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Abstract

The propagation of Rossby waves on a mid-latitude S-plane is investigated in the presence
of density diffusion with the aid of linear hydrostatic theory. The search for wave solutions
in a vertically bounded medium subject to horizontal (vertical) diffusion leads to an
eigenvalue problem of second (fourth) order. Exact solutions of the problem are obtained
for uniform background stratification (N), and approximate solutions are constructed for
variable N using the Wentzel-Kramers-Brillouin method. Roots of the eigenvalue relations

for free waves are found and discussed.

It is found that the barotropic wave of adiabatic theory is also a solution of the eigen-
value problem as this is augmented with density diffusion in the horizontal or vertical
direction. The barotropic wave is undamped as fluid parcels in the wave move only hor-
izontally and are therefore insensitive to the vortex stretching induced by mixing. On
the other hand, density diffusion modifies the properties of baroclinic waves of adiabatic
theory. In the presence of horizontal diffusion the baroclinic modes are damped but their
vertical structure remains unaltered. The ability of horizontal diffusion to damp baro-
clinic waves stems from its tendency to counteract the deformation of isopycnal surfaces
which is caused by the passage of these waves. The damping rate increases (i) linearly
with horizontal diffusivity and (ii) nonlinearly with horizontal wave number and mode
number. In the presence of vertical diffusion the baroclinic waves suffer both damping
and a change in vertical structure. In the long-wave limit the damping is critical (wave
decay rate numerically equal to wave frequency) and increases as the square roots of ver-
tical diffusivity and zonal wave number. Density diffusion in the horizontal or vertical
direction reduces the amplitude of the phase speed of long, westward propagating waves.
Observational estimates of eddy diffusitivies suggest that horizontal and vertical mixing
strongly attenuates baroclinic waves in the ocean, but that vertical mixing is too weak to

notably modify the vertical structure of the gravest modes.



1 Introduction

Planetary or Rossby waves are long-period oscillations in the oceans and atmosphere,
whose restoring mechanism is provided by the variation of the Coriolis parameter with
latitude. In the oceans the anisotropy of energy transmission of these waves is responsible
for a major feature of the general circulation, i.e., the concentration of small-scale energy
in the western portion of oceanic gyres (e.g., Pedlosky (1987)). Rossby waves also consti-
tute the prevalent mechanism by which the ocean adjusts on annual to decadal scales to
perturbations in the atmosphere. They have been suggested to play a role in important
oceanic phenomena such as the response to suddenly applied wind stress (e.g., Anderson
and Gill (1975)), the variability of equatorial motions (e.g., Cane and Sarachik (1976)),
the establishment of abyssal flows (e.g., Kawase (1987)), and the changes in meridional

overturning circulation (e.g., Johnson and Marshall (2002)).

Interest in Rossby waves in oceanography was stimulated over the last decade by their
inference from observations of sea surface height (SSH) by satellite altimetry (e.g., Chel-
ton and Schlaz (1996)). The SSH anomalies were shown to propagate westward at speeds
decreasing strongly with latitude, which is consistent with the latitude dependence of the
phase speed of long baroclinic modes predicted by standard linear theory. However, the
westward propagation of SSH anomalies outside the band 10°S-10°N appeared system-
atically faster than predicted (Chelton and Schlaz, 1996). A wealth of studies followed,
which attempted to interpret the reported disagreement in terms of effects absent from
the standard linear theory of Rossby waves (e.g., Killworth et al. (1997), Qiu et al. (1997),
Dewar (1998), de Szoeke and Chelton (1999), Killworth and Blundell (1999), Tailleuz and
McWilliams (2001), LaCasce and Pedlosky (2004), Killworth and Blundell (2005)). Zhang
and Wunsch (1999) revisited the analysis of North Pacific data by Chelton and Schlaz
(1996) by using a different processing method and contended that a significant fraction
of the data is actually consistent with linear theory. On the other hand, a more recent
analysis of altimetric data with higher resolution concluded that much of the mesoscale

SSH variability outside the tropics consists of nonlinear eddies (Chelton et al., 2007).



