Seasonal Sea Otters, Foraging Fur Seals and Whimsical Wolves

Analysis of individual animal movement on all kinds of scales

Eli Gurarie

Metapopulation Research Group
Department of Biological and Environmental Sciences University of Helsinki - Finland

October 11, 2009

Importance of Movement

Importance of Movement

- Fundamental characteristic of all animals.

Importance of Movement

- Fundamental characteristic of all animals.
- Ecological processes
- Foraging
- Survival
- Reproduction
- Migration
- Invasion
- Dispersal
- Aggregation

Importance of Movement

- Fundamental characteristic of all animals.
- Ecological processes
- Foraging
- Survival
- Reproduction
- Migration
- Invasion
- Dispersal
- Aggregation
- Measurable behavioral output

Conceptual model of Behavior

In Math: $\Delta X_{t}=f\left(\mathbf{X}_{t}, \mathbf{E}_{t}\right)$
In English: Behavior (f) is a process which transforms the state of an organism $\left(X_{t}\right)$ and the the local environment $\left(E_{t}\right)$ into Movement $\left(\Delta X_{t}\right)$.

Track Data

Daphnia Pulex (Uttieri 2005)

Cebus monkey (Wentz 2003)

Narwhal (Laidre 2004)

Petrel (Fouchauld 2003)

Common, Inconvenient Features of Movement Data
(CIF's)

Common, Inconvenient Features of Movement Data (CIF's)

- Multi-dimensional (X,Y,Time)

Common, Inconvenient Features of Movement Data (CIF's)

- Multi-dimensional (X,Y,Time)
- Not independent!
(Auto- and Cross-correlated)

Common, Inconvenient Features of Movement Data (CIF's)

- Multi-dimensional (X,Y,Time)
- Not independent!
(Auto- and Cross-correlated)
- Bonus Feature: Measurement error / irregular sampling.

Extra Special Features of Movement Data: (ESF's)

- Heterogeneous!
- Population • Individual • Habitat • Time of Day/Year • etc.

Extra Special Features of Movement Data: (ESF's)

- Heterogeneous!
- Population • Individual • Habitat • Time of Day/Year • etc.

But that's OK! Because often this is what we want to learn!

Extra Special Features of Movement Data: (ESF's)

- Heterogeneous!
- Population • Individual • Habitat • Time of Day/Year • etc.

But that's OK! Because often this is what we want to learn!

- No Consensus On Analysis In The Literature.

Extra Special Features of Movement Data:

 (ESF's)- Heterogeneous!
- Population • Individual • Habitat • Time of Day/Year • etc.

But that's OK! Because often this is what we want to learn!

- No Consensus On Analysis In The Literature.

But that's OK, too! Because every analysis is special!

Northern Fur Seal (Callorhinus ursinus) and BCPA

Map of all foraging trips for F01

Orthogonal decomposition

Orthogonal decomposition

Persistence Velocity Component: $V_{p}=V \cos (\theta)$

- mean $=$ speed + consistency of orientation
- variance $=$ variability of behavior
- auto-correlation $=$ movement changes with respect to sampling interval

Orthogonal decomposition

Orthogonal Component of Velocity: $V_{t}=V \sin (\theta)$

- mean $=0$.
- variance $=$ speed and sharpness of turns
- auto-correlation $=$ turning radius.

Actual Data Decomposed (northern fur seal)

- Stationary
- Gaussian
- Modelable using standard time-series techniques

- Stationary
- Gaussian
- Modelable using standard time-series techniques

- Stationary
- Gaussian
- Modelable using standard time-series techniques

Properties of $\mathrm{AR}(1)$

$$
\begin{aligned}
X_{t} & =\rho\left(X_{t-1}-\mu\right)+\mu+\epsilon \\
\epsilon & \sim \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Properties of $\mathrm{AR}(1)$

$$
\begin{aligned}
X_{t} & =\rho\left(X_{t-1}-\mu\right)+\mu+\epsilon \\
\epsilon & \sim \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Properties of $\mathrm{AR}(1)$

$$
\begin{aligned}
X_{t} & =\rho\left(X_{t-1}-\mu\right)+\mu+\epsilon \\
\epsilon & \sim \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Properties of $\mathrm{AR}(1)$

$$
\begin{aligned}
X_{t} & =\rho\left(X_{t-1}-\mu\right)+\mu+\epsilon \\
\epsilon & \sim \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Properties of $\mathrm{AR}(1)$

$$
\begin{aligned}
X_{t} & =\rho\left(X_{t-1}-\mu\right)+\mu+\epsilon \\
\epsilon & \sim \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

