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Importance of Movement

Fundamental characteristic of all animals.

Ecological processes

Foraging
Survival
Reproduction
Migration
Invasion
Dispersal
Aggregation

Measurable behavioral output
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Conceptual model of Behavior

In Math: ∆Xt = f (Xt ,Et)

In English: Behavior (f ) is a process which transforms the state of an
organism (Xt) and the the local environment (Et) into Movement (∆Xt).



Track Data

Treecreeper (Doerr 2004) Albatross (Fritz 2002) Iberian wolf (Bascompte 1997) Heterosigma (Bearon 2003)

Daphnia Pulex (Uttieri 2005) Cebus monkey (Wentz 2003) Narwhal (Laidre 2004) Petrel (Fouchauld 2003)



Common, Inconvenient Features of Movement Data:
(CIF’s)

Multi-dimensional (X,Y,Time)

Not independent!
(Auto- and Cross-correlated)

Bonus Feature: Measurement error /
irregular sampling.
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Extra Special Features of Movement Data:
(ESF’s)

Heterogeneous!
• Population • Individual • Habitat • Time of

Day/Year • etc.

But that’s OK! Because often this is what we
want to learn!

No Consensus On Analysis In The Literature.

But that’s OK, too! Because every analysis is
special!
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Northern Fur Seal (Callorhinus ursinus) and BCPA



Map of all foraging trips for F01
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Orthogonal decomposition



Orthogonal decomposition

Persistence Velocity Component: Vp = V cos(θ)

mean = speed + consistency of orientation

variance = variability of behavior

auto-correlation = movement changes with respect to sampling
interval



Orthogonal decomposition

Orthogonal Component of Velocity: Vt = V sin(θ)

mean = 0.

variance = speed and sharpness of turns

auto-correlation = turning radius.



Actual Data Decomposed (northern fur seal)
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Properties of AR(1)

Xt = ρ (Xt−1 − µ) + µ+ ε

ε ∼ N(0, σ2)
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Properties of AR(1)

Xt = ρ (Xt−1 − µ) + µ+ ε

ε ∼ N(0, σ2)
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Properties of AR(1)

Xt = ρ (Xt−1 − µ) + µ+ ε

ε ∼ N(0, σ2)
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Properties of AR(1)

Xt = ρ (Xt−1 − µ) + µ+ ε

ε ∼ N(0, σ2)
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Properties of AR(1)

Xt = ρ (Xt−1 − µ) + µ+ ε

ε ∼ N(0, σ2)
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AR(1): Arbitrary Interval
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AR(1): Arbitrary Interval
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Estimating ρ

Conditional Likelihood:

L(ρ|X,T) =
n∏

i=1

f (Xi |Xi−1, τi , ρ),

then:

ρ̂ = argmax
ρ

L(ρ|X,T)



Estimating ρ
Simulated Gappy Time Seris
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Structural shifts

Θ(t) =

{
Θ1 if 0 < t ≤ t1

Θ2 if t1 < t ≤ T

}

L(Θ|X,T) =
n∏

i=1

f (Xi |Xi−1,Θ1)
N∏

j=n+1

f (Xj |Xj−1,Θ2)



Identifying Change Point
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Identifying Change Point, sparce data
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Identifying Change Point, different ρ’s
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Identifying Models

Model 0 µ1 = µ2 σ1 = σ2 ρ1 = ρ2

Model 1 µ1 6= µ2 σ1 = σ2 ρ1 = ρ2

Model 2 µ1 = µ2 σ1 6= σ2 ρ1 = ρ2

Model 3 µ1 = µ2 σ1 = σ2 ρ1 6= ρ2

Model 4 µ1 6= µ2 σ1 6= σ2 ρ1 = ρ2

Model 5 µ1 6= µ2 σ1 = σ2 ρ1 6= ρ2

Model 6 µ1 = µ2 σ1 6= σ2 ρ1 6= ρ2

Model 7 µ1 6= µ2 σ1 6= σ2 ρ1 6= ρ2

How to choose?

AIC : IA(X,T) = −2n log
(
L(θ̂|X,T)

)
+ 2d

BIC : IB(X,T) = −2n log
(
L(θ̂|X,T)

)
+ d log(n)
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Find MLBP

Identify Model

Record estimates based on model selected.

Move window forward and repeat
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Behavioral Phaseplot
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Summary points

Behavior can be very complex!

But patterns can be robustly picked out of messy
data.

Method suggests the possibility of asking more
sophisticated questions.

Gurarie, E., R.D. Andrews, and K.L. Laidre. 2009. A novel method for

identifying behavioural changes in animal movement data. Ecology Letters 12:

395–408.
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So how’d we do on the CIF’s and ESF’s?

1 Multi-dimensionality:
Component decomposition (and continuous time)

2 Correlation
Explicit Estimation of ρ:

3 Gappiness:
Continuous-time model

4 Errors:
Ignored (scale of measurement > scale of error),
Other systems: test robustness

5 Heterogeneity:
Change Point Analysis
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Washington sea otters (Enhydra lutris kenyoni)

• Extirpated by fur-trade hunting in the early 20th century 

• Re-established by translocations of 59 sea otters from Alaska in 1969-70

• Population index counts annually conducted since late 80’s

Photo: G. Jameson



  

Movement Data: VHF Radio Telemetry Studies 1992-1999 

• 75 individuals captured using Wilson traps and instrumented (43 AF, 14 AM, 9 
SF, and 9 SM) 



  

Individuals tracked on average for 684 days (SD 515, range 
7 days to 5.9 years).

