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ABSTRACT 
 

Our understanding of the dynamics and regulation of phytoplankton communities 
has been limited by the space and time scales associated with traditional monitoring 
approaches.  To overcome some of these limitations, we have developed a submersible 
flow cytometer (FlowCytobot) designed for extended autonomous measurements of 
phytoplankton abundance, cell size and pigmentation.  FlowCytobot was moored on the 
seafloor from late July to October 2001 at the LEO-15 study site off the coast of New 
Jersey, and water samples from 5 m depth were pumped continuously through the 
instrument.  The resulting measurements reveal distinct populations of Synechococcus 
and cryptophytes, as well as an assemblage of other pico- and nano-phytoplankton of 
mixed taxonomy.  For each of these groups, dramatic variations in cell concentration 
were observed within the sampling period.  Diel variations in cell scattering cross-
section, which are indicative of changes in cell size, were consistent with patterns of cell 
growth during the light period and cell division late in the day.  We developed a size-
structured matrix population model that accommodates simultaneous growth and 
division, and then used the model and size distribution data from FlowCytobot to 
estimate daily intrinsic growth rates for Synechococcus; these growth rate estimates are 
independent of cell concentration data.  The results show that a dramatic autumn decline 
in the concentration of Synechococcus was caused by a decrease in intrinsic growth rate 
and not by physical transport processes or trophic interactions.   
 
INTRODUCTION 
 
 In recent decades it has become increasingly evident that marine phytoplankton 
are distributed in patterns that are highly variable in space and time.  This evidence has 
come from a variety of sampling approaches ranging from shipboard- or mooring- based 
measurement of in vivo chlorophyll fluorescence to satellite-based assessment of ocean 
color (e.g., Dickey 1991; Dickey 2001).  Despite these valuable measurement 
approaches, our knowledge of the factors that regulate phytoplankton distributions at the 
mesoscale and smaller continues to be limited by inadequate sampling; the outstanding 
problems include limited coverage and resolution in space and time as well as the need to 
characterize properties such as the composition, size distribution, and growth rate of the 
phytoplankton community.   
 Our recent efforts to develop an automated submersible flow cytometer 
(“FlowCytobot”) for analysis of phytoplankton properties have been aimed at resolving 
some of these limitations (Olson et al. 2002).  This automated sampling system, which is 
capable of continuously monitoring the fluorescence and light scattering of individual 
phytoplankton, has the potential to document changes in the taxonomic and size structure 
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of the phytoplankton community at unprecedented scales.  In a moored application, such 
as we describe here, this kind of technology can produce time series of phytoplankton 
properties that reflect combined responses to biological and environmental forcing.   
 
FLOWCYTOBOT OVERVIEW AND DEPLOYMENT 
 

FlowCytobot is based on a 532 nm solid-state laser for excitation, combined with 
photomultiplier detectors for light scattering and fluorescence (Fig. 1).  A sampling valve 
system selects from ambient seawater, and reservoirs of solutions containing detergent or 
standard microspheres for calibration.  Sheath water is recirculated during operation.  The 
self-contained underwater system includes signal processing electronics and a computer 
for sample control and data acquisition.   
 

 
 

Figure 1. Internal view of FlowCytobot.  The pressure housing endcap is on the left, 
fluidics and optics are in the center, and the electronics are on the right.  The 
syringe pump and sampling valve are located over the optics and are visible 

near the top of the image.  The optical bench rests on rubber wheels.   
 

We deployed the FlowCytobot on the ocean bottom at the Long-term 
Environmental Observatory (Glenn et al. 2000) located 9 km off the coast of New Jersey 
(LEO-15 “Node B”, 39° 27.41´ N, 74° 14.75´ W, Fig. 2) from late July to mid-October, 
2001.  During this deployment, power supply to the instrument, real-time data 
transmission to a shore-based computer, and user-initiated communication to change 
instrument status were accomplished via the fiber optic cable to the permanent 
underwater node at LEO-15.  Water samples were analyzed continuously except for brief 
interruptions associated with data transmission problems and with scheduled 
communication events from the shore-based computer, which was remotely operated via 
the Internet.   

During FlowCytobot deployment, bottom water temperature, salinity, and 
pressure were measured at the LEO-15 underwater nodes, surface winds and incident 
short wave radiation were measured at a coastal meteorological tower maintained as part 
of the LEO-15 observing system, and sea surface temperature data were derived from 
AVHRR satellite imagery.  These data are available from the data management 
component of Rutgers University's Coastal Ocean Observation Laboratory, co-directed 
by S. Glenn and O. Schofield (http://marine.rutgers.edu/mrs/).   
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Figure 2. The LEO-15 study site off the New Jersey coast showing Node  
and field station locations superimposed on bathymetry.   

