences: atmospheric, climate scientists, oceanographers, landscape ecologists

Sources:

- McCune & Grace. 2002. Analysis of Ecological Communities. MjM Software Design.
- Legendre & Legendre. 1998. Numerical Ecology. 2nd Ed.
 - Elsevier.

Basic concepts Abundance measures • Density: #ind/unit area (or length) • Presence-absence (large-scale studies) • Size- or age-class data: carries information on demographics. Classes treated as "species"

Preparatory steps

- "Raw species data tends to have a few abundant species and many rare species"
- Delete rare species to reduce noise in data set w/o losing much information (<5% of SU's)
- Transformation: statistical and ecological reasons
 - Monotonic: power, log, logit, arcsine, square root
 - Relativization row-wise or column-wise: by max, by mean, z-score, rank ordering

Ordination techniques

- Ordination ≡ Arrangement of items along a scale to show similarities
- Most common use is to describe the strongest
 patterns of species composition
- Direct gradient analysis (constrained ordination): items are positioned according to environmental factors (CCA)
- Indirect gradient analysis: items are arranged according to covariation and association among species (reflects community response to environment)

Ordination techniques

- Principal Component Analysis (PCA)
- · Requires multivariate normality, linearity
- Seeks strongest linear correlation structure among variables
- Decompose the correlation matrix into scores (the value of each SU on each axis) and loadings (correlation between each variable and each component)
- Strength: ideal for data w/ linear relationships among variables (e.g., environmental data)
- Weakness: linear model is poor fit to community data, leads to horse-shoe effect in ordination space

Ordination techniques

- Nonmetric Multidimensional Scaling (NMS)
- Developed by Kruskal (1964). No underlying model.
- Can use any type of distance and relativization scheme
- Based on iterative optimization methods (computer intensive)
- Iterates search for best SU positions in reduced space that minimizes stress.
- Strength: the use of ranked distances linearizes the relationships between distances in species space and in ordination space
- · Weakness: finding unique solution because of local minima

	Cetacean community around the Galapagos Is: Abundance for 9 cetaceans (spotted, spinner, common, striped, bottlenose and Risso's dolphin; pilot, sperm, Bryde's		
	whale).		
	Abundance matrix = A _{309x9} Environmental variables:		
	PC1 - score	es from 1st principal component	
	PC2 - score	es from 2nd principal component	
	PC3 - score	es from 3rd principal component	
	LCHL - log-tr	ansformed chl	
	RAD - dista	nce from the center of the archipelago	
		Environmental matrix = E_{309x5}	
	(Palazian 2002)		
	(Palacios, 2003)		