4

In this paper, the propagation of Rossby waves in a mid-latitude ocean is investigated
in the presence of small-scale, turbulent transport of buoyancy (‘mixing’). Our study
is specifically motivated, not by the anomalous propagation postulated by Chelton and
Schlaz (1996), but by the following two elements. First, theories of the steady circu-
lation emphasize the role of mixing in restricting the westward extension, in the form
of arrested Rossby waves, of pressure anomalies established on the eastern boundary of
oceanic basins (e.g., Kawase (1987); Edwards and Pedlosky (1995)). Despite this recog-
nized role, the influence of mixing on progressive waves has not received much attention
in theoretical work (for a study with a reduced gravity model see however Deshayes and
Frankignoul (2005)), although such influence was considered for the low latitudes, e.g., for
the equatorial undercurrent (e.g., McCreary (1981)). Second, various studies showed that
mixing can influence the steady state response of ocean circulation to surface buoyancy
forcing. For example, scaling arguments suggest that the nature of vertical mixing could
determine the very sign of the response in a single-hemisphere ocean (e.g., Nilsson and
Walin (2001)). The effects of mixing on the time-dependent response, however, remains
largely unexplored from the theoretical viewpoint. Indeed, it is friction, not buoyancy
mixing, which is traditionally viewed as a major damping mechanism for Rossby waves
(e.g., Pedlosky (1987); Qiu et al. (1997)). Here the diabatic term in the vorticity balance
is retained in order to examine how this term fundamentally modifies the properties of

the progressive waves of adiabatic theory.

It is probably worth being explicit about some of the limitations of this paper. A first
limitation is the reliance on simplified dynamics in the form of the linearized hydrostatic
equations (LeBlond and Mysak, 1978). The hydrostatic system, however, allows us to filter
waves of no direct interest, such as inertial-gravity waves, and hence to isolate the effects of
mixing on Rossby waves which do remain solutions of the dynamical equations. Another
limitation is the assumption that buoyancy mixing operates as Fickian diffusion. Results
from tracer release experiments seem to support this assumption for vertical mixing but
question it for horizontal mixing at mesoscales (e.g., Ledwell et al. (1998)). Whereas the
representation of mixing as Fickian diffusion is almost universal in dissipative theories,

there still appears to be no fundamental justification for it. Other limitations include the
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omissions of a background flow (e.g., Killworth et al. (1997); Dewar (1998); de Szoeke
and Chelton (1999)) and bottom topography (e.g., Killworth and Blundell (1999)). Tt is
felt that the influences of mixing on Rossby waves should first be considered in isolation

of these yet important aspects of the general circulation.

The paper is organized as follows. In section 2, the problem posed by the determina-
tion of Rossby waves in a mid-latitude ocean subject to density diffusion is introduced.
The vorticity equation of the problem is derived, and the vertical structure equation and
its boundary conditions for the study of free waves in a vertically bounded medium are
obtained. In section 3, the effects of horizontal density diffusion on Rossby waves are deter-
mined. The analysis is repeated for vertical density diffusion in section 4. Exact solutions
of the problem are first derived for the case where the background density stratification
is uniform. Approximate solutions are then constructed for variable stratification using
the WKB method. The oceanographic significance our results are discussed in section 5.

Conclusions follow in section 6.

2 Eigenvalue Problem

In this section, the problem posed by the determination of Rossby waves in a mid-latitude
ocean subject to density diffusion is presented. The analysis assumes a continuously strat-
ified ocean on a (-plane, which is bounded at the bottom and the surface (for reference,
the case of an unbounded ocean is briefly considered). On the other hand, the wave dis-
turbance is assumed to occur far from lateral boundaries, so it is not affected by reflection

at these boundaries.

2.1 Vorticity Equation

The dynamical framework is provided by the linearized hydrostatic S-plane equations,
which are traditionally used to study small-amplitude, long-wave motions in the ocean

(LeBlond and Mysak, 1978). Here these equations are extended to include horizontal and
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vertical diffusion of density. They are expressed in dimensionless form in order to clarify
the assumptions underlying the construction of solutions using the WKB approach. It
is postulated that the wave motions to be determined can be characterized by a time
scale T, a horizontal (vertical) scale L (D), and a horizontal (vertical) velocity scale U
((D/L)U). Thus, the variables of the dynamical equations are normalized based on the

following relations:

Here the primed variables are dimensionless, ¢ is time, and (u,v,w) are the (x,y, 2)
components of velocity, where z is the zonal coordinate (counted positively eastward),
y the meridional coordinate (northward), and z the vertical coordinate (upward). The
scaling for pressure p is based on the geostrophic balance and the scaling for density p

relies on the thermal wind:

p = pUfoLy, (2a)
oU foL
po= (2b)

where p, is a constant density, f, the Coriolis parameter at the mid-latitude of the basin,

and g the acceleration of gravity. The Coriolis parameter is normalized based on
f=fof (3)
where f' =1+ p'y', 8’ = L/ f,, and [ is the gradient of planetary vorticity.