(Image credit: http://marine.rutgers.edu/mrs).   
 

 
 

Figure 3.  A. Shalapyonok with FlowCytobot in its pressure housing 
 and deployment frame, after testing off the WHOI dock 

 
FLOWCYTOBOT SPECIFICATIONS 
 

Divers clamped the FlowCytobot (in a protective aluminum frame; Fig. 3) to a 
platform anchored to the bottom, and connected it to a Guest Node at LEO-15.  A 
submersible pump drew seawater from 5-m depth at a rate of 1 liter min-1 through a 0.5 
inch tube suspended from a subsurface float and screened with 2-mm copper mesh to 
prevent clogging.  A programmable syringe pump with a distribution valve samples the 
seawater flow through an 80 µm nylon mesh and injects the sample into the center of a 
sheath of particle-free seawater flowing at a rate of 5 ml min-1 through a flow cell with 
dimensions 180 x 400 µm.  The distribution valve allows access to several reservoirs 
inside the instrument.  Plastic microspheres are injected periodically to monitor 
performance, azide is added to sheath to prevent internal fouling, and detergent can be 
added to the flow cell and tubing (during this operation, the sheath pump is stopped and 
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the laser is blocked by a hydraulically-operated shutter).  The seawater sheath fluid is 
circulated continuously through a 0.2 µm cartridge filter by a miniature gear pump; the 
excess volume due to injection of sample overflows to the outside of the pressure 
housing.  Sample injection rate is adjusted (here, 12.5 to 50 µl min-1, using a 0.25-ml 
syringe) so that the particles in the sample pass one at a time through a laser beam from a 
532 nm diode-pumped solid-state laser (100mW).  A vertical beam expander followed by 
a 20-mm focal length spherical lens provides an elliptical laser beam spot at the flow cell.  
The laser beam steering mirror is under remote control to allow alignment in situ.  The 
optical signals (forward and side light scattering, (532 nm), chlorophyll fluorescence (680 
nm), and phycoerythrin fluorescence (575 nm)) are collected, separated, and detected 
with lenses, dichroic mirrors, and photomultipliers (PMTs) similar to those in 
conventional flow cytometers.  The measurements have approximately 4 decades of 
dynamic range.  A microcomputer in FlowCytobot controls the valve and pumps, 
acquires the optical signals, and transmits data to a shore-based computer.  A more 
detailed description of the instrument is provided by Olson et al. (2002). 
 
DATA ANALYSIS 
 

For data processing and analysis, we subdivided the record of light scattering and 
fluorescence signals into one-hour intervals.  For each interval, we used a sequence of 
automated steps to classify particles into one of four groups (Synechococcus, 
Cryptophytes, and other eukaryotes in large and small size classes) on the basis of signal 
characteristics (Fig. 4).  Absolute cell concentrations were determined from sample pump 
rate and data acquisition time.  We normalized all signal sizes to those from standard 
microspheres (1 µm), which were automatically analyzed approximately once per day 
during the sampling period.  Cell concentration (cells ml-1) for each hour was calculated 
from the number of cells measured and the pump rate.  We estimated the volume of each 
phytoplankton cell using an empirical relationship between cell volume and side light 
scattering determined for a variety of phytoplankton species (Fig. 5).   
 
TIME SERIES OF CELL CONCENTRATION AND SIZE 
 

During the sampling at LEO-15, large changes in cell concentration (~2 orders of 
magnitude) were observed for all phytoplankton groups, and these changes were 
sometimes associated with shifts in water properties (Fig. 6).  Unraveling the underlying 
causes of concentration changes such as these is a complicated problem due to the 
interrelated physiological, ecological, and physical processes that impact plankton 
concentration (e.g., Platt and Denman 1975; Steele 1978).  On the biological side, 
phytoplankton cell division is offset by mortality due to trophic interactions such as 
grazing and viral lysis.  If physical conditions are stable, the phasing of many 
phytoplankton growth processes to the daily light-dark cycle (Chisholm 1981; Prézelin 
1992) may allow growth and grazing rates to be estimated from diel cell concentration 
changes (André et al. 1999).  Stability is the exception, however, especially in coastal 
waters where physical processes can be a dominant source of variability in phytoplankton 
biomass, and we did not observe diel variance peaks in cell concentrations at LEO-15.   
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Figure 4. Two-dimensional histograms of FlowCytobot measurements from 1 hour of 

