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[1] We have developed an optical water type classification approach based on remotely
sensed water leaving radiance, for application to the study of spatial and temporal
dynamics of ecologically and biogeochemically important properties of the upper ocean.
For CZCS and SeaWiFS imagery of the Northwest Atlantic region, pixels from several
different locations projected into distinct clusters in water-leaving radiance feature space,
suggesting that these waters can be distinguished using a few spectral bands of ocean color
data. Based on these clusters, we constructed a Northwest Atlantic Training Set and
developed two different classification techniques. The Euclidean Distance Classifier
minimizes the raw distance between each pixel and the centroid of the class to which it is
assigned, whereas the Eigenvector Classifier is based on scaling the raw distances by the
variance of each class, thereby accounting for the shape of each class in feature space. We
conducted an initial evaluation of these two classification techniques by constructing
water type classes based on only half of the pixels of each water type (randomly selected)
in the Northwest Atlantic Training Set; classification was then carried out on the
remaining half of the training set data. Applying the Euclidean Distance Classifier resulted
in an average of 97.4% correctly classified pixels over 20 trials; even higher success rates
were achieved with the Eigenvector Classifier, which gave an average of 99.1% correctly
classified pixels. The Euclidean Distance Classifier performed well with spherical
classes, but with more ellipsoidal classes, classification success improved considerably
using the Eigenvector Classifier. We then applied these classifiers to ocean color images of
the Northwest Atlantic to elucidate the geographical location and extent of each water
type. We interpreted classifier results based on our Classification Goodness of Fit measure,
which indicates how closely a given pixel is associated with its assigned class. This
revealed that sharp boundaries exist between water masses of different optical types, with
pixels on either side of the boundaries being strongly associated with their water type class.
We anticipate that our classification techniques will facilitate long-term time series studies
by tracking optical water types through seasonal and interannual changes. INDEX TERMS:
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1. Introduction and Background

[2] Remotely sensed ocean color data acquired with
satellite sensors such as SeaWiFS (Sea-viewing Wide
Field-of-view Sensor) and CZCS (Coastal Zone Color
Scanner) provide temporally resolved synoptic views of
ocean regions over long periods of time. The availability
of satellite ocean color data has drastically altered our
perception of the global ocean over the last 2 decades,
and has opened up new opportunities to study the spatial
and temporal variability of phytoplankton distributions.

Traditionally, understanding of regional- and global-scale
variability in phytoplankton abundance has been limited by
sampling confined to point measurements obtainable from
ship-based surveys. The CZCS sensor produced the first
views of the surface ocean not subject to these sampling
limitations; in combination with sea surface temperature
imagery, these views have provided great insights into
biological and physical interactions in the upper ocean.
CZCS data has proven useful for studies of pigment
dynamics at a variety of scales and for a wide range of
environments [see McClain, 1993] and has set the stage for
new and improved applications with current and future
satellite ocean color data.
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[3] As evidenced by the successful use of CZCS
imagery to study pigment distributions, the abundance
of phytoplankton pigments plays an important role in
determining spectral sea surface reflectance. Particularly
in coastal waters however, both inherent and apparent
optical properties are influenced by a wide array of
physical, biological and chemical processes. These pro-
cesses can lead to large sources of optical variability that
may be independent of the abundance of phytoplankton
pigments. In addition to these pigments, constituents such
as colored dissolved organic matter (CDOM) of both
marine and terrigenous origin, heterotrophic organisms,
biological detritus, and inorganic particulate material can
affect both the magnitude and spectral quality of reflected
light. This complexity may interfere with accurate esti-
mation of phytoplankton distributions based on optical
signatures; however, it also presents the potential for
deriving information about other water properties from
space.

1.1. Pigment Retrieval

[4] Because ocean color signals vary in response to
many factors, successful identification of optically differ-
ent types of water is necessary for accurate retrieval of
constituent concentrations. To the extent that the abun-
dance and properties of absorbing and scattering materials
are not constant and do not covary in space and time,
application of generic or standard algorithms for pigment
retrieval may result in errors. Algorithms used to estimate
pigment concentrations from remotely sensed ocean color
data typically rely on ratios of water-leaving radiance
(Lw) or remote-sensing reflectance (Rrs) in the visible
spectral bands, usually Lw(443)/Lw(550) and/or Lw(443)/
Lw(520) for CZCS [e.g., Clark, 1981; Gordon et al.,
1983], and Rrs(443)/Rrs(555), Rrs(490)/Rrs(555), and/or
Rrs(510)/Rrs(555) for SeaWiFS [e.g., O’Reilly et al.,
1998]. While this approach has been very fruitful, these
ratios can vary in response to factors besides chlorophyll
concentration.
[5] Systematic errors in pigment retrieval from remotely

sensed ocean color have been documented for a variety of
specific conditions. In coastal environments with high
levels of CDOM, pigment concentration can be overesti-
mated [Carder et al., 1989; Hochman et al., 1994]. Even
in waters optically dominated by phytoplankton, applica-
tion of generic pigment algorithms can lead to overesti-
mates or underestimates of pigment concentration due to
differences in the spectrum of water-leaving radiance per
unit of pigment biomass. This can result from pigmenta-
tion differences such as the presence of high surface
concentrations of phycobilipigments in a bloom of cyano-
bacteria [Sathyendranath, 1986] or from physiological and
ecological effects such as chronic low light acclimation in
high latitude environments [Mitchell and Holm-Hansen,
1991; Sosik et al., 1992]. Species-specific properties such
as the production of highly scattering loose coccoliths by
some types of coccolithophorids can also affect pigment
estimates [Holligan et al., 1983; Balch et al., 1989, 1991].
All of these potential errors in pigment retrieval can be
avoided if specific water types can be identified and
appropriate algorithms or corrections applied. The appli-
cation of optical water type classification techniques to

ocean color imagery in problem regions will contribute to
this effort.

1.2. Resolving Mesoscale Features From Satellite
Ocean Color Observations

[6] Satellite ocean color images of large geographic
areas often reveal mesoscale reflectance features that are
associated with physical, biogeochemical, and biological
processes in the upper ocean. Ocean color data has been
exploited to help identify the scales associated with these
features, and attempts have been made to correlate this
data with in situ observations to identify the processes
contributing to spatial and temporal variability. Examples
where CZCS observations have been used for these
purposes include studies of boundary current systems
[Peláez and McGowan, 1986; Smith et al., 1988; Denman
and Abbott, 1988; Thomas et al., 1994], coastal upwelling
regions [McClain et al., 1984; Abbott and Zion, 1985], and
other dynamic coastal environments [Eslinger and Iverson,
1986; Yoder et al., 1987; Abbott and Zion, 1987; McClain
et al., 1990], including areas dominated by river plumes
[Müller-Karger et al., 1989; Hochman et al., 1994]. These
types of studies provide fundamental information about
upper ocean processes and can also be useful for improv-
ing the accuracy with which satellite data is interpreted, as
is the case in high CDOM shelf waters [e.g., Hochman et
al., 1994].
[7] Identification of mesoscale features and local- to

regional-scale water masses is also important for many
biological and ecological questions. The study of pigment
dynamics is an obvious example. In addition, the concept of
biogeographic regions whose boundaries may vary in space
and time is important for assessment of rate processes such
as primary production using remotely sensed data [e.g.,
Platt and Sathyendranath, 1988; Platt et al., 1991]. Accu-
rate delineation of these regions is required, and methods to
accomplish this which take advantage of the ideal spatial
and temporal resolution of satellite-based observations
should be far superior to those based on climatological
observations. This idea had been explored, for example, in
the use of CZCS data to identify biogeographic regions in
the Gulf of California [Santamarià-del-Angel et al., 1994],
as well as by using Advanced Very High Resolution Radio-
meter (AVHRR) imagery in combination with local bathy-
metry to define water types in a study of productivity on
Georges Bank [Sathyendranath et al., 1991]. To date,
efforts to identify mesoscale features or water type bounda-
ries from remotely sensed ocean color data have generally
relied only on pigment distributions or have involved
relatively dramatic water type differences, such as those
that occur near river plumes. The potential for using more
information than is contained in pigment images and to
discern more subtle differences in optical water types has
not been fully explored.

