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Abstract 

 

The first order effects of nonlinearity on the thickness and frictionally driven flux in 

the Ekman layer are described for the case of an Ekman layer in on a solid, flat plate 

driven by an overlying geostrophic flow as well as the Ekman layer on a free surface 

driven by a wind stress in the presence of a deep geostrophic current. In both examples a 

fluid is homogeneous. Particular attention is paid to the effect of nonlinearity in 

determining the thickness of the Ekman layer in both cases. 

An analytical expression for the Ekman layer thickness as a function of Rossby 

number is given when the Rossby number is small. The result is obtained by insisting that 

the perturbation expansion of the Ekman problem in powers of the Rossby number 

remains uniformly valid. There are two competing physical effects. The relative vorticity 

of the geostrophic currents tend to reduce the width of the layer but the vertical velocity 

induced in the layer can fatten or thin the layer depending on the sign of the vertical 

velocity.  

The regularized expansion is shown to give, to lowest order, expressions for the flux 

in agreement with earlier calculations. 
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1. Introduction 

The theory of the Ekman layer is central to Geophysical Fluid Dynamics and its 

applications to both oceanic and atmospheric phenomena, Pedlosky (1987). The 

fundamental theory is linear and so it is not surprising that much effort has gone into 

extending the theory into the nonlinear domain. Some of the early work is reviewed by 

Greenspan (1968). See also Benton et. al. (1964). More recent analysis can be found in 

the work of Niiler (1974), Brink (1997), Hart (2000) and Thomas and Rhines (2002). 

Illuminating as these studies are, what is lacking is a clear and simple analytical 

formulation of the alteration in the thickness of the Ekman layer as a consequence of non 

zero  Rossby numbers, i.e. of non negligible nonlinearity. In this note such a prediction is 

given for the two classical Ekman layer problems: the frictional layer satisfying the no-

slip condition beneath a geostrophic inviscid interior and the stress driven boundary layer 

on a free surface. 

Since in linear theory the boundary layer thickness is ! = 2"
f( )
1/2

, where ν is the 

kinematic viscosity (or its turbulent equivalent) and f is the planetary vorticity, one might 

expect that the first effect of nonlinearity would be to replace f  with the total vorticity, 

f+ζ  where ζ is the relative vorticity. A positive relative vorticity would tend to make the 

boundary layer thinner. However, in the presence of a convergent frictional flux in the 

boundary layer due to that relative vorticity and the consequent vertical velocity, the 

boundary layer would be stretched and fattened by the vertical advection. So, the two 
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effects of the relative vorticity are competing. What is the result? That is the object of the 

present study. 

In section two we formulate the problem for the Ekman layer that satisfies the no-

slip condition on a flat plane beneath a geostrophic current. Section 3 discusses the 

perturbation expansion and the condition that it remain uniformly valid in space and 

derives the correction to the layer thickness by removing secular terms in the perturbation 

expansion. After their removal the next order corrections to the Ekman velocities are 

calculated and the order Rossby number correction to the Ekman layer flux and vertical 

pumping velocity is calculated. Earlier studies, such as Hart (1995, 1996), in addition to 

the studies already mentioned earlier, have generally employed regular asymptotic 

expansions without concern about the uniformity of convergence. Although this allows 

an accurate calculation of the integrated  effects of the nonlinearity on, for example, the 

pumping, they cannot provide a clear picture of the role of the nonlinearity on the 

structure of the layer, in particular its thickness.  

Section 4 describes a similar procedure for the stress driven problem. In the first 

problem it is the vertical velocity in the Ekman layer that is the dominant factor in 

altering the linear Ekman layer thickness. In the stress driven problem there is a 

competition between the vertical velocity produced by the wind stress curl and the 

relative vorticity of the underlying geostrophic current. 

2. The Ekman layer beneath a geostrophic flow. 

We consider the boundary layer on a flat plane with a geostrophic flow in the x 

direction far from the plate. The plate is at z = 0. The geostrophic flow is taken to be a 

function of y the coordinate across the current but, for simplicity, all variables are 
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assumed independent of the x direction. We non-dimensionalize horizontal scales with L, 

the characteristic scale of variation of the current, and choose the linear Ekman layer 

thickness 2!
f( )
1/2

as the vertical scale. The velocities are scaled with the characteristic 

value, U0, of the geostrophic current. The vertical coordinate is ζ , i.e. the vertical 

coordinate scaled by the Ekman layer thickness. It is useful to also consider a “slow” 

spatial variable related to ζ to account for the effects of nonlinearity. We define that 

coordinate as Z = ε ζ . All the variables in the boundary layer are then considered to be 

functions of both ζ and Z  so that the vertical derivatives transform as,  

 

 !