AR(1): Arbitrary Interval

AR(1): Arbitrary Interval

$f(X(t) \mid X(t-\tau)) \sim$
Gaussian $\left[\rho^{\tau} X(t-\tau), \sigma^{2}\left(1-\rho^{2 \tau}\right)\right]$

Estimating ρ

Conditional Likelihood:

$$
L(\rho \mid \mathbf{X}, \mathbf{T})=\prod_{i=1}^{n} f\left(X_{i} \mid X_{i-1}, \tau_{i}, \rho\right)
$$

then:

$$
\widehat{\rho}=\underset{\rho}{\operatorname{argmax}} L(\rho \mid \mathbf{X}, \mathbf{T})
$$

Estimating ρ

Simulated Gappy Time Seris

Log-likelihood profile

Structural shifts

$$
\begin{gathered}
\Theta(t)=\left\{\begin{array}{lll}
\Theta_{1} & \text { if } & 0<t \leq t_{1} \\
\Theta_{2} & \text { if } & t_{1}<t \leq T
\end{array}\right\} \\
L(\Theta \mid \mathbf{X}, \mathbf{T})=\prod_{i=1}^{n} f\left(X_{i} \mid X_{i-1}, \Theta_{1}\right) \prod_{j=n+1}^{N} f\left(X_{j} \mid X_{j-1}, \Theta_{2}\right)
\end{gathered}
$$

Identifying Change Point

Identifying Change Point

Identifying Change Point

Identifying Change Point, sparce data

Identifying Change Point, different ρ 's

Identifying Models

Model 0	$\mu_{1}=\mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 1	$\mu_{1} \neq \mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 2	$\mu_{1}=\mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 3	$\mu_{1}=\mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1} \neq \rho_{2}$
Model 4	$\mu_{1} \neq \mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 5	$\mu_{1} \neq \mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1} \neq \rho_{2}$
Model 6	$\mu_{1}=\mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1} \neq \rho_{2}$
Model 7	$\mu_{1} \neq \mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1} \neq \rho_{2}$

Identifying Models

Model 0	$\mu_{1}=\mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 1	$\mu_{1} \neq \mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 2	$\mu_{1}=\mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 3	$\mu_{1}=\mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1} \neq \rho_{2}$
Model 4	$\mu_{1} \neq \mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1}=\rho_{2}$
Model 5	$\mu_{1} \neq \mu_{2}$	$\sigma_{1}=\sigma_{2}$	$\rho_{1} \neq \rho_{2}$
Model 6	$\mu_{1}=\mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1} \neq \rho_{2}$
Model 7	$\mu_{1} \neq \mu_{2}$	$\sigma_{1} \neq \sigma_{2}$	$\rho_{1} \neq \rho_{2}$

How to choose?

$$
\begin{aligned}
& \mathrm{AIC}: I_{A}(\mathbf{X}, \mathbf{T})=-2 n \log (L(\hat{\theta} \mid \mathbf{X}, \mathbf{T}))+2 d \\
& \mathrm{BIC}: I_{B}(\mathbf{X}, \mathbf{T})=-2 n \log (L(\hat{\theta} \mid \mathbf{X}, \mathbf{T}))+d \log (n)
\end{aligned}
$$

Identifying Models

	μ_{1}	μ_{2}	σ_{1}	σ_{2}	ρ_{1}	ρ_{2}
S0	0	0	1	1	0.5	0.5
S1	$\mathbf{- 1}$	$\mathbf{1}$	1	1	0.5	0.5
S2	0	0	$\mathbf{0 . 5}$	$\mathbf{2}$	0.5	0.5
S3	0	0	1	1	$\mathbf{0 . 2}$	$\mathbf{0 . 9}$
S4	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{2}$	0.5	0.5
S5	$\mathbf{- 1}$	$\mathbf{1}$	1	1	$\mathbf{0 . 2}$	$\mathbf{0 . 9}$
S6	0	0	$\mathbf{0 . 5}$	$\mathbf{2}$	$\mathbf{0 . 2}$	$\mathbf{0 . 9}$
S7	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{2}$	$\mathbf{0 . 2}$	$\mathbf{0 . 9}$

Algorithm for Identifying Multiple Changepoints

- Select Window
- Find MLBP
- Identify Model
- Record estimates based on model selected.
- Move window forward and repeat