1.3. Detecting Phytoplankton Blooms

[8] There have been efforts to use CZCS data for water
type identification using specialized algorithms designed to
recognize the unique optical properties of a particular type
of phytoplankton. A successful method was developed to
detect coccolithophore blooms using CZCS remotely sensed
radiances based on a nonparametric parallelepiped super-
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vised algorithm [Brown and Yoder, 1994a, 1994b], which
was able to distinguish pixels within coccolithophore
blooms from nonbloom pixels. Subramaniam and Carpen-
ter [1994] developed a protocol to identify Trichodesmium
blooms from CZCS imagery based on high reflectivity from
gas vacuoles and a phycoerythrin absorption feature at 550
nm, and were able to distinguish two Trichodesmium
blooms from sediment whitings and from some portions
of coccolithophore blooms. Attempts have been made to
detect cyanobacterial blooms using a supervised classifica-
tion technique [Zabicki, 1995] based on the observed ratio
of (total radiance at 750 nm) to (total radiance at 670 nm);
although this ratio was always lower for suspected cyano-
bacterial blooms than for sediment conditions, it was not
possible to distinguish coccolithophore blooms from Tri-
chodesmium blooms with this method.
[9] These taxon-specific algorithms can indicate the pres-

ence of near mono-specific blooms in the analysis of partic-
ular ocean regions at times when blooms of that type are
thought to occur. The utility of these approaches may be
limited, however, in the identification and classification of a
broad range of water types that may span many scales of
spatial and temporal variability. To fully exploit ocean color
data for the study of phytoplankton dynamics, it is necessary
to develop amore universal scheme to optically classifymany
different types of phytoplankton blooms simultaneously by
automatically distinguishing them from each other and from
other nonphytoplankton dominated optical water types.

1.4. Northwest Atlantic Ocean

[10] The Northwest Atlantic Ocean has been the subject of
intensive oceanographic study over the past several decades,
and continues to be a target location for conducting multi-
disciplinary optical and ecological research. It encompasses
a wide variety of oceanographic and optical regimes (Figure
1), including coastal and coastally influenced regions (the
Gulf of Maine, Georges Bank, and the nearshore Central
Mid-Atlantic Bight), open ocean waters (the Sargasso Sea),
and a swiftly flowing western boundary current (the Gulf
Stream). The coastally influenced regions exhibit the great-
est seasonal optical variability, since both colored matter of
terrigenous origin and phytoplankton biomass affect the
inherent and apparent optical properties in these areas.
Georges Bank, a shallow submarine bank lying along the
outer continental shelf east of Cape Cod, Massachusetts, has
been well studied both biologically and physically and is
influenced by a wide range of important coastal processes
which can contribute to optical variability [see Backus,
1987]. The Gulf of Maine is a semi-enclosed region
bounded by shallow embankments including Georges Bank,
and is tidally flushed principally through two deeper chan-
nels (Northeast Channel and Great South Channel). The
Gulf encompasses several deep canyons, which remain
stratified year-round, as compared to the seasonally well-
mixed shallower zones [Yentsch and Garfield, 1981]. Opti-
cally, these shallow coastal waters are complex and the
absolute accuracy of ocean color-based pigment estimates
for the Georges Bank/Gulf of Maine region is limited by
inadequate knowledge of the magnitude and sources of
optical variability [e.g., see Yentsch et al., 1994].
[11] To the south lies the oligotrophic, open ocean region

of the Sargasso Sea, characterized by optically clear ‘‘blue’’

waters. This region has typically been categorized as Case I
waters [after Morel and Prieur, 1977], and optical varia-
bility is more limited here than in the more coastally
influenced Case II waters to the north. The Sargasso Sea
is bounded to the west and north by the Gulf Stream, a
powerful current whose structure, transport, and water mass
properties vary both temporally and spatially, displaying
seasonal, interannual, and mesoscale fluctuations. The path
of the Gulf Stream meanders over a broad range, seasonally
shifting considerable distances north/south, as well as
exhibiting rapidly translating and evolving meanders on
timescales as short as several days [Watts, 1983]. Frontal
mesoscale eddies are formed when these meanders are cut
off from the Stream, resulting in a ring of Gulf Stream water
enclosing a body of water with very different physical,
biological, and optical properties; the evolution of these
eddies influences optical variability in the Sargasso Sea, the
slope waters of the Mid-Atlantic Bight, and as far north as
Georges Bank [Ryan et al., 2001].

1.5. Classification Techniques

[12] A promising approach to identifying optical water
types based on remotely sensed data is to develop a
comprehensive framework within which different water
types may be automatically and simultaneously distin-
guished from each other. Subsequently, additional informa-
tion such as in situ observations can be used to categorize
the water types in an ecologically relevant manner. The
development of an automatic classification scheme essen-
tially involves the inversion of observed data to retrieve a
property of interest. One of us (Martin Traykovski) has
previously explored the utility of both model-based and
feature-based inversion techniques for the purposes of
classifying the acoustic echoes from different types of
zooplankton based on their unique spectral signatures.
Classification schemes based on theoretical models proved
reliable in high signal-to-noise conditions, whereas a fea-
ture-based classification approach was more robust in the
presence of contaminating noise [Martin et al., 1996].
Although these techniques have been useful in zooplankton
studies [Holliday et al., 1989; Martin et al., 1996; Martin
Traykovski et al., 1998a, 1998b] as well as other oceano-
graphic applications [e.g., Munk and Wunsch, 1979; Fox et
al., 1994], their utility for classifying optical water types
from satellite spectral data has not been fully explored.
[13] Feature-based classification operates independently

of a forward model, and relies only on the inherent
characteristics of the observed data. It involves identifying
and extracting the relevant features in the data (direct
measurements and/or properties derived from these mea-
surements) that will allow retrieval of the properties of
interest. Once the relevant feature set is identified, it can
then be employed to delineate classes or categories which
share common properties or attributes. Data may subse-
quently be classified into categories based on these discrim-
inating features. Statistical decision theory can be used to
derive an optimum classification rule if multivariate prob-
ability density functions are known for each class or if an
empirical probability model can be obtained by statistical
estimation. Alternatively, a decision rule may be derived
directly from the distribution of samples in feature space.
Feature-based classification is also possible where no a
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priori information is available, through the exploitation of
naturally occurring groupings or clusters in the data. Fea-
tures can then be empirically related to water type. Previous
work on phytoplankton bloom identification [e.g., Brown
and Yoder, 1994a, 1994b; Subramaniam and Carpenter,
1994; Zabicki, 1995] is a limited form of feature-based
classification where a decision rule is applied to determine
whether data fall inside or outside a single class boundary.
[14] In this paper we present the foundations for a more

comprehensive feature-based approach to the optical classi-
fication of water type, and outline the development of

specific classification techniques for application to remotely
sensed ocean color data. The work presented here involves a
regional study of waters in the Northwest Atlantic, including
the Gulf of Maine and Georges Bank to the north, the Central
Mid-Atlantic Bight, and the waters of the Gulf Stream and
the northern Sargasso Sea to the south. We begin by
presenting an analysis of selected CZCS and SeaWiFS data
to demonstrate the feasibility of applying feature-based
classification techniques to identify and delineate optical
water types. The ultimate goal of our regional study is to
establish feature-based classification approaches for discrim-

Figure 1. Optical variability in the Northwest Atlantic Ocean as revealed by satellite-derived
chlorophyll a concentration (mg/m3) from SeaWiFS on 8 October 1997, with oceanographic/optical
regimes indicated. Land and clouds appear black; coastline is shown in pink. Low ratios of blue to green
water leaving radiance (indicating high pigment concentrations) are often observed over Georges Bank.
Episodic blooms of coccolithophorid phytoplankton [Balch et al., 1991; Brown and Yoder, 1994a] as well
as toxic dinoflagellates [Anderson, 1997] have been documented in the Gulf of Maine, contributing to
optical variability in that region. Although phytoplankton biomass is believed to be the dominant variable
constituent controlling the optical properties of the Sargasso Sea, recent studies have revealed the
importance of CDOM and particulate matter in contributing to light attenuation in this region [Siegel and
Michaels, 1996; Nelson et al., 1998]. As a result of their unique properties, the formation and evolution of
cold- and warm-core rings introduce a significant source of optical variability into the Sargasso Sea and
the slope waters of the Mid-Atlantic Bight, with influences as far north as Georges Bank [Ryan et al.,
2001].
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inating various optical water types present in the Northwest
Atlantic based on satellite ocean color data. To this end, we
have developed two different classification techniques and
applied them to CZCS and SeaWiFS imagery of the region.