Average of 34 radio locations per individual (SD 29).

Mean number of resightings per sea otter per month ranged 
from 1.6 (December) to 5.8 (August) - mean of 2.9. 



  







Linearizing Otter movements
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Discretize coastline 
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Linearizing Otter movements



SO11: Female

SO22: Male

Analysis challenge: Quantify space use
● Home ranges ● Seasonality



One-dimensional kernelized distributions

● Minimum of 20 observations (46 out of 75 individuals: 34 F, 12 M)

● Weighted according to number of days to neighboring observations, max 1 

month
 ● 4 obs/month = weight 7 day ●  1 obs/year = weight 30 day



  

Home Range: 95% of time spent 

Sometimes, 
discontinuous! 



  

Continous otter 

Discontinous otter 



  

95% kernel home 
range by age class 
and sex.

Both significant 
(p<0.01)



How to quantify “seasonality”?

Summer (May-October) 
and 

Winter (November – April):

Seasonal Distribution 
Overlap Index



How to quantify “seasonality”?

SDOI = 0.15



SDOI = 0.98



SDOI = 0.53



  

SDOI by age class and 
sex

Sex significant but not 
age.

Age-Sex Number of 
individuals

Mean seasonal 
distribution 
overlap (SD)

AF 29 0.63 (0.2)
AM 7 0.50 (0.24)
SF 5 0.70 (0.26)
SM 5 0.46 (0.22)



Some Sea Otter Conclusions

Movements between 1992-1999 best described as
semi-seasonal shifts within the range.

The range expanded both North and South over the
study period - driven primarily by males.

High seasonal periodicity in range use in summer and
winter, distributions were generally bimodal for adult
males with adult females more variable more likely to
have high year round site fidelity.

K.L. Laidre, R.J. Jameson, E. Gurarie, S.J. Jeffries and H. Allen. Spatial

habitat use of sea otters in coastal Washington. Journal of Mammalogy, 90(4):

906–917, 2009.
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So how’d we do on the CIF’s and ESF’s?

1 Multi-dimensionality:
1D-projection

2 Correlation:
Choose time scale (1 month) and distance kernel (15km) that

makes data independent

3 Errors:
Ignored (scale of measurement > scale of error),

4 Heterogeneity:
Analysis according Sex/Age, Seasonality
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Wolf (Canis lupus) in Finland

• Extirpated by hunting by early 20th century.

• Since 1980’s influx from Western Russia.

• Currently, roughly 200 individuals.  Hunter vs. Conservation tensions. 



  

Movement Data
Eastern Finland, two wolves:
  Viki: female 2006
  Niki: male 2008

GPS and radio collared, 1/2 
hour transmission interval

2-months of intensive ground 
tracking of every location 
away from den.
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Habitat Data



  

Mixed/Open 
Forest Edge



  

Linear Elements

Primary Roads
 Forest Roads
 Rivers
 Power Lines
 Railways
 Reindeer Fence



  

Prey

Prey

Moose
Reindeer

(wild/semi-domesticated)
Miscellaneous

(before)
Photo: Johanna



  (after)
Photo: Johanna



  

Prey



  

Behavior

(show some images from file)



  

Behavior: time series



  

Goal

To model:

BEHAVIOR, 
(movement and predation)

 with respect to 

HABITAT
(landscape and linear elements).



  

Behavior Vectors
Zi – position

Bi – behavior

Pi – purpose

Ki – kill 

Habitat Vectors
Hi – habitat land class

Ni – nearest neighbor habitat

Li – linear element



  

Testing Hypotheses: Null Sets

RI: All Possible Points in Home Range
RII/RIII: Points Localized Around Each Location



  

Localized Null Set

RII: Points Localized Around Each Location
RIII: Points reflecting “actual movements”



  

Localized Null Set

RIII: Points Localized Around Each Location



  

Results: Habitat Use



  

Results: Linear Element Use



  

Results: Large Road Avoidance



  

Road Network

Niki Viki



  

Movement 
Parameters



  

Behavior



Some Tentative Wolf Conclusions

Wolves like using natural and manmade corridors for
movement,

but they avoid large roads!

Higher road density disrupts freedom of movement,
efficiency of habitat use, with possible consequences
for pup-rearing success, etc.

E. Gurarie, I. Kohola, J. Suutarinen, O. Ovaskainen. Wolf (Canis lupus)

movement and kill behavior with respect to human-influenced habitat features

in Finland. in prep.
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A Big Problem With Conclusions

Only 2 data points!   

(Different years, different sexes, etc.)



  

But we have More Wolves ...

(More coarsely sampled and without behaviors, but still...)



  

Possible Hypothesis ...

Road Intensity So
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Viki
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everyone else



So how’d we do on the CIF’s and ESF’s?

1 Multi-dimensionality:
Analyzed habitat variables and step-length properties

2 Correlation:
Used randomization set (RIII) derived from actual movements

to create null-hypotheses.

3 Errors:
Ignored

4 Heterogeneity:
Sequential χ2 comparisons of data and randomization in terms

of habitat covariates.
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General Principles of Movement Analysis:

If you keep track of your:
Correlations! Dimensions! Gaps! Errors!

Match your questions to your data,
Explore all the heterogeneities ...

(and maybe make up some acronyms on the way)

Then you’re bound to learn SOMETHING!
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