Algorithm for Identifying Multiple Changepoints

- Select Window
- Find MLBP
- Identify Model
- Record estimates based on model selected.
- Move window forward and repeat

Algorithm for Identifying Multiple Changepoints

- Select Window
- Find MLBP
- Identify Model
- Record estimates based on model selected.
- Move window forward and repeat

Algorithm for Identifying Multiple Changepoints

- Select Window
- Find MLBP
- Identify Model
- Record estimates based on model selected.
- Move window forward and repeat

Algorithm for Identifying Multiple Changepoints

- Select Window
- Find MLBP
- Identify Model
- Record estimates based on model selected.
- Move window forward and repeat

BCPA analysis output

BCPA Track Analysis

Trip 1

Behavioral Phaseplot

Summary points

- Behavior can be very complex!
- But patterns can be robustly picked out of messy data.
- Method suggests the possibility of asking more sophisticated questions.

Gurarie, E., R.D. Andrews, and K.L. Laidre. 2009. A novel method for identifying behavioural changes in animal movement data. Ecology Letters 12: 395-408.

Summary points

- Behavior can be very complex!
- But patterns can be robustly picked out of messy data.
- Method suggests the possibility of asking more sophisticated questions.

Gurarie, E., R.D. Andrews, and K.L. Laidre. 2009. A novel method for identifying behavioural changes in animal movement data. Ecology Letters 12 : 395-408.

Summary points

- Behavior can be very complex!
- But patterns can be robustly picked out of messy data.
- Method suggests the possibility of asking more sophisticated questions.

Gurarie, E., R.D. Andrews, and K.L. Laidre. 2009. A novel method for identifying behavioural changes in animal movement data. Ecology Letters 12 : 395-408.

Summary points

- Behavior can be very complex!
- But patterns can be robustly picked out of messy data.
- Method suggests the possibility of asking more sophisticated questions.

Gurarie, E., R.D. Andrews, and K.L. Laidre. 2009. A novel method for identifying behavioural changes in animal movement data. Ecology Letters 12: 395-408.

So how'd we do on the CIF's and ESF's?

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Component decomposition (and continuous time)

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Component decomposition (and continuous time)
(2) Correlation

Explicit Estimation of ρ :

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Component decomposition (and continuous time)
(2) Correlation

Explicit Estimation of ρ :
(3) Gappiness:

Continuous-time model

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Component decomposition (and continuous time)
(2) Correlation

Explicit Estimation of ρ :
(Gappiness:
Continuous-time model
(1) Errors:

Ignored (scale of measurement > scale of error),
Other systems: test robustness

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Component decomposition (and continuous time)
(2) Correlation

Explicit Estimation of ρ :
(3) Gappiness:

Continuous-time model
(1) Errors:

Ignored (scale of measurement > scale of error),
Other systems: test robustness
(0 Heterogeneity:
Change Point Analysis

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Component decomposition (and continuous time)
(2) Correlation

Explicit Estimation of ρ :
(3) Gappiness:

Continuous-time model
(1) Errors:

Ignored (scale of measurement > scale of error),
Other systems: test robustness
(0 Heterogeneity:
Change Point Analysis

Washington sea otters (Enhydra lutris kenyoni)

- Extirpated by fur-trade hunting in the early $20^{\text {th }}$ century
- Re-established by translocations of 59 sea otters from Alaska in 1969-70
- Population index counts annually conducted since late 80's

Movement Data: VHF Radio Telemetry Studies 1992-1999

- 75 individuals captured using Wilson traps and instrumented (43 AF, 14 AM, 9 SF, and 9 SM)

Individuals tracked on average for 684 days (SD 515, range 7 days to 5.9 years).

Average of 34 radio locations per individual (SD 29).
Mean number of resightings per sea otter per month ranged from 1.6 (December) to 5.8 (August) - mean of 2.9.

Linearizing Otter movements

Linearizing Otter movements

Discretize coastline ($\sim 600 \mathrm{~m}$)

Linearizing Otter movements

Discretize coastline ($\sim 600 \mathrm{~m}$)

Perpendicularly project sea otter location to "coast".

Linearizing Otter movements

Discretize coastline ($\sim 600 \mathrm{~m}$)

Perpendicularly project sea otter location to "coast".

Estimate "coastal kilometer value".