!"
#

!

!"
+ $

!

!Z
  (2.1) 

 

 The steady equations of motion then become, to first order in Rossby number, 
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where 

 ! =U
0
/ fL,!!!!!!E = "

L( )
2

. 
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The vertical velocity has been scaled with !
L
U , i.e. the relation between 

dimensional and non-dimensional velocities is, 

 [u*,v*,w*] =U
0
[u.v.!

L
W ]   (2.3) 

At ζ = 0, all velocities vanish and for large vertical coordinate the horizontal 

velocity smoothly merges with U(y). Far from the boundary layer, in the interior, v is 

O(E) and so far from the boundary the vertical velocity must be independent of vertical 

coordinate. 

The Rossby number ε is assumed small and a perturbation expansion is sought in 

the form, for all variables, 

u = u
o
+ !u

1
+ ...   (2.4) 

 The lowest order problem is the linear problem whose solution is  

uo =U ! A(y,Z )e!" cos" + B(y,Z )e
!"
sin" ,

vo = A(y,Z )e
!"
sin" + B(y,Z )e

!"
cos"

 (2.5) 

Note that the “constants” A and B in the solution are functions of both y and Z. On the 

lower boundary we have the conditions (suppressing the dependence on y), 

 A(0) =U,!!!!!B(0) = 0   (2.6) 

The vertical velocity is obtained from (2.2 d) at lowest order in Rossby number, yielding,  

 Wo = C(Z ) +
1

2

!A

!y
e
"#
sin# + cos#[ ] +

1

2

!B

!y
e
"#
cos# " sin#[ ]  (2.7). 

To satisfy the lower boundary condition on W we must have, 

 C(0) = !
1

2

"U

"y
  (2.7a) 
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However, the condition that the interior vertical velocity must be independent of vertical 

coordinate implies that (2.7) holds for all Z. thus,  

                                                C = !
1

2
Uy     (2.7b) 

for all Z and 

 Wo = !
1

2

"U

"y
+
1

2

"A

"y
e
!#
sin# + cos#[ ] +

"B

"y
e
!#
cos# ! sin#[ ] (2.8) 

To determine the Z structure of the coefficients A and B we need to consider the O(ε) 

problem. That can be written, 

 

!
1"" # 2i!1

= Ru + iRv,

!
1
= u

1
+ iv

1
,

Ru $ 2 vouoy +Wouo"%& '( # 2uo"Z ,

Rv $ 2 vovoy +Wovo"%& '( # 2vo"Z

  (2.9 a,b,c,d,e) 

The right hand  side of (2.9a) contains terms that are multiples of the solutions of the 

homogeneous operator of the left hand side, i.e. of the form e!" (1+ i ) .  Those terms must be 

removed or the solutions for u
1
,v
1
 would have the form !e"! (1+ i ) and render the solution 

disordered when !" is order unity, i.e. when Z is order one. To eliminate those terms we 

can use the derivatives with respect to Z  coming from the final terms in Ru and Rv. This 

leads to a differential equation in Z, 
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!
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A " iB[ ]" A " iB[ ] C
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$

%
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'
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(
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The term C comes from the vertical advection in the boundary layer and the remaining 

term in the final parenthesis comes from the relative vorticity term in the advection. 

Using (2.6) and (2.7b), 

 

 A ! iB =Ue
!UyZ (1! i )/4   (2.11) 

so that finally, we obtain for the lowest order solutions, 
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cos" 1! #U
y
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'
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(2.12 a,b.c) 

Thus, a positive value of the vorticity, i.e. Uy
< 0 , leads to a slower decay of the 

boundary layer and thus a thicker boundary layer. The effect of the vertical advection 

dominates the effect of the relative vorticity. In our non-dimensional units the boundary 

layer thickness is 

 

 !
"
=

!

1+ "U
y
/ 2( )

1/2
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 In dimensional units this is equivalent to a decay scale for the Ekman layer1  

 !* =
2"

f +Uy / 2

#

$
%

&

'
(

1/2

  (2.13) 

The same result can be obtained heuristically by considering the asymptotic matching 

region where the boundary layer solution blends into the interior. If (2.2 a,b) are 

linearized around the interior flow, i.e. u =U(y) + u ',v = v ',W = ! 1
2
U

y
+W 'where the 

primed variables are considered small, the resulting linear problem yields the same decay 

scale for the boundary layer as (2.12 a, b). 