2. Methods

[15] We have automated the water type classification
process by applying statistical decision criteria to define
class boundaries and assign data to a particular class. In this
section, we first describe the theoretical development of two
feature-based classification techniques new to the analysis
of ocean color data, the Euclidean Distance Classifier and
the Eigenvector Classifier. Next we outline the approach we
used to construct a classifier training set for the Northwest
Atlantic region. Following this, we describe how the clas-
sifiers were applied to CZCS and SeaWiFS imagery of the
Northwest Atlantic. Finally, we detail the development of a
Classifier Goodness of Fit measure for application to the
results of the Euclidean Distance Classifier.

2.1. Development of Classification Techniques

[16] Feature-based classification approaches separate
observed data into classes based on the variability inherent
in the data set. The data are generally multivariate, so that
each data point has nk dimensions or features. In some
cases, it may be desirable to chose the number of classes
based on a priori knowledge, although this is not necessary
for successful classification. For the classifiers described
herein, the number of classes ni was predetermined based
on a limited set of satellite observations, and a training set
of data points A(i) was constructed for each class. For each
water type class i with nj training data points (each with nk
features), the class centroid m(i) is computed as the arith-
metic nk-dimensional mean of the training data points aj

(i)

for that class, so that

m
ið Þ
k ¼

Xnj
j¼1

a
ið Þ
jk

" #
=nj; ð1Þ

that is, the kth dimension of the centroid for class i is the
mean of the kth dimension ajk

(i) of all nj training data points in
that class. The classification process involves projecting the
multivariate data into an nk-dimensional feature space. Each
nk-dimensional satellite data point sv (for v = 1 to nv, the
number of pixels in the image) may then be classified by
evaluating its proximity to each class centroid according to
a distance-based decision rule.
[17] The Euclidean Distance Classifier assigns each sv to

a water type class i based on the Euclidean distance between
that data point and the centroid or mean of each class in
feature space. The Euclidean distance D between data point
sv and the centroid for class i m(i) is defined as

D sv;m
ið Þ

� �
¼ sv �m ið Þ

� �
sv �m ið Þ

� �T
� �1=2

: ð2Þ

A data point is assigned to the water type whose class
centroid is the minimum Euclidean distance away, so that
the decision rule for the Euclidean Distance Classifier may
be written as

sv 2 class a iff D sv;m
að Þ

� �
< D sv;m

bð Þ
� �

for all b 6¼ a: ð3Þ

The class decision boundaries for the Euclidean Distance
Classifier are equidistant from the class centroid in all
directions. An implicit assumption of this classifier is that all
classes are spherical in shape; as a result, this formulation is
not able to account for any variability in class shape.
[18] The Eigenvector Classifier was developed to include

consideration of the nk-dimensional shape of each class.
With this formulation, each water type class is defined in
terms of a hyper-ellipsoid in feature space, the principal
axes of which are given by the nk dominant eigenvectors
(j1, j2, j3, . . .jnk) of the covariance matrix C [see
Papoulis, 1991] of the training data in that class,

C ið Þ ¼ ~A
ið Þh iT

~A
ið Þh i
; ð4Þ

where each row of Ã(i) contains a mean-subtracted, energy
normalized nk-dimensional data point ~aj

(i) from the training
set for class i, and 0 � Ckk

(i) � 1. The extent of each class in
the nk eigenvector directions is represented by the
corresponding eigenvalues (l1, l2, l3, . . .lnk). The result
is that the classes occupy ellipsoidal regions in feature
space, each oriented along their own eigenvector directions.
With the Eigenvector Classifier, the distance E of a data
point sv from the centroid m(i) of class i is computed in
terms of components along the eigenvector directions for
that class, and each component is scaled by the square root
of the corresponding eigenvalue,

E sv;m
ið Þ

� �
¼

Xnk
k¼1

s*
ið Þ

vk =
ffiffiffiffiffi
lk

p� �2
" #1=2

; ð5Þ

where sv*
(i) is the distance between sv and the centroid in the

eigenvector reference frame,

s*
ið Þ

v ¼ R sv �m ið Þ
h i

: ð6Þ

The data are projected into the eigenvector reference frame
via the nk � nk transformation matrix R, which is simply a
matrix of dot products between unit row vectors (represent-
ing each of the nk dimensions in the original feature space)
and the eigenvectors (j1, j2, j3, . . .jnk). For example, with
nk = 3 (three-dimensional case), R is the 3 � 3 matrix

R ¼

x̂ 	 j1ð Þ ŷ 	 j1ð Þ ẑ 	 j1ð Þ

x̂ 	 j2ð Þ ŷ 	 j2ð Þ ẑ 	 j2ð Þ

x̂ 	 j3ð Þ ŷ 	 j3ð Þ ẑ 	 j3ð Þ

2
66664

3
77775; ð7Þ

with x̂ = [1 0 0], ŷ = [0 1 0], and ẑ = [0 0 1]. The scaled
distance, measured as the number of standard deviations
(

ffiffiffiffiffi
lk

p
) between the data point and each class centroid, is

computed in the transformed eigenvector space. A data
point is assigned to the water type class for which this
scaled distance is minimum, so that the decision rule for the
Eigenvector Classifier may be written as

sv 2 class a iff E sv;m
að Þ

� �
< E sv;m

bð Þ
� �

for all b 6¼ a: ð8Þ

2.2. Construction of a Training Set

[19] In order to apply the classifiers to satellite ocean
color data of a specific region, a training set for that region
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must be constructed. The training set consists of a group of
prototypical data points that represent the characteristics of
each class, spanning the observed variability in feature
values while maintaining class separability in feature space.
Our analysis of optical water types in the Northwest
Atlantic was focused on the region bounded by the Gulf
of Maine to the north and the northern Sargasso Sea to the
south, extending from 35�N to 45�N latitude, and 64�W to
76�W longitude. Based on general knowledge of the
hydrography and bathymetry of the region, combined with
an examination of CZCS and SeaWiFS imagery of the
Northwest Atlantic (for examples, see Figure 2), we sub-
jectively selected six geographic locations thought to have
characteristic optical water types: the Northern Sargasso
Sea (NSS), the waters in and around the northern boundary
of the Gulf Stream (GS), the slope waters of the Central
Mid-Atlantic Bight (CMAB), mineral-dominated waters,
represented by a suspected coccolithophore bloom just
south of Georges Bank (coc/min), the waters over Georges
Bank (GB), and central Gulf of Maine waters (GM). To
construct the Northwest Atlantic Training Set, we ran-
domly selected 100 training data pixels from each of the

six locations, and extracted normalized water-leaving radi-
ances (nLw [Gordon et al., 1988]) for each pixel from the
7 July 1980 CZCS image (Figure 2, left). For each training
data point, three features were extracted from the ocean
color imagery: nLw in each of three bands, 443 nm,
520 nm, and 550 nm. Thus, for this analysis of the
Northwest Atlantic region, the training set A(i)(for i = 1
to ni) for each of the ni = 6 optical water type classes
consisted of nj = 100 prototype data points, each repre-
sented by nk = 3 features: nLw(443), nLw(520), and
nLw(550). We then projected the training set in a three-
dimensional feature space (Figure 3). Class decision boun-
daries were computed for the Euclidean Distance Classifier
(Figure 4, left), and class ellipsoids (spanning 1 standard
deviation in all directions) were computed for the Eigen-
vector Classifier (Figure 4, right).