The equations of motion in dimensionless form are then (omitting the primes for neat-
ness):
Ug + vy +w, = 0, (4a)

Rut - fU = " Da; (4b)



Rvi+ fu = —p,, (4c)
Rp; — B(z2)w = EyVip+ Eyp.., (4e)

where a subscript denotes partial differentiation and V2 = §%/0x% + §?/0y? is the hori-

zontal Laplacian. The dimensionless numbers in (4b—c) and (4e) are

1

R = 7, (5a)
56 = T (5b)
B, = % (5¢)
E, = # (5d)

where N(z) is the buoyancy frequency of the background density field and kj, (k,) is
the horizontal (vertical) diffusivity. The Rossby number R is proportional to the ratio
of the rotation period to the wave period, the Burger number B sets the background

stratification, and E}, (E,) represents the effect of horizontal (vertical) density diffusion.

A vorticity equation in terms of pressure can be derived from the dynamical equations
(4a—e) using the same manipulations as for adiabatic theory (LeBlond and Mysak, 1978).
The operator £ = R?0%/0t? + f? is applied twice to the continuity equation (4a),

L[Luy + Loy, + Lw,] = 0. (6)

The two combinations R0/0t(4b) + f(4¢c) and RO/0t(4c) — f(4b) are then calculated.
Differentiating the first combination with respect to x and the second with respect to y

gives

Euw = - (Rpwzt + fp:cy) ) (73)

Evy = _pryt + fpwy + 5pw - 2ﬁfv- (7b)

Finally, the hydrostatic and density equations (4d—e) lead to w = (—Rp,; + EpVip, +

Ep...)/B(z), so

(8)

Lw. = L <_szt + Ehv%,pz + Evpzzz>

B(z)



The vorticity equation is obtained by adding (7a), (7b) and (8),

szt - Ehv2pz - Evpzzz
2 h
L lR (Vip), + E( 50

This form of the vorticity balance includes earlier forms as special cases. For example,

] +p [f2pz - 2pryt - R2pztt] =0. (9)

z

if £, = E, = 0, it becomes the (dimensionless) vorticity equation of adiabatic theory
(LeBlond and Mysak (1978), p. 124, eq. (15.21’)). Assuming steady state, B, = 0,
and E, = 0, it becomes E,p,.,, — (BB/f*)p. = 0, which is the vorticity balance of
the abyssal circulation model of Edwards and Pedlosky (1995). Note the straightforward
interpretation of equation (9) in the steady state limit. In this limit, the equation simplifies
to —f4(EnVip,+FEyp...)/B(2)].+8f*p. = 0, showing that horizontal and vertical mixing
provides the vortex stretching for meridional motion in the field of variable planetary

vorticity.

2.2 Dispersion Relation for Unbounded Medium

A wave solution of the vorticity equation (9) is first sought for an ocean that is vertically
unbounded. The analysis essentially assumes that the horizontal boundaries (the bottom
and the surface) are distant from the region of the wave disturbance. Although this is a
restrictive assumption, it constitutes a useful first step in our discussion. For simplicity,
the background stratification is taken as uniform (more specifically, B is taken as constant

over the vertical scale of the wave).

A plane wave solution of (9) is considered,

p= %ﬁei(kw—l—ly—}—mszt)’ (10)

where @ implies that the real part of the following expression is taken, p is the wave
amplitude, (k,l,m) are the (z,y, z) components of the wave vector, and w = w, + iw; is

the complex wave frequency. Inserting (10) into (9) leads to a dispersion relation,

1

Rlor+iv) = pra s

[—Bﬁk —i (E,J(? + Eva) f2m2] , (11a)



where K = v/k? 4 [? is the horizontal wave number. In dimensional form,

1
NPKZ + fom

r + i (= N8k, — i (kKD + kym?) fIm2],  (11b)

where the subscript ‘*’ designates a dimensional variable and w, = w/T. The real part of
(11a-11b) is the dispersion relation for Rossby waves in adiabatic theory. The imaginary
part is negative definite and proportional to (Ejy, F,) or (kp,k,), which indicates that
the wave is damped by density diffusion. The damping increases with the horizontal and
vertical wave numbers as well as with the meridional coordinate. Note than when m = 0,
the wave is barotropic (p independent of depth) and undamped. Indeed, for m = 0,
the displacement of fluid parcels in the wave is strictly horizontal, so the parcels remain

unaffected by the vortex stretching due to mixing (Eq. 8).