Analysis challenge: Quantify space use
 - Home ranges • Seasonality

One-dimensional kernelized distributions

- Minimum of 20 observations (46 out of 75 individuals: 34 F, 12 M)
- Weighted according to number of days to neighboring observations, max 1 month
- 4 obs/month $=$ weight 7 day
- 1 obs/year = weight 30 day

Home Range: 95% of time spent

Sometimes,
SO 09 (Adult Female)
discontinuous!

Continous otter

Discontinous otter

SO 09 (Adult Female)

95\% kernel home range by age class and sex.

Both significant ($\mathrm{p}<0.01$)

How to quantify "seasonality"?

Sea Otter 43 (M)

Summer (May-October) and
Winter (November - April):
Seasonal Distribution
Overlap Index

How to quantify "seasonality"?

Sea Otter 43 (M)

SDOI $=0.15$

Sea Otter 44 (F)

SDOI = 0.98

Sea Otter 02 (F)

SDOI $=0.53$

SDOI by age class and sex

Mean seasonal distribution overlap (SD)

Sex significant but not age.

AF	29	$0.63(0.2)$
AM	7	$0.50(0.24)$
SF	5	$0.70(0.26)$
SM	5	$0.46(0.22)$

Some Sea Otter Conclusions

- Movements between 1992-1999 best described as semi-seasonal shifts within the range.
- The range expanded both North and South over the study period - driven primarily by males.
- High seasonal periodicity in range use in summer and winter, distributions were generally bimodal for adult males with adult females more variable more likely to have high year round site fidelity.

Some Sea Otter Conclusions

- Movements between 1992-1999 best described as semi-seasonal shifts within the range.
- The range expanded both North and South over the study period - driven primarily by males.
- High seasonal periodicity in range use in summer and winter, distributions were generally bimodal for adult males with adult females more variable more likely to have high year round site fidelity.
K.L. Laidre, R.J. Jameson, E. Gurarie, S.J. Jeffries and H. Allen. Spatial habitat use of sea otters in coastal Washington. Journal of Mammalogy, 90(4): 906-917, 2009.

Some Sea Otter Conclusions

- Movements between 1992-1999 best described as semi-seasonal shifts within the range.
- The range expanded both North and South over the study period - driven primarily by males.
- High seasonal periodicity in range use in summer and winter, distributions were generally bimodal for adult males with adult females more variable more likely to have high year round site fidelity.
K.L. Laidre, R.J. Jameson, E. Gurarie, S.J. Jeffries and H. Allen. Spatial
habitat use of sea otters in coastal Washington. Journal of Mammalogy, 90(4): 906-917, 2009.

Some Sea Otter Conclusions

- Movements between 1992-1999 best described as semi-seasonal shifts within the range.
- The range expanded both North and South over the study period - driven primarily by males.
- High seasonal periodicity in range use in summer and winter, distributions were generally bimodal for adult males with adult females more variable more likely to have high year round site fidelity.
K.L. Laidre, R.J. Jameson, E. Gurarie, S.J. Jeffries and H. Allen. Spatial habitat use of sea otters in coastal Washington. Journal of Mammalogy, 90(4): 906-917, 2009.

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

1D-projection

So how'd we do on the CIF's and ESF's?

(a) Multi-dimensionality:

1D-projection
(2) Correlation:

Choose time scale (1 month) and distance kernel (15 km) that makes data independent

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

1D-projection
(2) Correlation:

Choose time scale (1 month) and distance kernel (15 km) that makes data independent
(3) Errors:

Ignored (scale of measurement z. scazle of error),

So how'd we do on the CIF's and ESF's?

(a) Multi-dimensionality:

1D-projection
(2) Correlation:

Choose time scale (1 month) and distance kernel (15 km) that makes data independent
(3) Errors:

Ignored (scale of measurement z. scále of error),
(C) Heterogeneity:

Analysis according Sex/Age, Seasonality

So how'd we do on the CIF's and ESF's?

(a) Multi-dimensionality:

1D-projection
(2) Correlation:

Choose time scale (1 month) and distance kernel (15 km) that makes data independent
(3) Errors:

Ignored (scale of measurement z. scále of error),
(C) Heterogeneity:

Analysis according Sex/Age, Seasonality

Wolf (Canis lupus) in Finland

- Extirpated by hunting by early $20^{\text {th }}$ century.
- Since 1980's influx from Western Russia.
- Currently, roughly 200 individuals. Hunter vs. Conservation tensions.