2.3. Classifier Application to Ocean Color Imagery

[20] To evaluate the performance of the two classification
techniques, it is necessary to apply them to a test data set for
which class membership is known. To this end, we con-
structed a test training set by randomly selecting half the

 

 

 

 

 

 
 

Figure 2. Satellite ocean color imagery of the Northwest Atlantic. (left) CZCS-derived normalized
water-leaving radiances (mW/(sr	cm2	mm)) in three spectral bands nLw(443), nLw(520), nLw(550), and
pigment (mg/m3) for 7 July 1980, and (right) SeaWiFS-derived normalized water-leaving radiances (mW/
(sr	cm2	mm)) in three spectral bands nLw(443), nLw(510), nLw(555), and chlorophyll a (mg/m3) for 8
October 1997. Land and clouds appear black. Coastline is shown in pink (right-hand plots only) to
delineate land under cloud cover.
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pixels (nj = 50) of each water type from the Northwest
Atlantic Training Set. The test data set then consisted of the
remaining pixels from each water type class, whose identity
was known. We conducted 20 trials in which a different test
training set was randomly selected, and the remainder of the
pixels were assigned to the test data set. For each trial, each
of the two classifiers was applied to the resulting test data
set. We measured classifier performance as the percentage
of the test data set correctly classified in each trial.
[21] We then applied the classifiers to satellite ocean color

imagery of the Northwest Atlantic region. We extracted
nLw at 443 nm, 520 (or 510) nm and 550 (or 555) nm
(nk = 3) from the CZCS or SeaWiFS images for all pixels
in the area from 35�N to 45�N latitude and 64�W to 76�W
longitude. The classifier decision rules were applied to
each pixel in the image, assigning it to one of the six
water type classes. A map was produced of the classi-
fication results which indicates the class membership of
each pixel from the original image.

2.4. Classification Goodness of Fit Measure

[22] A measure of Classification Goodness of Fit was
developed to aid in the interpretation of the classification
results. To explore the utility of this approach, we focused

our efforts on the Euclidean Distance Classifier, since this
formulation was less complex mathematically than the
Eigenvector Classifier. A goodness of fit measure reveals
the certainty with which each pixel is assigned to a given
class. It provides information that is helpful in assessing
geographical boundaries between water types, as well as in
resolving questions that arise when groups or patches of
pixels are assigned to a different class than the majority of
surrounding pixels. A goodness of fit measure will also
signal the presence of pixels not closely identified with any
of the defined water type classes, possibly indicating the
need to incorporate an additional class into the training set.
To measure goodness of fit, a probability landscape is
constructed, and the location of each pixel in the probability
landscape determines its Classification Goodness of Fit.
[23] For each class, the class centroid m(i) represents the

center of several concentric probability regions; in three-
dimensional feature space, these regions may be visualized
as probability shells surrounding the centroid. The p%
probability shell for class i, Sp

(i), is the region surrounding
the centroid m(i) within which the closest p% of all the
pixels in the classified image fall. The metric for ‘‘close-
ness’’ is unique to a particular classifier. For the Euclidean
Distance Classifier, the p% probability shell includes pixels

Figure 3. Northwest Atlantic Training Set. Water type classes shown in a three-dimensional single band
feature space; nLw in mW/(sr	cm2	mm). The training set consists of nj = 100 randomly chosen pixels
from each of six different geographical regions. NSS = Northern Sargasso Sea waters; GS = Gulf Stream
waters; CMAB = Central Mid-Atlantic Bight waters; coc/min = coccolithophore/mineral dominated
waters; GB = Georges Bank waters; GM = Gulf of Maine waters; class meanm(i) indicated as black dot at
centroid of each cluster.
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whose Euclidean distance from the class centroid are in the
smallest p% of all Euclidean distances for all pixels,

sv 2 S ið Þ
p iff D sv;m

ið Þ
� �

< d ið Þ
np
: ð9Þ

Thus, a pixel sv is enclosed within the p% probability shell
for a given class if the distance between it and the class
centroid is less than or equal to the npth-smallest distance
dnp
(i). The nv-element vector d(i) contains the distances, sorted

in ascending order, between each of the nv pixels in the
image and m(i); np is the number of pixels in the p%
probability shell, computed as

np ¼ p� nnð Þ=100 with 0 � p � 100: ð10Þ

[24] The entire probability landscape consists of the
combined probability shells for all the classes. The location
of each pixel in the probability landscape is computed
relative to the position of twenty probability shells (5%,
10%, 15%, . . ., 100%) for each class. A pixel is ultimately
assigned a Goodness of Fit value (G) to each class
corresponding to the lowest order probability shell po for
that class which encloses it. The G value represents the
(100 � po)th percentile of fit for that class. For example, for
an image consisting of nv = 100,000 pixels, the p = 5%
probability shell for a given class is the region of feature
space surrounding the class centroid within which the
closest np = 5000 pixels in the classified image fall,
whereas the p = 10% probability shell is the region within
which the closest np = 10,000 pixels fall. The pixel whose

distance to the centroid ranks 23rd-closest is enclosed by
both the 5% and 10% probability shells; it is assigned a
Goodness of Fit value of G = 95 (corresponding to the
lower order shell po = 5), indicating that it is in the 95th
percentile for fit to that class, whereas a pixel whose
distance ranks 6,015 is assigned G = 90. In this fashion,
the classifier not only decides the class membership of a
pixel, it also assigns a G value which reflects how strongly
that pixel belongs to that class. Pixels which are assigned
higher G values (e.g., 95 or 90) for a given class are
identified very strongly with that class, whereas pixels
which are assigned lower G values (e.g., 5 or 10) are
enclosed only by the outer probability shells and are very
weakly associated with that class.

3. Results

[25] The water types characteristic of these Northwest
Atlantic locations were easily distinguishable as distinct,
well-delineated clusters in feature space. In addition, these
water types projected onto the same regions in feature space
for different scenes over time. For example, our examination
of CZCS and SeaWiFS images spanning 17 years revealed
that randomly selected pixels from the waters over Georges
Bank in the October 1997 SeaWiFS image (Figure 2, right)
occupied the same region in feature space (not shown) as
they did in the July 1980 CZCS image (Figure 2, left). In
fact, this was true of randomly selected pixels for most of the
other water types. The stationarity of the ocean color data
over almost two decades contributes to the robustness of the
training set.

Figure 4. (left) Class decision boundaries for the Euclidean Distance Classifier; decision boundaries are
equidistant from the class centroid in all directions. (right) Ellipsoids defining the classes for the
Eigenvector Classifier shown with the Northwest Atlantic Training Set (nj = 100 training data points per
class); ellipsoid orientation determined by the eigenvector directions for each class. The ellipsoid axis
length in each eigenvector direction is equal to the square root of the corresponding eigenvalue, so that
the ellipsoids shown encompass 1 standard deviation of the training data for each class. NSS = Northern
Sargasso Sea waters; GS = Gulf Stream waters; CMAB = Central Mid-Atlantic Bight waters; coc/min =
coccolithophore/mineral dominated waters; GB = Georges Bank waters; GM = Gulf of Maine waters;
class mean m(i) indicated as black dot at centroid of each cluster where visible.
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[26] Initial evaluation of the performance of each classi-
fication technique was accomplished by applying the clas-
sifiers to a test data set for which class membership is
known. For each classifier, twenty trials were conducted in
which a test training set (nj = 50 for each class) was
randomly selected from the Northwest Atlantic Training
Set, and the remaining 300 pixels were classified. For
example, a single trial resulted in 10 misclassified pixels
(96.7% correct) with the Euclidean Distance Classifier and
only 2 misclassified pixels (99.3% correct) with the Eigen-
vector Classifier (Figure 5). Over the 20 trials, applying the
Euclidean Distance Classifier resulted in an average of
97.4% correctly classified pixels, with a mean of 7.8
misclassified pixels (standard deviation (s.d.) 2.3). Even
higher success rates were achieved with the Eigenvector
Classifier; its consideration of the three-dimensional shape
of each class reduced misclassification rates for the more
elongated classes. Application of the Eigenvector Classifier
gave an average of 99.1% correctly classified pixels, with a
mean of 2.9 misclassified (s.d. 1.6) over 20 trials.
[27] Both the Euclidean Distance and Eigenvector Clas-

sifiers were applied to several cloud-free ocean color images
of the Northwest Atlantic. Classification results revealed
striking patterns of water type distribution throughout the
region, as shown in the Euclidean Distance Classification
results (Figure 6), and the Eigenvector Classification results
(Figure 7) for both 7 July 1980 and 8 October 1997. The