2.3 Vertical Structure Equation and Boundary Conditions

The plane wave (10) is relevant only in situations where the vertical scale of the wave is
much less than the ocean depth. Below this restriction is removed by considering a wave

solution of the form

p= %ﬁ(z)ei(kx—f—ly—wt)’ (12)

where p(z) is a vertical structure function. Inserting (12) into the vorticity balance (9)

gives a vertical structure equation:

. ﬁzzz . 2 ﬁz RCL)KQ + ,Bk' N

E, — (R E,K =0. 13

5], - (e i) 555+ BT -
This differential equation is subject to boundary conditions at the bottom (z = —1) and

at the surface (z = 0). It is assumed that the vertical velocity is zero at both boundaries

(w=0at z=—1,0). When recast in terms of p, the conditions of no normal flow are
iEyPrs — (Rw + iEhK2) b, = 0 at z = —1,0. (14a)

Two more conditions are necessary to determine wave motions in the presence of vertical
mixing. Here the vertical density flux is set to zero at both boundaries (E,0p/0z = 0 at

z=-1,0),

P, = 0 at z = —1,0. (14b)



10

Note that the vertical structure equation (13) subject to conditions (14a—14b) constitutes

a eigenvalue problem of second order if E, = 0 and of fourth order if F, # 0.

3 Horizontal Density Diffusion

In this section, the influence of horizontal density diffusion on Rossby waves in an ocean
of finite vertical extent is investigated. The simple case with uniform background strati-
fication is first considered. The more complicated situation with variable stratification is

then addressed.

3.1 Constant Stratification

For E, = B, = 0, the vertical structure equation (13) becomes

Rw+iE,K?  RwK?+ Bk .
S — 71) =

5 p 72 (15)
This equation is more conveniently written as
where
B RwK? k
A= wi” + 5 (17)

" f2Rw+iE,K?
The boundary conditions for this equation are the conditions of no normal flow at the

bottom and the surface (14a), i.e.,
p,=0  atz=—1,0. (18)
The general solution of the eigenvalue problem (16, 18) is
p(z) = Cy cos (\/Xz) + O sin(\/Xz) : (19)
The eigenvalues A satisfy the relation

AsinV/A = 0. (20)
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The solution A = 0 corresponds to a barotropic mode (p independent on depth) with
dispersion relation

R (wy + iw;) = —%. (21)

On the other hand, the solutions )\, = n?7?, with n = 1,2, ..., define baroclinic modes (p

dependent on depth and with zero depth-integral) with dispersion relation

2 2
R (wﬁ") +z'wz(")) = - Pk > —iEy (mrf) K 5. (22a)
K2+(n7rf/\/§) VB K2+(n7rf/\/§)
In dimensional form,
2
Wpy T Wiy K2+ (nr/Lp)? 1Kp Tn) K2+ (nr/Lp)? (22b)

where Lp = (N/f.)D is the internal radius of deformation. The boundedness of the
medium is manifested by the well-known result that, compared to (11-12), the verti-
cal wave number is now quantized as an integral multiple of 7/Lp. As for a vertically
unbounded ocean, the barotropic mode is undamped, whereas the baroclinic modes suf-
fer decay by horizontal density diffusion. The decay rate is large for small wavelengths

compared to the deformation radius and increases with mode number (Figure 1).

3.2 Variable Stratification

For E, = 0 and B, # 0, the vertical structure equation (13) can be written as

B, . B
—Rwp,, + Ro—p. + (RwK? + Bk) p =0, (23)

B Fﬁ
where Rw = Rw+iE,K? is a modified frequency and the dependence of B upon depth is
implicit. The boundary conditions for this equation are again the conditions of no normal
flow (18). An approximate solution of (23) is constructed from the WKB method (e.g.,

Bender and Orszag (1978)). The vertical structure function p(z) is given the form

o)~ ep | 135, 21

where the symbol ~ means that the series is not necessarily convergent and e is a small

parameter. Inserting this expression for p(z) into the vertical structure equation (23)
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gives
(Sp)?