Movement Data

Eastern Finland, two wolves: Viki: female 2006 Niki: male 2008

Movement Data

Eastern Finland, two wolves:
Viki: female 2006
Niki: male 2008
GPS and radio collared, 1/2 hour transmission interval

2-months of intensive ground

Movement Data

Eastern Finland, two wolves:
Viki: female 2006
Niki: male 2008
GPS and radio collared, 1/2 hour transmission interval

2-months of intensive ground tracking of every location away from den.

Habitat Data

Habitat Map of the Territory of a GPS-collared Wolf

Map: Johanna Suutarinen
Data Source: Finnish Game and Fisheries Research Institute (RKTL), Finnish Environmental Institute (SYKE)

Habitat Map of the Territory of a GPS-collared Wolf

Map: Johanna Suutarine
Map: Johanna Suutarinen and Fisheries Res earch Instilute (RKTL), Finnish Environmental Institute (SYKE)
Dame and

Linear Elements

Primary Roads Forest Roads
Rivers
Power Lines
Railways
Reindeer Fence

Prey

Moose Retindeer (wild/semi-domesticated) Miscellaneous

(before)

Prey

X distance (km)

Behavior

(show some images from file)

Behavior: time series

Goal

To model:

BEHAVIOR, (movement and predation)

with respect to

HABITAT
 (landscape and linear elements).

Behavior Vectors

Z_{i} - position
B_{i} - behavior
P_{i}-purpose
$K_{i}-$ kill

Habitat Vectors

H_{i} - habitat land class
N_{i} - nearest neighbor habitat
L_{i} - linear element

Testing Hypotheses: Null Sets

RI: All Possible Points in Home Range RII/RIII: Points Localized Around Each Location

Localized Null Set

RII: Points Localized Around Each Location RIII: Points reflecting "actual movements"

Localized Null Set

RIII: Points Localized Around Each Location

Results: Habitat Use

Viki	movement	RI	RII	homing	hunting	kill
n	717	10^{5}	5512	227	317	40
Habitat types						
Fields	0.007	0.009	0.01	0.004	0.000	0.000
Coniferous forest	0.283	0.269	0.291	0.256	0.284	0.225
Mixed forest	0.233	0.315	0.247	0.264	0.177	0.225
Open woodland	0.347	0.314	0.336	0.392	0.372	0.475
Peatbogs	0.130	0.093	0.122	0.084	0.167	0.075
Niki						
n	878	10^{5}	3540	307	187	50
Habitat types						
Fields	0.008	0.012	0.006	0.006	0.007	0.000
Coniferous forest	0.167	0.194	0.180	0.129	0.182	0.180
Mixed forest	0.284	0.302	0.310	0.246	0.195	0.200
Open woodland	0.435	0.333	0.351	0.544	0.492	0.460
Peatbogs	0.106	0.159	0.154	0.075	0.124	0.160
χ^{2} test against:		movement	movement	movement	movement	hunting

Results: Linear Element Use

Viki	movement	RI	RII	homing	hunting	kill
n	717	10^{5}	5512	227	317	40
Forest roads	0.117	$\mathbf{0 . 0 6 8}$	$\mathbf{0 . 0 7 7}$	0.075	0.097	0.050
Rivers	0.041	0.034	0.036	$\mathbf{0 . 0 9 7}$	$\mathbf{0 . 0 7 5}$	0.075
Roads	0.006	0.011	0.004	0.004	0.009	0.000
Railways	0.012	$\mathbf{0 . 0 0 3}$	$\mathbf{0 . 0 0 3}$	0.000	0.016	0.000
Forest edge	0.297	$\mathbf{0 . 2 6 6}$	0.280	0.335	0.328	0.450
Bog edge	0.106	$\mathbf{0 . 0 6 3}$	0.093	0.075	$\mathbf{0 . 1 4 7}$	0.125
Niki						
Forest roads	0.129	$\mathbf{0 . 0 5 4}$	$\mathbf{0 . 0 5 2}$	$\mathbf{0 . 1 7 6}$	0.091	0.060
Rivers	0.071	$\mathbf{0 . 0 4 6}$	$\mathbf{0 . 0 4 6}$	0.075	$\mathbf{0 . 2 6 7}$	0.140
Roads	0.021	0.020	0.016	0.029	0.000	0.000
Railways	0.017	$\mathbf{0 . 0 0 4}$	$\mathbf{0 . 0 0 4}$	0.003	0.000	0.000
Forest edge	0.298	0.279	0.286	0.257	$\mathbf{0 . 4 0 6}$	0.340
Bog edge	0.110	$\mathbf{0 . 0 9 2}$	0.098	0.114	0.123	0.100
$\boldsymbol{\chi}^{\boldsymbol{2}}$ test against:		movement	movement	movement	movement	hunting