sampling at LEO-15.  As shown in the right panel, automated classification techniques 
(using light scattering, and red and orange fluorescence) allow the phytoplankton 

assemblage to be divided into several groups:  Synechococcus, cryptophytes, and other 
eukaryotes in large and small size classes. 
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Figure 5.  Empirical cell size to light scattering relationship derived from cultures of 
various phytoplankton species (left), and example cell volume distributions for LEO-15 
waters derived from the FlowCytobot data shown in Fig. 4.  The empirical relationship 
was determined from 11 monospecific cultures of phytoplankton (ranging in diameter 
from ~1 to 10 µm) grown in the laboratory and analyzed with a Coulter Multisizer and 
with FlowCytobot.  A power law function explained 99% of the variance between cell 

volume and side angle light scattering.   
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Figure 6.  Time series of bottom water properties (pressure, T, S), daily solar radiation, 

and phytoplankton concentrations for late July through September 2001 at LEO-15.  
(Pressure at Node A is shown offset by 2.8 m.) 

 
 

In addition to cell concentration, however, FlowCytobot measurements also 
provide information about phytoplankton cell size.  At diel time scales, we observed 
distinct patterns in cell size, with cell volume generally increasing during the day and 
decreasing during the night at LEO-15 (Fig. 7).  These patterns presumably reflect cell 
growth and division, as discussed elsewhere (Olson et al. 1990; Durand and Olson 1996; 
Shalapyonok et al. 1998; Jacquet et al. 2001).  If changes in population size distributions 
can be quantitatively related to cell growth and division, then this information can be 
used to separate the effects of cell division from other processes influencing cell 
concentration.   
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Figure 7.  One week subset of the time series to show examples of the diel variations in 

mode cell volume exhibited by Synechococcus.  Gray bars indicate nighttime.   
 
CELL GROWTH AND DIVISION MODEL 
 

On the basis of simple assumptions about the diel cycle of cell growth and 
division, a crude estimate of intrinsic growth rate can be derived from the increase in 
mean cell size between dawn and dusk.  This approach has been used for open ocean 
Synechococcus and other phytoplankton groups (Durand 1995; Binder et al. 1996; Vaulot 
and Marie 1999).  The major limitation of this simple approach is that it assumes that cell 
growth and cell division are segregated during the daily cycle.  Laboratory studies of 
Synechococcus, in particular, have demonstrated that growth and division can occur 
simultaneously in a population (Waterbury et al. 1986; Binder and Chisholm 1995; 
Jacquet et al. 2001), so that the simple approach underestimates growth rate.  To 
overcome this limitation we developed a matrix population model (Caswell 2000) that 
incorporates the full size distribution of the population, and accommodates simultaneous 
growth and division (Sosik et al. 2002).  The model does not depend on measured cell 
concentration.  We have initially developed our modeling approach for Synechococcus 
because these cells abundant were contributors to the phytoplankton community at the 
study site and they could be distinguished unambiguously from other taxonomic groups 
in our FlowCytobot data.   

Under our model, changes in cell size are due to growth (which depends on light 
conditions) and cell division.  The rate of cell loss is assumed to be independent of size.  
The model is based on discrete size classes; for this case we used 57 logarithmically 
spaced bins ranging from 0.03 to 4 µm3.  In each 10-min time step, a fraction of the cells 
in each size class divide, with each dividing cell producing 2 daughter cells of half the 
original size.  The division fraction, , depends on cell size v as: δ

  (1) max /(1 )bav avδ δ= + b

(Fig. 8E).  Cell division is not permitted until 6 hours after dawn.  Of the cells that do not 
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Figure 8. Measured (A) and modeled (B and C) size distributions for Synechococcus 
in surface waters of the New Jersey shelf on July 31, 2001. Size distributions are 

shown for each hour of the day, with the color bar indicating relative cell 
concentration in logarithmically spaced size classes. The 1-h model projections (B) 

were compared to the observed distributions (A) to determine the best-fit model 
parameters for each day. As detailed in the text, two parameters describe the light 
dependence of the fraction of cells progressing from one size class to the next (D); 

three other parameters describe how the fraction of cells that divide depends on cell 
volume (E). Even when the model (fit using 1-h projections) was used to project the 

initial size dist ribution forward over the entire day (C), the results were 
similar to the observations (A). 

divide at time t, a fraction g (t )  grow into the next largest size class. g (t ) depends on 
measured irradiance E(t) as: 

g (t ) = gmax º1 - exp (E t E( )  k )ß (2) 

(Fig. 8D). Cells that neither divide nor grow remain in the same size class. 
We estimated the model parameters dmax , a, b, gmax , and Ek  for each day (dawn 

to dawn) by minimizing the weighted sum of squared deviations between the observed 
and modeled size distributions in 1-h intervals, where the weights were the sample sizes 
in each hour (Fig. 8A-C). The intrinsic growth rate within a day is given by the model-
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predicted change in cell concentration (due to cell division in the absence of cell loss) 
over the course of the day.   
 