€2

—Rw

! ! "
B
+250651+S—:+...] z

+Rw§ l%‘l’ +] + (RwK2 +Bk) % =0, (25)
where the primes indicate differentiation with respect to depth. Observations show that
the change in stratification at middle latitudes is of first order over the depth of the ocean,
i.e., B,/B = O(1). The first order or ‘eikonal’ equation of the WKB approximation is

therefore taken as

—Rw(i—{;)Q + (RwK? + Bk) % = 0. (26)

With the choice ¢ = v/R, the solution of this equation is

[ RwK2+ Bk | ~
So(2) :iz\/—TfQ / J/B(z)d, (27)

-1

to within an additive constant. The two sign possibilities yield the first contribution to
p(z) in the form of a linear combination of

\/—W/\/B(z’)dz'} and  sin

-1

COS

RwK?2+ Bk | ——
The second order or ‘transport’ equation of the WKB approximation is
S'g! S B, g
—Rw <2L + —°> + Rw—==2 =0. (29)
€ € B €
Its solution is

K2 —1/4
RwK? + 5k] | (30)

B(2)w f?

apart from another additive constant. This expression provides the second contribution

Si(2) = m[

to p(z). An approximate solution p(z) is obtained from the first two contributions in (24),

Ci cos (/Z \/fB(Z')dZ’) + Cy sin (/Z MEB(z’)dz')] : (31)

Pwin(2) = B(z)1/4

where
_ RwK? + Bk
Rw f?

The application of the boundary conditions (18) to the general solution (31) yields a

0= (32)

system of two linear algebraic equations with two unkowns (Cy, C3). A non-trivial solution

exists if the determinant of the system vanishes, which leads to the eigenvalue relation

7'1—7'2:0, (33)
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where

% (%)0 sin (/f EB(z’)dz') +1/£B(0) cos (/j EB(z’)dz'): (34a)
rs = JIB(-1) i (%)0 cos (j zB(z')dz') — \/JtB(0)sin (/0 EB(z’)dz’>_ (34D)

Here (B,/B)_; and (B,/B), designate the value of B,/B near the bottom and the surface,

respectively. The specific values ¢ satisfying (33) for arbitrary B(z) determine, in the
WKB approximation, the wave solutions of the form (12) which are supported by the
diabatic system (4a—e) for E, # 0, E, = 0, and B, # 0. Such values are easily found
for the particular but oceanographically relevant case where stratification is uniform near

the bottom and the surface (B,/B =0 at z = —1,0). In this case the eigenvalue relation

{sin (/ ZB(z’)dz') =0. (35)

The root ¢ = 0 gives the wave mode R(w, + iw;) = —fk/K?. In contrast to the case

(33) becomes simply

with uniform stratification, this mode is not strictly barotropic at the level of the WKB

approximation (31) owing to the presence of the factor B(z)'/*. The roots

(B(z")dz = nm, (36)
/v

where n = 1, 2,.. ., define baroclinic modes with dispersion relation
k ’ K?
R(w™ +iw”) = - ok ____ g, (ﬂ) —__ (37a)
K? + (nmf/B'/?)? B2 ) K2+ (nmf/B'/?)?
or
w® 4+ = — Buke iK nrf. 2 Ky N (37b)
r i K2+ (nnf, /N2 "\'N ) K2+ (nnf./N)?

Here (-) designates an integral from the bottom to the surface. The dispersion relation
(37a—37b) includes as special cases (i) the relation for variable N in the adiabatic situation
(Chelton et al., 1998), and (ii) the relation for uniform N and Ej, # 0 or k5, # 0 (Egs. 22a—
22b). The variations of wave damping with wave number and mode number are identical
to those for uniform stratification (Figure 1), provided that the internal deformation radius
is identified with (N/|f.|)D. Note that for both uniform and variable N, the presence of

horizontal density diffusion does not modify the vertical structure of the wave.
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4 Vertical Density Diffusion

In this section, the influence of vertical density diffusion on Rossby waves in a vertically
bounded ocean is explored. Again, the case with uniform background stratification is first

considered, followed by the more complicated situation with variable B = B(z).