Results: Large Road Avoidance

Road Network

Movement Parameters

	$\overline{\cos (\theta)}$	$\widehat{V}(\mathrm{~km} /$ hour $)$	$\mathrm{IQR}(25 \%-75 \%)$
F06			
All movements	0.52	3.21	$2.88-9.96$
Hunting	0.42	2.42	$1.1-8.2$
Homing	0.74	5.45	$6.14-12.66$
M08			
All movements	0.61	3.59	$3.68-9.42$
Hunting	0.58	3.56	$4.44-8.96$
Homing	0.59	3.39	$0.4-9.56$

Niki

Behavior

At den

Movement

At rest

At prey

F06 M08

At cache

E. Gurarie, I. Kohola, J. Suutarinen, O. Ovaskainen. Wolf (Canis Jupus) movement and kill behavior with respect to human-influenced habitat features in Finland in prep

E. Gurarie, I. Kohola, J. Suutarinen, O. Ovaskainen. Wolf (Canis lupus) movement and kill behavior with respect to human-influenced habitat features in Finland in prep

Some Tentative Wolf Conclusions

- Wolves like using natural and manmade corridors for movement,
- but they avoid large roads!
- Higher road density disrupts freedom of movement, efficiency of habitat use, with possible consequences for pup-rearing success, etc.
E. Gurarie, I. Kohola, J. Suutarinen, O. Ovaskainen. Wolf (Canis lupus) movement and kill behavior with respect to human-influenced habitat features in Finland in prep

A Big Problem With Conclusions

Only 2 data points!
(Different years, different sexes, etc.)

But we have More Wolves ...

Range Map

Apollo (uros)

Range Map

Range Map

Range Map

(More coarsely sampled and without behaviors, but still...)

Possible Hypothesis ...

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Analyzed habitat variables and step-length properties

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Analyzed habitat variables and step-length properties
C Correlation:
Used randomization set (RIII) derived from actual movements to create null-hypotheses.

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Analyzed habitat variables and step-length properties
C Correlation:
Used randomization set (RIII) derived from actual movements to create null-hypotheses.
(3) Errors:

Ignored

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Analyzed habitat variables and step-length properties
(2) Correlation:

Used randomization set (RIII) derived from actual movements to create null-hypotheses.
(3) Errors:

Ignored
() Heterogeneity:

Sequential χ^{2} comparisons of data and randomization in terms of habitat covariates.

So how'd we do on the CIF's and ESF's?

(1) Multi-dimensionality:

Analyzed habitat variables and step-length properties
(2) Correlation:

Used randomization set (RIII) derived from actual movements to create null-hypotheses.
(3) Errors:

Ignored
() Heterogeneity:

Sequential χ^{2} comparisons of data and randomization in terms of habitat covariates.

General Principles of Movement Analysis:

If you keep track of your:
Correlations! Dimensions! Gaps! Errors!

General Principles of Movement Analysis:

If you keep track of your:
Correlations! Dimensions! Gaps! Errors!
Match your questions to your data,

General Principles of Movement Analysis:

If you keep track of your:
Correlations! Dimensions! Gaps! Errors!
Match your questions to your data, Explore all the heterogeneities ...

General Principles of Movement Analysis:

If you keep track of your:
Correlations! Dimensions! Gaps! Errors!
Match your questions to your data, Explore all the heterogeneities ...
(and maybe make up some acronyms on the way)

General Principles of Movement Analysis:

If you keep track of your:
Correlations! Dimensions! Gaps! Errors!
Match your questions to your data, Explore all the heterogeneities ...
(and maybe make up some acronyms on the way)

Then you're bound to learn SOMETHING

Acknowledements

Fur Seals and BCPA

- Co-authors: R. Andrews and K. Laidre.
- V. Burkanov and all colleagues/friends in the field in Russia
- Discussions: T. Gneiting, M. Kot, V. Minin, H. Nesse

Sea Otters

- Co-authors: K. Laidre, R. Jameson, S. Jeffries
- Trackers: M. Stafford, B. Krause
- Capture, tagging and tracking of sea otters was funded by USGS, Fish and Wildlife and WDFW and Olympic Coast National Marine Sanctuary (OCNMS).

Wolves

- Co-authors: Ilpo Kojala, Johanna Suutarinen, Otso Ovaskainen
- Support: Metapopulation Research Group, University of Helsinki