SYNECHOCOCCUS GROWTH RATES 
 

From our data and model results we derived a time series of population growth 
rate for Synechococcus.  These results suggest that physical processes caused the 
observed Synechococcus population decline during early August (Fig. 9A).  There is no 
evidence that the decline was associated with a decrease in intrinsic growth before or 
during this period (Fig. 9B).  As a consequence, cell specific loss rate must have 
increased (Fig. 9C).  While we cannot unambiguously distinguish between biological 
losses, such as grazing, and losses due to physical transport of cells, other evidence 
suggests that physical processes played an important role in the observed population 
decline.  Bottom water temperatures at LEO-15 experienced a ~8 °C drop during this 
period (Fig. 6B), which was most likely due to upwelling of deeper, colder shelf waters 
forced by the predominantly southwesterly winds.  Wind-driven upwelling is common in 
this area, and has previously been reported to bring in water masses with higher 
chlorophyll concentration and particle load (Glenn et al. 2000; Schofield et al. 2002).  In 
2001, however, a series of upwelling events similar to the one we observed in August 
occurred earlier in the summer, and these earlier events were accompanied by lower 
turbidity at LEO-15 (O. Schofield, personal communication), which is consistent with our 
observation of low phytoplankton concentration.  Later in August, another apparent 
upwelling event and major changes in cell concentration were observed (Fig. 2), but 
without the same association.  These results underscore the complexity of predicting 
consequences of events like upwelling on plankton distributions, and emphasize the need 
for combined physical and biological time-series observations.   
 The largest change we observed in Synechococcus concentration occurred in mid-
September (Fig. 9A).  In contrast to the population decline in early August, this dramatic 
decline appears to have had a physiological cause.  During the September decline cell- 
specific loss rates did not increase, but intrinsic growth rates decreased (Fig. 9A,B).  
Intrinsic growth rates were high at the end of August and in the beginning of September, 
with cells consistently dividing more than once per day.  Then, over four days beginning 
on September 7, growth rates dropped from >0.9 to <0.2 d-1.  Possibly due to light 
limitation (Sosik et al. 2002), growth rates stayed well below one doubling per day (i.e., 
< 0.69 d-1) for the remainder of September, while cell concentrations fell from >4 x 105 to 
<8 x 103 ml-1 and never recovered (Fig. 9A).   
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Figure 9. Time series of Synechococcus population properties in surface waters of the 
New Jersey shelf.  Cell concentrations with 1-h resolution (A) were determined directly 
from FlowCytobot measurements.  Daily intrinsic growth rates of Synechococcus (B) 
were determined from measured cell size distributions and a linear matrix model for 

cell growth and division over the diel cycle.  Error bars represent 95% confidence 
intervals estimated from 1000 bootstrapped data sets.  Apparent cell-specific loss rates 
(C) were estimated by difference between the intrinsic growth rates and the observed 

daily rates of population increase calculated directly from the concentrations in panel 
A.  Grazing by microzooplankton would contribute to positive loss rates, while physical 

processes, including water mass mixing and advection, could result in 
 positive or negative loss rates. 

 
CONCLUSIONS 
 

Our initial work with submersible automated flow cytometry has demonstrated 
the kinds of insights into phytoplankton dynamics that this technology can facilitate, 
especially in combination with modeling such as we have proposed to describe changes 
in cell size.  The fundamental response of a plankton population to environmental change 
is expressed in its intrinsic growth rate, but growth rates in the dynamic coastal ocean 
cannot be determined from traditional measurements of pigment biomass or even cell 
abundance.  Population modeling that uses time series of cell size data from automated 
instrumentation has enabled us to estimate growth rates, and thus to distinguish 

 10 



physiologically-driven change in phytoplankton abundance from more incidental 
fluctuations; for Synechococcus on the New Jersey shelf, both growth rate changes and 
physical processes combined with spatial patchiness are important at different times.  
Distinguishing between these sources of variability is crucial for understanding the 
regulation of coastal ecosystems.  We expect that new insights will continue to be 
revealed as automated flow cytometers such as FlowCytobot and the independently 
developed “CytoBuoy” (Dubelaar et al. 1999) are incorporated into plans for 
interdisciplinary coastal ocean monitoring systems (e.g., Malone and Cole 2000).   
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