4.1 Constant Stratification

4.1.1 General Solution

For E, = B, = 0, the vertical structure equation (13) becomes

R R B R
iBupas: = Bwps: + 5 (RwK? + Bk) p = 0. (38)

This equation is re-written as

ieﬁzzzz - ﬁzz - /\ﬁ = 0, (39)
where
E
_ B 40

S (400)

B RwK? + Bk
A= —— 40b
7 hw (40b)

Note that, in general, € = ¢, + 7¢; and A = A\, + ¢\; are complex with real and imaginary

parts given by

E, w,
“ = TR (41a)
Ev W;
= D e 41b
€ R w? + w? (41b)
and
BBk  w, BK?
Ar — — , 42
Rf? w? + w? 12 (422)
Bpk i
N o= 40Pk (42b)

Rf? w? + w?
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A solution of (39) of the form
p(z) = eV (43)

is sought, where /r is complex. Inserting this form into (39) leads to the characteristic
equation

ier® —r — A= 0. (44)
The roots of this equation are
riz—Qie(H:\/m), (45)
so the general solution of (39) is

]3(2) = Cleﬁz + Cge_ﬁz + Cgeﬁz + 046_\/Ez. (46)
4.1.2 Free Wave Solutions

The impermeability and insulation conditions (14a—14b) are imposed at the bottom and
at the surface. Applying these conditions to the general solution (46) yields a system of
four linear algebraic equations with four unknowns (C;,Cy, C3,Cy). The determinantal

equation of the system is

(ter, — 1)\/Ee_\/r_+ —(ter, — l)ﬁeﬁ (ter. — 1)\/7’__6_\/E —(ter. — 1)\/@'5\/E
(ier, — 1)\/1 —(ter, —1)/7% (ier. — 1) /1= —(ter. — 1)/
r+e_\/ﬁ r+e\/a 7:6_\/7? T,e\/r_—

7 7 T T

This equation provides by Laplace expansion an eigenvalue relation,
rr (ri+rg) =0, (47)
where

ri = 2.1/ (ier, — 1) (ier. — 1) (1 — cosh,/7; cosh\/i) , (48a)
ro = [n(ier. — 1)° 4+ r (ier, — 1)*] sinh /7 sinh /. (48b)
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The roots of (47) define the wave motions which are supported by the diabatic system
(4a—e) for E, =0, E, # 0, and B, = 0. Two roots are easily found by inspection. The
first is . = 0 or . = 0, which leads to A = 0. The wave corresponding to this root has
the familiar dispersion relation R (w, + iw;) = —Bk/K?. The second root is defined by

r. =1 =1 (#0), since the eigenvalue relation (47) then becomes
2r® (ier —1)* [1 — cosh?\/r + sinhQ\/F] =0. (49)
The equality r, = . implies that /1 + 4ieA = 0 and leads therefore to the system

€r/\i + Gi/\r = (50&)

S JRNg -

67-)\7« - GZ‘)\Z' = (50b)

In contrast to the first root, the wave solution satisfying this system must have a frequency
with a non-vanishing imaginary part (A; # 0 and ¢; # 0). The system is conveniently
expressed in terms of €., A, and the ratio 0 = w;/w, which, for negative w;, is the ratio

of wave decay rate to wave frequency:

BK? 1
206\ + 0677 = -7 (5la)
BK?
(1 — 02) €Ay — 02@? = 0. (51b)

Equation (51b) can be divided by €, and solved for A,. Then the real part of w can be
deduced from the defining relation (42a) and the imaginary part of w can be found by

inserting the expression for ), in (51a), which gives

. Bkl-o* __ BK? g
R (CUT + Zw,) = —ﬁm — 41 U?l—ioa’ (52&)
or
. _ ﬁ*k* 1— 02 . NQK:‘ 0'2
Wrs T Wi = — Kf 11 o2 — 41Ky f*2 1_70_2 (52b)

For fixed (k,1) or (k.,[.) the frequency of the wave decreases in amplitude with increasing
values of the ratio 0 = w;/w, = wix/wr (Figure 2a). The imaginary part of w is always
negative for 02 < 1, which indicates wave damping (Figure 2b). For fixed o, the decay

rate increases linearly with F, or k, and quadratically with the horizontal wave number.
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It is revealing to re-write the real part of the dispersion relation (52a) as

B 1—022+l2_ B 1-02]?
—2Rw, 1 + o2 "~ |2Rw, 14+ 02|

(53)

Consider a wave with £ > 0 and w, < 0 (Figure 3). In order for the wave to preserve
its orientation K/K the horizontal scale of the wave must increase as the ratio of wave
decay rate to wave frequency increases. Conversely, in order for the wave to maintain its

horizontal scale, the horizontal wave vector must become more zonal as ¢ is enhanced.