water types in each scene are clearly distinguishable, and
classifier application reveals that waters of the same optical
type form well-defined water masses that remain in the
same general geographical regions over time. For example,
the GM waters (Figures 6 and 7) occurred largely in the
Gulf of Maine, whereas the CMAB waters occurred in the
Central Mid-Atlantic Bight to the south of Georges Bank.
The GB waters occurring over Georges Bank were quite
distinct from the surrounding waters, indicating that these
waters were characterized by a unique set of optical proper-
ties, and may have been more similar optically to the waters
along the New England coast. In the southern half of the
region, GS waters occurred to the north of NSS waters on
both days, but both were found farther north on 7 July 1980
as compared to 8 October 1997. Mesoscale physical ocean-
ographic features also become apparent after classification,
since they often result from interactions between water
masses characterized by different optical water types.
[28] The classifiers revealed an array of several patches of

coc/min waters on 7 July 1980 between 40�N and 41�N
(just south of Georges Bank), extending from approximately
�70�(W) eastward to �66�(W). It is suspected that the
presence of these optically distinct waters indicate a cocco-
lithophore bloom. The training set for the coc/min class
occupied a large region in feature space quite separate from
the other optical water types (see Figure 3), and when
subjected to the criteria of Brown and Yoder [1994b] for
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Figure 5. Example results of randomized classification runs of half the Northwest Atlantic Training Set.
A test training set was constructed from half the pixels (nj = 50, randomly chosen, 20 trials) of each water
type in the Northwest Atlantic Training Set; the remaining pixels (pictured above for one run) were
classified with both classifiers. Misclassified pixels shown circled in black; misclassified pixels retain
original symbol but take on color of the class to which they were assigned. (left) Euclidean Distance
Classification results (average 97.4% correct); class mean m(i) indicated as black dot at centroid of each
cluster. (right) Eigenvector Classification results (average 99.1% correct); eigenvector directions
indicated by black lines with line length designating 1 standard deviation of the test training data set in
each eigenvector direction. NSS = Northern Sargasso Sea waters; GS = Gulf Stream waters; CMAB =
Central Mid-Atlantic Bight waters; coc/min = coccolithophore/mineral dominated waters; GB = Georges
Bank waters; GM = Gulf of Maine waters.
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CZCS data, 87% of the pixels were identified as coccoli-
thophore pixels (Table 1). All the pixels (940) within the
suspected coccolithophore bloom projected onto the same
region in feature space as the coc/min training set, and over
50% met the Brown and Yoder coccolithophore criteria.
[29] The classifiers also assigned several other patches to

the coc/min optical water type: the Nantucket Sound/Vine-
yard Sound/Buzzard’s Bay region off Cape Cod, Massa-
chusetts (7 July 1980), the coastal waters off the Eastern
Shore (Maryland)/Delmarva Peninsula (both 7 July 1980
and 8 October 1997), a portion of the Maine Coastal Current
between Maine and Nova Scotia, Canada (8 October 1997),
and the Pamlico Sound/Outer Banks coastal waters off
Hatteras Island, North Carolina (8 October 1997). Based
on their location in feature space as well as the results of
subjecting them to the appropriate coccolithophore criteria
(see Table 1), it is evident that the pixels in these other
patches do not represent coccolithophore blooms. In fact,
the coc/min-classified pixels from the coastal waters of
Maine, Massachusetts, Delaware, Maryland, and Virginia
(from both 7 July 1980 and 8 October 1997) formed their
own well-defined cluster centered above and to the left of
the coc/min training set (see Figure 3 for reference). The

mineral material in these coastal waters is most likely to be
sediment of terrigenous origin, whose optical signature
differs from that of the coccolithophore bloom-associated
mineral material (e.g., detached liths) represented by the
coc/min training set.
[30] In addition to the non-coccolithophore bloom patches

classed as coc/min, close examination of the classification
results revealed other examples of pixels assigned to a
particular optical water type that do not appear to belong to
that class. For example, the waters of Long Island Sound,
Cape Cod Bay, and coastal Massachusetts were assigned to
the GB class, as were the waters of Delaware Bay and the
Chesapeake, and patches of GM waters appeared in the
Central Mid-Atlantic Bight, far to the south of the Gulf of
Maine. In these cases, it is not clear from the classifier results
(Figures 6 and 7) whether the patches in question have similar
optical properties to the prototype of the class to which they
were assigned, or whether they were simply assigned to that
class because a more appropriate prototype was not included
in the training set. The Classification Goodness of Fit
measure provides a means by which to interpret these
classification results by assigning a G value to the classi-
fication of each pixel, measuring the certainty with which the

Figure 6. Classification results for the Euclidean Distance Classifier applied to the Northwest Atlantic
on two different days: (left) 7 July 1980 (CZCS image) and (right) 8 October 1997 (SeaWiFS image). The
water types are clearly distinguishable, and application of the classifier reveals that they form well-
defined water masses. There are striking broad-scale similarities in the distribution of these water types
between the two scenes, even though they are 17 years apart. Mesoscale physical oceanographic features
are apparent; differences may represent seasonal and/or inter-annual variability.
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class assignment is made; pixels with high G values are
strongly identified with their class, whereas lower G values
reflect lower confidence in the classification result. This
measure was particularly useful in evaluating pixels or
groups of pixels for which the class assignments appeared
to be incorrect, as well as in understanding the nature of the
boundaries between water types.

[31] Applying Classification Goodness of Fit measures to
the Euclidean Distance Classifier results (Figure 8) revealed
that the boundaries between water masses of different
optical types were quite distinct. Pixels on either side of
these sharp boundaries were generally characterized by very
high G values, indicating that they are very strongly
associated with their respective water type class. The edges

Figure 7. Classification results for the Eigenvector Classifier applied to the Northwest Atlantic on two
different days: (left) 7 July 1980 (CZCS image) and (right) 8 October 1997 (SeaWiFS image). Results with
this classifier are quite similar to the Euclidean Distance Classifier results shown in Figure 6. The
Eigenvector Classifier seems to more correctly identify the pixels near the right cloud edge of the CZCS
image as compared to the Euclidean Distance Classifier, but does not delineate the mesoscale eddy revealed
by the Euclidean Distance Classifier in the 8 October 1997 image at �36�N, 68�W (see Figure 6, right).

Table 1. Application of Appropriate Coccolithophore Criteria to Pixels Classified as coc/min by Euclidean Distance Classifier

Region Date
No. of coc/min

Pixels
No. That

Meet Criteria
Percent That
Meet Criteria

South of Georges Bank MA 7 July 1980a 940 476 50.6%b

Nantucket Sound/Buzzards Bay MA 7 July 1980a 205 1 0.5%
Delmarva coast DE/MD/VA 7 July 1980a 187 2 1.1%
Maine Coastal Current ME 8 October 1997c 1060 0 0% {0%}
Delmarva coast DE/MD/VA 8 October 1997c 2579 174 6.7% {8.0%}
Pamlico Sound/Outer Banks NC 8 October 1997c 3134 57 1.8% {0.2%}
Northwest Atlantic Training Set n/a 100 87 87%

aFor CZCS data (7 July 1980) the criteria of Brown and Yoder [1994b] were applied.
bOnly the patches comprising the suspected coccolithophore bloom south of Georges Bank on 7 July 1980 contained a significant percentage of pixels

which met the criteria.
cFor SeaWiFS data, pixels were subjected to the following criteria: B2 � F(1); B5 � F(2); F(3) � B2/B5 � F(4); F(5) � B4/B5 � F(6); F(7) � B2/B4 �

F(8); where B2 = nLw(443), B4 = nLw(510), and B5 = nLw(555). Results of applying two different limit vectors (F) are shown: for Chris Brown’s
SeaWiFS coccolithophore criteria (personal communication, 1999) F = [1.1 0.9 0.85 1.4 1.0 1.4 0.7 1.1]; for the SeaDAS criteria (results given in {}) F =
[1.1 0.81 0.6 1.1 0.9 1.32 0.6 0.92].
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of the suspected coccolithophore bloom in the 7 July 1980
image (Figure 8, left) were an exception; it is likely that
these low G value pixels surrounding the coccolithophore
patches represent the mixing of the coc/min and CMAB
water types. The Goodness of Fit measure also shed light on
the identity of some groups of pixels for which the classi-
fication results appeared spurious. For example, for 7 July
1980, pixels in the longitudinally confined narrow band
classed as GM to the extreme right of the CZCS image well
south of the Gulf of Maine (see Figure 6, left) are shown to
be only very weakly associated (G values ranging between
�10 and 20) with the GM optical type. Similarly, the
CMAB-classified pixels in the narrow band extending
southward from the suspected coccolithophore bloom, par-
alleling the eastern edge of this band of GM-classified
waters, had G values of 10 or lower. It is likely that
cloud-edge effects were confounding the optical signature
of these pixels, and that their class assignment was an
artifact of this noise in the image. Notably, the Eigenvector
Classifier (see Figure 7, left) was better able to identify
these pixels in spite of the noise in the data. The Delaware

and Chesapeake Bay waters also have G values of 10 or
lower, indicating that their optical properties differed from
the GB waters found over Georges Bank. On the other hand,
the G values for the New England coastal waters (GB), the
waters off Nova Scotia (GB), and the patches of water in the
Mid-Atlantic Bight (GM) were generally fairly high, indi-
cating that their optical properties were quite similar to the
class prototype.