In order to obtain the correction to the cross isobar flow at order Rossby number it 

is necessary to solve (2.9) after  secular terms have been removed. This, after some 

algebra, and using the result (2.11) yields, 

 

 
!
1"" # 2i!1

= (1+ i)e
#2(" +$ Z )

UUy # iUUye
#" (1# i )

e
#$ Z (1+ i )

$ %
Uy

4

  (2.14 a, b) 

whose solution, satisfying the no-slip boundary conditions at the plate is,  

 

 !
1
=UUy

1+ 3i

10
e
"2(# +$ Z ) " e"# (1+ i ){ } +

1

4
e
"# (1" i )"$ Z (1+ i ) " e"# (1+ i ){ }%

&'
(
)*

(2.15) 

The total correction to the cross isobar flow comes from the imaginary part of Λ1 and its 

integral in ζ is, to lowest order in ε, 

 

                                                 
1 The approximation (1+ !)

1/2
" 1+ ! / 2 has been used. 
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 ! v
1
d"

0

#

$ = !
12

40
UUy   (2.15) 

Returning to (2.12b), the total cross isobar flow, including the Rossby number 

dependence of v0 is 

 

 vo + !v
1( )d"

0

#

$ =
U

2
1+ !

7

20
Uy

%
&'

(
)*

  (2.16) 

which agrees with the result of  Benton et. al. ( 1964) and Hart (2000). The vertical 

velocity pumped into the interior from the Ekman layer follows immediately and, in 

agreement with the references cited above, 

 

 W (!) = "
1

2
U

y
" #

7

40
U

y

2
+UU

yy( )  (2.17) 

 

so that in the case of a constant shear, the Rossby number correction to the Ekman 

pumping velocity is independent of the sign of the vorticity. 

3. The stress-driven Ekman layer. 

The classical problem of the Ekman layer on a free surface, driven by an applied 

stress, has often been studied (see, for example, Stern, 1965 and more recently Thomas 

and Rhines, 2002). As in the example discussed in section 2 we are particularly interested 

in obtaining a simple analytic prediction for the nonlinear correction to the Ekman layer 

thickness. For simplicity, we again assume the flow is independent of the x direction and, 

is homogeneous, i.e. that the Burger number based on the horizontal scale of the stress 

and the depth of the fluid is negligibly small. 
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The governing equations again are (2.2 a, b, c, d). We imagine a wind stress in the x 

direction with a characteristic magnitude τO. The upper surface is at z = 0 and, scaling the 

depth with the linear Ekman layer thickness the dimensional depth variable lies in the 

range !" #$ # 0 . We choose to scale the horizontal velocities with  

Uscale =
2! o
" fo#

,!!!!# =
2$
f

%
&'

(
)*

1/2

  (3.1) 

We also assume that beneath the Ekman layer, at large negative ! ,  there is a 

geostrophic current in the direction of the stress. In cases where the geostrophic flow is 

strong enough to directly affect the Ekman layer structure that alignment between the 

stress and the geostrophic velocity is most common. See for example the aforementioned 

example of Thomas and Rhines (2002). The boundary conditions are now, 

 

 
u! = " (y),!!v! = 0,!W = 0!!!!!!!!!!!!!!!!! = 0

u# u
g
(y),!!v# 0,W #W$ (y)!!!!!!! # %$

 (3.2 a,b) 

where W∞ must be determined. 

A similar expansion in powers of ε yields, for the lowest order problem, 

 

 

!0"" # 2i!0 = 0

!0 = uo + ivo

!0 = A(Z )e" (1+ i ),!

leading to

uo = ug (y) + e" Ar cos" # Ai sin"( ),

vo = e
"
Ai sin" + Ar cos"( )

  (3.3. a, b, c d, e) 
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where Ar and Ai are the real and imaginary parts of A(Z). The boundary conditions on ζ = 

Z = 0 imply that, 

 A
r
(0) = !

2
!!!!A

i
(0) = "!

2
  (3.4 a,b) 

The vertical velocity can be found from (2.2.d) and with the condition that the interior 

vertical velocity is independent of Z we obtain, 

 W
0
= !

" y
2
!
e
#

2

$
$y

Ai ! Ar( )cos# + Ai + Ar( )sin#%& '(  (3.5) 

The order ε problem again has the structure of (2.9). Carrying out the indicated 

calculations yields, 
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2i
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   (3.6) 

The first and second terms on the right hand side both have the form in ζ  of the 

homogeneous operator on the left hand side. To keep our expansion in ε uniformly valid 

those terms must vanish. This leads to a a simple differential equation for the Z  structure 

of the coefficients Ar and Ai whose solution is, 
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  (3.7) 

The order one velocity fields can then be written, 
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(3. 8 a, b) 

Note that the geostrophic vorticity affects both the decay scale and the oscillatory 

variation in the Ekman layer. The wind stress curl affects only the thickness of the layer 

since it enters the dynamics solely in the vertical advection of the momentum. The 

vorticity of the geostrophic flow does not contribute to the vertical advection. This would 

require a strongly stratified flow whose geostrophic shear is large enough to produce a 

viscous stress of the same order as the applied stress.  