The dispersion relation (52a-52b) is only implicit in the sense it does not express wave
frequency as a function of wave vector. A complete description of the wave, however,
can be obtained for the long-wave limit (K — 0). In this limit, equations (51a-51b) are

simultaneously satisfied if

o = =1, (54a)
e = :F%, (54b)

where o and €.\, must have opposite signs. Condition (54a) implies that the imaginary
part of w is numerically equal to its real part. A positive w; is rejected, as the pressure p
would then be unbounded in time according to (12). With o = £1 and w; < 0, the long
wave as defined by the second root of the eigenvalue relation (47) is critically damped, in
the sense that the wave is attenuated at a rate which is equal to its frequency. Condition
(54b) together with the definitions (41a, 42a) allows us to determine the decay rate of

this wave

Rwi = —‘17‘\/2EvBB|k|, (55a)

or

AL (55b)

Wix =

N
IR
The decay rate increases as v/E, or \/k, and as \/m or \/m , which is to be contrasted
with the results for an unbounded medium (Egs. 11a-11b).

It is instructive to examine the modulus of the eigenfunction r 7 (ry + 7o) (Eq. 47)

for different combinations of values for the damping factor o and the diabatic factor e
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(Figures 4a—4b). For o equal to 0 and € equal to, say, 1/(8 - 167?), the modulus exhibits
relative minima near )\, = 72,472, 972,1672. .., which are the eigenvalues of adiabatic
theory (Figure 4a). None of these minima, however, is exactly nil, since the baroclinic
modes of adiabatic theory are not exact solutions of the vertical structure equation if
this is augmented with even the slightest amount of vertical density diffusion. The only
vanishing eigenvalue is A\, = 0, which corresponds to the undamped wave (21). For o = —1
and € = ¢,(1—i0) = (1 —1i0)/(8-1672), the modulus of r, r_(r; +r9) is zero for A, = 0 and,
for K = 0, A, = 167> (Figure 4b). The first mode corresponds to the undamped wave
(21) and the second mode corresponds to the critically damped wave in the long-wave

limit (55a-55b).

4.2 Variable Stratification

4.2.1 General Solution

For E, = 0 and B, # 0, the vertical structure equation (13) is

[ Paze Pz RwK? + Bk

where the dependence of B on depth is again made momentarily implicit. Inserting a

WKB solution of the form (24) into this equation yields
o [(Sg)* o Be [(5)°
qu,l i + ... —zEv§ + ...

(51)2 Sl SI S” ‘| B [56 ‘|

+ ...
B

0 0°1 , o bz |50
RleQ —|—2€ +6+...+RwB . +
|RwEK? + Bk 7 =0 (57)
The eikonal equation is taken as
Sh)? B
—Rw% + [RwK2 + ﬁk] i 0. (58)

The solution of this equation is, with the choice ¢ = v/R and apart from an additive

constant,

So(2) :ii\/ R“’K”ﬁk / Bz (59)
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This first contribution to the pressure function p(z) assumes the parameter relationship
E, < O(R?) and is purely adiabatic. In order for the second contribution to incorporate

the effects of vertical mixing the transport equation must be taken as (since B,/B = O(1))

1\4
iEU (SO)

et

1 Q! n B !
Rw (2% + —0) + RwBES0 g, (60)
€ € B ¢

Its solution is
3/2 z

RwK? + k™" E RwK? + Bk
— CEER B(")*%d2 61
B(z)wi ] 2 R5/2¢, 2w ;{ (Z) Z, ( )

5i() =1

to within another additive constant. This second contribution to p(z) corresponds to the
parameter relationship E, = O(R%/?). Its first part is formally identical to the solution of
the transport equation for Ej # 0 and E, = 0 (Eq. 30), whereas its second part represents
the influence of vertical mixing. A general solution of the vertical structure equation (56)

is constructed from the first two contributions to p(z),

C; cos (/Z EB(Z’)dz') + Cy sin (V/Z (B (z’)dz')}
Cy exp (g / ,/[EB(Z')]?»dz') + Cyexp (—g / ,/[EB(ZI)]?»dz')] . (62)

where ¢ is defined by (32) with w replaced by w and € is defined by (40a). For future