4. Discussion

4.1. Classifiers Reveal Oceanographic Features

[32] The application of these distance-based optical water
type classification techniques to satellite ocean color
imagery of the Northwest Atlantic has revealed physically,
ecologically, and biogeochemically relevant spatial patterns
of water type distribution. Features ranging from regions of
high phytoplankton biomass to mesoscale eddies to phyto-
plankton blooms were apparent in the classification results.
For example, the waters over Georges Bank appeared as a
unique water type. The Georges Bank area is of great interest

Figure 8. Classification Goodness of Fit for the Euclidean Distance Classifier (see Figure 6 for
corresponding classifier results). Intensity of color indicates goodness of fit to class (white corresponds to
very poor fit), as shown in the legend at right. A Goodness of Fit value (G) for each pixel is computed by
determining where that pixel falls in relation to the concentric probability regions surrounding each class
center; a higher G value indicates better fit. For pixels classified as GM, for example, the deepest pink
colors (G = 95) indicate that those pixels are in the 95th percentile for fit to that class; that is, they are
among the closest 5% of all pixels in the entire scene to the GM class centroid.
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ecologically due to a seasonal cycle with periods of high
productivity throughout the food chain, including important
commercial fishes. Pigment distributions derived from these
ocean color data are generally consistent with the spatial
patterns and relatively high levels of phytoplankton pigment
observed by traditional oceanographic survey methods in the
shallow, tidally mixed waters over the Bank [O’Reilly et al.,
1987; O’Reilly and Zetlin, 1998]. These factors contribute to
the unique optical signature of the GB water type.
[33] To the south, comparison with AVHRR sea-surface

temperature data reveals that the GS optical water type was
associated with the warm (�30�C) Gulf Stream waters as
they flowed eastward. These Gulf Stream waters were also
quite distinct optically from the slightly higher pigment
Mid-Atlantic Bight waters to the north and the Sargasso Sea
waters with similar pigment concentration to the south. The
classification results for the summertime (7 July 1980)
showed the GS waters extending much farther north than
they did in the autumn (compare to 8 October 1997 results),
which is consistent with the fact that the influence of the
Gulf Stream moves northward in the summer months,
retreating southward as winter approaches. The GS waters
formed a fairly narrow band extending from the southwest
to the northeast between 35� and 38�N latitude, and on 8
October 1997, a large meander of GS water extended
northward from the path of the current into the colder
waters of the Mid-Atlantic Bight. The NSS waters occurred
in the slightly cooler Sargasso Sea, and the boundary
between the NSS and the GS waters was punctuated with
several small meanders and swirls (evident in both Figures 6
and 7, as well as in the AVHRR data), possibly indicating a
region of turbulent mixing between optical water types.
[34] Two large, approximately circular patches of GS

water were visible in the classification results on 8 October
1997, one far to the north (at �40�N latitude and �65�(W)
longitude) surrounded by CMABwaters, and the other just to
the south of the Gulf Stream meander (at�36�N latitude and
�68�(W) longitude) surrounded by NSS waters. These were
mesoscale eddies, which appear to be remnants of warm- and
cold-core rings, respectively. In fact, cross-comparison of the
classifier results with AVHRR imagery for that day demon-
strated that the optical signature revealed by the classifiers
was coincident with sea surface temperature anomalies.
Examination of the sea-surface temperature data revealed
that the northern eddy is a warm anomaly, with temperatures
inside the eddy elevated �2–4�C above the surrounding
waters. The eddy south of the meander did not exhibit as
strong a sea-surface temperature signature, with internal
temperatures only �1�C cooler than the Gulf Stream waters
immediately to the north, and at most about 1�Cwarmer than
the surrounding Sargasso waters, possibly indicating that it
was in a more advanced stage of decay than the northern
ring. This approach of validating the classifier results based
on independent remotely sensed data would be further
enhanced by the availability of sea-truth measurements; in
situ sampling of these optical water masses will allow more
complete characterization of their unique properties.
[35] Cold-core rings, those containing a mass of less

saline continental slope water, are frequently observed
drifting in the Sargasso Sea for many months [Angel and
Fasham, 1983]. Comparison of coincident AVHRR and
CZCS imagery of the Sargasso Sea revealed an inverse

relationship between sea-surface temperature and pigment
concentration, with cold temperature anomalies (ring cen-
ters) associated with higher pigment values [McGillicuddy
et al., 2001]. The decay of these rings brings about the
deepening of the nutricline and pigment concentrations
within the ring become intermediate between those of the
slope water and the Sargasso water [Wiebe, 1976], until
their unique biological and optical properties become indis-
tinguishable from the surrounding Sargasso Sea.
[36] In a similar fashion, warm-core rings are formed

when a Gulf Stream meander pinches off to enclose more
saline oligotrophic Sargasso Sea water, thereby moving
tropical and subtropical species into the temperate slope
waters of the Mid-Atlantic Bight [Craddock et al., 1992].
These eddies are generally shorter-lived and smaller in size
than are cold-core rings, shrinking in diameter over time, and
eventually being reabsorbed into the Gulf Stream [Richard-
son, 1983]. Following the formation of a warm-core ring, a
rapid increase in phytoplankton biomass has been observed
at the ring center [Nelson et al., 1985], possibly as a
consequence of enhanced nitrate flux there, whereas the
highest bacterial biomass (reaching estuarine levels) has
been observed in the frontal zone near the ring edge
[Ducklow, 1986]. As these warm-core rings approach the
Mid-Atlantic Bight shelf-break front in springtime, shelf and
slope water is entrained seaward, and pigment concentra-
tions along the front (which extends for several hundred km)
are enhanced twofold over surrounding waters [Ryan et al.,
1999]. The influence of these rings has also been noted as far
north as Georges Bank, where waters from the southern
flank of the Bank were entrained into a warm-core ring in
springtime, and exhibited much higher chlorophyll concen-
trations than the surrounding waters [Ryan et al., 2001].
[37] The classifiers also revealed what appears to be the

occurrence of a coccolithophore bloom (coc/min waters
south of Georges Bank on 7 July 1980, Figures 6 and 7);
blooms of Emiliania huxleyi are known to occur episodi-
cally in the region [Balch et al., 1991; Brown and Yoder,
1994a], and represent a unique optical water type widely
separated in feature space from all other water types in the
Northwest Atlantic Training Set. Although no samples were
available for sea-truthing, in situ measurements are the only
means by which to gain further insight into this suspected
coccolithophore bloom. For example, in-water sampling
would have confirmed the identity of the bloom species,
as well as the cell and detached lith concentrations respon-
sible for the optical signature shown by the classifiers.
[38] In other work, this feature-based classification

approach has proved valuable for the detection and iden-
tification of phytoplankton blooms around the globe. Mar-
tin Traykovski and Sosik [1998] (also, Optical classification
of phytoplankton-dominated water types based on remotely
sensed ocean colour, manuscript in preparation, 2003) have
performed a cluster analysis of globally occurring phyto-
plankton-dominated waters differing not only in the phy-
toplankton taxa present, but also in the abundance of
phytoplankton cells present. Data sets were compiled based
on phytoplankton observations documented in the litera-
ture. Some represented bloom conditions of an identified
phytoplankton taxon, e.g., Trichodesmium blooms in the
Gulf of Thailand and off Northwest Australia [Subrama-
niam and Carpenter, 1994], and a bloom of the coccoli-
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thophore Emiliania huxleyi over the northwest European
Shelf [Holligan et al., 1983]. Conditions with sub-bloom
concentrations and mixed-taxa phytoplankton communities
were also included in the analysis, e.g., a 25-km-long patch
in the Southern California Bight containing the coccolitho-
phore Umbilicosphaera sibogae (representing at most 60–
75% of the phytoplankton biomass [Balch et al., 1989]),
present with other species including diatoms [Eppley et al.,
1984]. For each of the phytoplankton data sets, normalized
water-leaving radiances in each spectral band were
extracted from the corresponding ocean color data for
selected pixels in the regions of interest. Using a simple
clustering approach in a three-dimensional feature space, it
was possible to distinguish between oceanic regions con-
taining distinct blooms of different major taxa (i.e., Tricho-
desmium, coccolithophores, dinoflagellates) and also to
separate coccolithophore waters into two optically different
types (those with and without detached liths).