The Ekman layer thickness, i.e. the characteristic decay scale is now, 

 

 !
"
=

!

1# " $
y
+ u

gy
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1/2
  (3.9) 

or in dimensional units, 
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  (3.10) 

If ! y is negative, i.e. if the wind stress curl is positive, the vertical velocity will be 

positive and the vertical momentum advection will upward and this will make the 

boundary layer thinner. If the geostrophic vorticity is positive, i.e. if ugy < 0 , the 

boundary layer is again thinner although this time it is due to the enhanced total vorticity 

and not the vertical advection effect. Note that the relative size of the two correction 

terms in the denominator of (3.10) depends on the horizontal scales of the wind stress and 

the geostrophic current and these need not be the same. 

If we integrate equation (3.6) after potentially resonant terms have been  removed 

and use the stress condition on ζ =0, 

 

 !
1"
+ !

0Z
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we obtain, 
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from which we obtain, 
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When this is added to the vertical integral of v0, using (3.8b) and keeping terms to order ε 

we obtain for the total Ekman flux perpendicular to the applied stress,  

 

 (vo + !v1)d"
#$

0

% = #
&
2
# !&

& y
8
+
ugy
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'

(
)

*

+
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It is noteworthy that this important result for the flux can be obtained directly by 

integrating (2.2 a) with the nonlinear terms written in flux form, and using only the naïve 

linear solution (i.e. without  including the variation in Z) to evaluate the nonlinear terms 

while using the boundary conditions to evaluate the stress term at the surface and the 

vertical advection at the base of the Ekman layer.  

The vertical velocity at the base of the Ekman layer, to order ε is obtained from 

 W (!") =
#
#y

vo + $v
1

!"

0

%
&
'(

)
*+ d,   (3.15) 

and is, 
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$

1! % u
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&

'
(
(

)

*
+
+

 (3.16) 

and these results for the Ekman flux and pumping velocity agree with Thomas and 

Rhines (2002). 

4. Discussion 

The effects of nonlinearity on the Ekman layer’s thickness have been studied in the 

weakly nonlinear limit, i.e. small Rossby number. Although one might be simply tempted 
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to replace the planetary vorticity by the total, absolute vorticity to estimate the thickness, 

this neglects the relatively powerful effect of the vertical advection on the boundary layer 

thickness. For the boundary layer which allows a geostrophic flow to satisfy the no-slip 

condition on a solid boundary, the vertical advection dominates the vortex force effect in 

determining the thickness. A positive relative vorticity, although it augments the total 

vorticity, leads to a thickening of the boundary layer.  

For a boundary layer driven by stress on a free surface the situation is even more 

extreme. In the absence of a strong geostrophic current beneath the layer, the only effect 

of nonlinearity is to either thicken or thin the layer depending on the sign of the vertical 

advection produced by the wind stress curl. A strong geostrophic flow, i.e. with velocity 

as large as boundary layer flow driven directly by the stress, does not affect the vertical 

advection and only contributes a vortex force such that positive vorticity makes the layer 

thinner as would be intuited by the naïve replacement of f by the total vorticity including 

the geostrophic flow.  

As a check to the calculation, the fluxes in the Ekman layer and the vertical velocity 

pumped into or out of  the layer have been calculated within the formalism described 

above and the results agree with the more naïve (and straight forward) calculations 

ignoring the role of nonlinearity on the layer thickness. 

It is important to note the important simplification employed in this study. The 

geostrophic flow is rectilinear and an exact solution of the inviscid quasi-geostrophic 

equations. As such there is no advection of relative vorticity by the geostrophic flow and 

the effect of the geostrophic flow on the layer thickness and the pumping remains local. If 

the geostrophic flow is more complex, i.e. two dimensional and a function of both lateral 
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coordinates, this will no longer be the case. One expects then the effects of the flow to be 

non-local and a shift between the local vorticity and the pumping to occur. Some results, 

employing a regular iteration expansion are reported in Hart (1995). An approach similar 

to the present paper for such cases would lead to a partial differential equation for the 

alteration of layer thickness and the results of that study are not yet concluded. 
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