4.2. Classifier Performance

[39] When applied to a test data set with known class
membership, both the Euclidean Distance Classifier and the
Eigenvector Classifier had very high success rates, correctly
classifying over 97% and 99% of pixels respectively.
Examining the results of twenty randomized trials with
the test data set (Table 2) revealed the strengths and
weaknesses of each classification approach. The Euclidean
Distance Classifier is well suited to spherical classes, i.e.,
classes whose boundaries in all directions are equidistant
from the class centroid. In fact, this classifier performed best
with pixels from the spherical CMAB water type class (see
Figure 4, right, for class shape), misclassifying only 1 out of
1000 (20 trials of 50 pixels each). Performance was poorer
with the coc/min and GB classes, with pixels being assigned
to adjacent classes more often.
[40] For more ellipsoidal classes (e.g., coc/min, for which

the region of feature space encompassed by the class was
much more elongated in one dimension relative to the
others) or for pixels adjacent to these more elongated classes
(e.g., GB pixels adjacent to the elongated GM cluster),
classification success can be improved significantly when
the shape of the classes is taken into account. As a result, the
Eigenvector Classifier was able to correctly identify the GB
pixels much more often. This classifier consistently demon-
strated a higher percentage of correct classifications than did
the Euclidean Distance Classifier for the more ellipsoidal
water type classes (e.g., NSS, GS, coc/min); only 2 pixels

out of 3000 were misclassified for these three classes
combined. The Eigenvector Classifier did not perform as
well as the Euclidean Distance Classifier with pixels from
more spherical classes in the proximity of ellipsoidal classes;
for example, the highest misclassification rate for the Eigen-
vector Classifier occurred with CMAB pixels (see Table 2,
column 3), which it assigned to the adjacent (elongated) GS,
coc/min, and GM water type classes. Overall, each classifier
appeared to perform best where the other was weakest, so
that the two approaches complement each other. Notwith-
standing these differences in performance, the resulting
patterns of water type distribution were very similar when
the two approaches were applied to ocean color imagery of
the Northwest Atlantic (compare Figures 6 and 7). As a
result, the two classifiers provided a consistent picture of the
geographic extent of each optical water type in this region.
[41] In constructing a training set, it is important that the

chosen class prototypes encompass the variability in each
class while remaining separable in feature space. To ensure
that the training set for the Northwest Atlantic region was
robust, several different options were considered, including a
training set developed strictly from SeaWiFS data, as well as
a combined training set that included points from both CZCS
and SeaWiFS data. Evaluation of these alternate training sets
revealed that the Northwest Atlantic Training Set resulted in
the best classifier performance for both classifiers, indicating
that class separability was best maintained with this training
set. In addition, the classification results for the 8 October
1997 SeaWiFS image (see Figures 6 and 7) using the chosen
training set were very similar to those using the training set
constructed strictly from SeaWiFS data, further establishing
that the class prototypes in the Northwest Atlantic Training
Set encompassed the variability in both the CZCS and
SeaWiFS data.
[42] Once a relatively representative training set for a

particular region is established, applying different classifi-
cation approaches using this training set can help determine
whether the training set is truly comprehensive or whether
additional water type classes are necessary to fully capture
the range of optical variability in the region of interest.
Indications that the training set may not be complete include
the appearance of scattered patches of a particular water
type which are geographically removed from the region(s)
dominated by that water type, as well as pixels or groups of
pixels with very low G values, indicating very poor good-
ness of fit to class. For example, pixels from the 7 July 1980
and the 8 October 1997 data assigned to the coc/min optical
water type included waters from a suspected coccolitho-
phore bloom, as well as various patches of non-coccolitho-
phore, likely sediment-dominated, coastal water. The pixels
in these particular coastal areas projected into their own
distinct cluster in feature space, adjacent to the coc/min
class but far away from the other classes, and likely
represent a unique water type. As a result, it would be
possible to distinguish between at least two types of
mineral-dominated optical water types; dividing the coc/
min class into two subclasses and developing a training set
for the sediment-dominated coastal waters would allow the
classifiers to differentiate those waters from coccolitho-
phore-dominated waters. Similarly, the waters of the Dela-
ware and Chesapeake Bays were assigned to the GB class
with very low G values; their optical properties clearly

Table 2. Results of Randomized Trials in Which the Classifiers

Were Applied to a Test Data Set With Known Class Membership

Classifier

Percent Correctly Classified (Mean of 20 Trials)a

NSS GS CMAB coc/min GB GM Overall

Euclidean
Distanceb

98.8% 99.3% 99.9% 97.7% 90.4% 98.5% 97.4%

Eigenvectorc 99.8% 100% 96.8% 100% 98.8% 99.1% 99.1%
aPercent correctly classified (averaged over 20 trials) is shown; nj = 1000

(20 trials of 50 pixels each) for each water type class.
bThe Euclidean Distance Classifier performed better with pixels

belonging to the more spherical CMAB class.
cThe Eigenvector Classifier performed better with pixels which either

belonged to the more elongated classes (e.g., coc/min), or were adjacent to
them (e.g., GB pixels adjacent to GM).
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differ from the GB class prototype, and would be better
represented by a more appropriate optical water type. In this
manner, the classification results provide specific informa-
tion to guide improvements by identifying additional water
types in the region of interest that were not well represented
in the training set. Inclusion of these water types is likely to
improve the classification results.

4.3. Pigment Content and Optical Water Type

[43] Previously, studies aimed at characterizing the spatial
and temporal optical variability of mesoscale features based
on ocean color imagery have relied to a large extent on
pigment distributions [e.g., Peláez and McGowan, 1986;
Abbott and Zion, 1987; Yoder et al., 1987; McClain et al.,
1990; Denman and Abbott, 1988; Thomas et al., 1994]. One
of the advantages of the Euclidean Distance and Eigenvector
Classifiers is that these feature-based approaches are able to
exploit much more of the information inherent in ocean color
data than is contained in the satellite-derived pigment image;
the optical water type distribution patterns revealed by the
classifiers were not necessarily apparent in the pigment
images (compare Figures 6 and 7 with lower right-hand
quadrant in each panel of Figure 2). Comparison of mean
satellite-derived pigment concentrations (Figure 9) for the six
water types in the Northwest Atlantic Training Set showed
that the classifiers not only distinguish between waters with
different pigment concentrations, they were also able to
discriminate between different optical water types which
did not differ in their pigment content. The oligotrophic
NSS waters were characterized by very low pigment con-
centrations; this water type class was quite distinct from the
slightly higher pigment GS waters, as well as the productive,
high pigment GB waters, once projected in feature space (see
Figure 3). An interpretation based on pigment concentration
alone, however, will fail to distinguish the different optical
water types that do not exhibit differences in pigment
content. For example, although the coc/min and GM water
types were indistinguishable based on their mean pigment
concentrations (Figure 9), these optically distinct water types
formed widely separated, well-delineated clusters in feature
space (see Figure 3). In general, the distribution of clusters in
feature space was not determined solely by their relative
pigment content, and cluster proximity was not necessarily
indicative of similar pigment concentrations (e.g., GB and
GM). In fact, pixels of a particular water type tended to
project in the same general region of feature space over time,
even if pigment concentration changed significantly. As a
result, temporal changes in water type distribution may be
followed robustly with these classifiers, since water types are
distinguished by their optical signatures which include much
more than pigment information.

4.4. Studying Optical Variability

[44] This water type classification approach is ideally
suited to the study of optical variability over large oceanic
regions. The classifiers were designed to exploit the wealth
of information in satellite ocean color imagery and synthe-
size it into a single map which reveals the distribution of
optically distinct water types over a region. In this manner,
the classification results provide a valuable composite of
remotely sensed ocean color data which greatly facilitates
the analysis of spatial variability in optical properties.

Classifier-produced maps of the spatial distribution of
optical water types in a region can be compared to bathy-
metry data, in situ measurements of physical and biological
properties, and other remotely sensed data (e.g., sea-surface
temperature, sea-surface height), yielding important insights
into the sources of the observed optical variability.
[45] Assessment of temporal optical variability may be

accomplished by tracking the occurrence of optical water
types through time; applying the classifiers to a time series
of images will allow changes in water type distributions to
be followed easily. The classification results for 7 July 1980
and 8 October 1997 (17 years later) reveal that waters of the
same optical type form well-defined water masses that
remain in the same general geographical regions over time,
demonstrating the utility of employing the classifiers to
characterize temporal optical variability in the region. To
date, efforts to apply the classifiers broadly to many images
of the Northwest Atlantic in order to identify and track
water types over time have been set back by SeaWiFS data
processing difficulties. In particular, problems with the
atmospheric correction algorithms implemented in SeaWiFS
Data Analysis System (SeaDAS), have resulted in incorrect
retrievals of nLw over the Northwest Atlantic region.
Factors such as absorbing aerosols, turbid water (which
leads to non-zero water-leaving radiance in the near-infrared
(NIR)), and high solar zenith angle (particularly in the
winter months), make this region particularly vulnerable
to atmospheric correction algorithm failure. For example,
ocean color data processing algorithms included in SeaDAS

Figure 9. Mean satellite-derived chlorophyll-like pigment
concentration (mg/m3) for each water type in the Northwest
Atlantic Training Set (see Figure 3, nj = 100 for each class).
The classifiers are able to distinguish between different
optical water types (e.g., CMAB, coc/min, GM) despite the
fact that they have the same pigment concentration. NSS =
Northern Sargasso Sea waters; GS = Gulf Stream waters;
CMAB = Central Mid-Atlantic Bight waters; coc/min =
coccolithophore/mineral dominated waters; GB = Georges
Bank waters; GM = Gulf of Maine waters; black bar
delineates 1 standard deviation.
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3.3 resulted in widespread underestimates of nLw in the
shorter wavelength bands (with a high frequency of neg-
ative nLw retrievals at 412 nm, 443 nm and in some cases,
also at 490 nm), causing distortion of the spectral shape
throughout the region. The atmospheric correction techni-
ques were improved in May 2000 (Reprocessing 3; SeaDAS
4.0), with the inclusion of the Siegel NIR algorithm, which
was designed to reduce the incidence of negative nLw in the
violet and blue [Siegel et al., 2000]. This approach resulted
in substantial improvements in some areas (e.g., Chesa-
peake Bay). Unfortunately, SeaDAS 4.0 processing results
still show markedly distorted spectra compared to in situ
nLw measurements in the Gulf of Maine, with underesti-
mates of nLw at 412 nm, 443 nm, and 490 nm, and a fairly
high incidence of negative nLw at 412 nm.
[46] Since the Euclidean Distance and Eigenvector Clas-

sifiers rely on the unique spectral signature of each optical
water type, these techniques are sensitive to atmospheric
correction problems which distort spectral shape. The 8
October 1997 SeaWiFS image was one for which the effect
of known artifacts introduced by the atmospheric correction
problems was minimal (as determined by in situ match-ups
of the nLw spectra). Further improvements to the SeaWiFS
atmospheric correction algorithms are planned for the
upcoming Reprocessing 4, and preliminary testing indicates
that some of these modifications have the potential to
improve the situation in the Northwest Atlantic. Once the
atmospheric correction issues are resolved and the accuracy
of the nLw retrievals for this region improves, these feature-
based classification techniques will prove to be a powerful
tool, facilitating time series studies of optical variability in
the Northwest Atlantic based on a sequence of classifier-
produced maps of optical water type distributions.

4.5. Future Directions

[47] Further development of these feature-based optical
water type classification techniques will include exploring
the utility of an automated method for the definition of water
type classes. One approach would be to implement an
adaptive scheme which searches through feature space for
local minima in pixel density. In this scheme, isolines of low
pixel density would represent class boundaries, and the
location of class centroids could be mathematically defined
based on these boundaries, facilitating the development and
application of statistical decision rules for classification.With
this method, the shape of each class would not be constrained
to being spherical (as with the Euclidean Distance Classifier)
or ellipsoidal (as with the Eigenvector Classifier); class shape
could be defined uniquely for each class based on the location
of the class boundaries. Alternatively, class centroids could
be defined by implementing a clustering algorithm, which
would provide an objective measure for optimum clustering;
with this approach, results are quite sensitive to the number of
classes chosen. In general, clustering techniques perform best
when some a priori information regarding the number of
classes is available.
[48] One of our top priorities as we continue this work is

the collection of in situ optical data that can strengthen the
classifier results and increase our understanding of the
sources of optical variability revealed by the classifiers.
The acquisition of sea-truth measurements across the region
will contribute to validation of the optical water types

identified by the classifiers. We have collected much in-
water optical data over the last few years on several cruises
to the Gulf of Maine. Although preliminary analysis of
these data has provided some insights into the particular
optical properties of the GM water type, we have not yet
been able to collect comparable data for any of the other
water types. We do have the opportunity to participate in
two research cruises in the Northwest Atlantic region in the
near future, during which we plan to sample a wide range of
optical water types including any episodic features we
encounter, making detailed measurements of the in-water
optical properties across the region. We anticipate that this
in situ data set will provide valuable insights into the
sources of optical variability across the region, as well as
contribute to further advancement of our classifiers.
[49] A logical extension of our feature-based classifica-

tion work includes the development of a hybrid classifica-
tion approach, which will involve integrating model-based
inversion techniques with the feature-based classifiers, and
incorporating sea-truth data into the classification scheme.
To implement this hybrid approach, an inverse model (e.g.,
the semi-analytic radiance model of Roesler and Perry
[1995] or the nearly backscattering independent model of
Zaneveld et al. [1998]/Barnard et al. [1999]) could be
employed to extract inherent optical properties (IOPs) for
each pixel based on remotely sensed water-leaving radian-
ces for the region. Development of a hybrid classification
technique for Northwest Atlantic optical water types would
be carried out in the context of in situ data collected during
the ecological and hydrographic work as part of our
research examining optical variability in this region. A
priori information obtained from sampling the in-water
optical properties at particular stations throughout the region
could be used to constrain the inverse. The advantage of
such a hybrid technique is that it can capitalize on the
predictive power of existing semi-analytic models, while
taking advantage of the intrinsic features in the data, which
are independent of assumptions inherent in the models.

5. Conclusions

[50] Remote sensing of ocean color has significantly
expanded our ability to study spatial and temporal varia-
bility in phytoplankton abundance and distribution; how-
ever, full exploitation of ocean color imagery requires both
developments in modeling of upper ocean optical properties
(and their relationships with biological, physical, and chem-
ical properties) and more sophisticated data analysis techni-
ques. Optical water type classification approaches based on
remotely sensed water leaving radiance have great potential
to contribute to the study of spatial and temporal dynamics
of ecologically and biogeochemically important properties
in the upper ocean. With the development of the feature-
based Euclidean Distance and Eigenvector Classifiers, we
have automated the water type classification process by
applying statistical decision criteria to define class bounda-
ries and assign pixels to a particular class. We have
demonstrated that the application of these feature-based
classification techniques to ocean color data facilitates
discrimination between Northwest Atlantic optical water
types, including those waters occurring within a spatially
restricted region, where the interaction of tidal flow with
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complex bottom topography can result in the formation of
fronts between different water types. Application of these
classification techniques will contribute to the interpretation
of the underlying properties that define optical water types,
facilitating region-wide examination of spatial variability in
water types using satellite ocean color imagery. The classi-
fiers also show promise as a valuable tool for analyzing
patterns of temporal variability in water type distributions if
applied to long-term time series studies tracking optical
water types through seasonal and interannual changes.
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