Pwis(2) = B(Z)1/4

analysis it is convenient to express this solution as

P (2) = CLeP) - Che=PH3) 4 g2 4 C4€—¢_(z), (63)

where Pyis(2) = Pwrs(2)/B(2)Y* and

u(2) = i /1 ViB()d + ¢ /1 JIEB()Pd, (64)
so that
. €
¢ilz) = iy/EB(2) £ o/ [¢B(2)]*. (65)
For simplicity the particular (but again oceanographically relevant) case where B, = 0 at

z = —1,0 is only considered below.
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4.2.2 Free Wave Solutions

When recast in terms of p the boundary conditions (14a-14b) are

i€Dyy — P, = 0 at 2 =1,0, (66a)

Pze = 0 at 2 =1,0. (66b)
Applying these conditions to the general solution (63) gives the eigenvalue relation

(k{¢g—1ﬂ2-1)¢g—n¢xmry+(a[¢%—1ﬂ2—1)¢%—n¢xqw2:o, (67)

where

o= (ie[o)] = 1) ([#-16.0)] - [¢(-1¢(0)] cosh 6-(0) cosh 6.(0) )
(i [020)] = 1) [#(=D)]" ¢(0)6(0) sinh 6 (0) sinh 6,(0), (68)

and

e = (e [6] = 1) ([e(=1¢0)]) - [e(=1)¢/(0)] cosh 6 (0) cosh 6,(0))
+ (i) = 1) [6(-1)] #(0)6(0) sinh 6 (0) sinh ,(0). (69)

A first root of (67) is £ = 0, which yields the dispersion relation R(w, + iw;) = —fk/K?.
This undamped wave was also found for uniform density stratification (section 4.2.1).
A question of interest is whether the presence of variable stratification allows also for
the damped waves found with uniform N (Egs. 52a-52b). This indeed is the case at
least in the situation where N near the bottom approaches N near the surface, i.e., if
B(—1) = B(0) = B, with B(z) still being completely arbitrary between these two levels.
Albeit particular, this vertical density distribution mimics the oceanic situation where
N near the bottom and the surface are both relatively small compared to values in the
thermocline. In this situation, ¢'(—1) = ¢/(0) = ¢’ and ¢/(—1) = ¢/(0) = ¢!, so the

eigenvalue relation (67) becomes

(#6,) (ri +72) = 0, (70)
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where
ro= 204 (ie¢” — 1) (ie¢!> — 1) (1 — cosh ¢.(0) cosh ¢,(0)), (71a)
ry = <¢f [ieg® — 1]" + 6 [ieqr? - 1]2> sinh ¢.(0) sinh ¢,(0). (71b)

Note the formal similarity with the exact relation obtained for constant N (Eq. 47).
The modified relation (70) has the root ¢ = V/B(i — e/B/2) = 0 (the situation ¢| =
VIB(i+el/B/2) = 0 allows a negative w; for 02 > 1 and is not considered below). Omitting

the possibility £ = 0 already considered, this root implies

(GTEZ' + Gz'gr) B = 2, (72&)

(frgr - ngz) B = 0, (72b)

where £, and ¢; are the real and imaginary parts of /. In contrast to the situation ¢ = 0,
this system requires the imaginary part of w to be different from zero (¢; # 0 and ¢; # 0).

It leads to the dispersion relation

Bk1—0® _ BK? o?

Rlor+iw) = @iz~ B gm o

(73)

which is identical to that found for uniform stratification (Eq. 52a) save for a constant
value for the second term on the right-hand side. In the long-wave limit, the wave is
critically damped at a rate

Ruy = -ﬁ,/ﬂ,mm. (74)
The results above obtained with B(—1) = B(0) obviously hold also for uniform strat-
ification. Note that for uniform stratification the decay rate for K — 0 in the WKB
approximation (Eq. 74) is underestimated by a factor of 2v/2 compared to the exact
result (55a). The underestimation arises from the omission in pwks(z) of contributions
from the most structured components which are the most prone to attenuation by vertical

mixing (as indicated by the dispersion relation for an unbounded medium (11a)).

5 Discussion

Our major results are summarized. It is found that the linear hydrostatic system aug-

mented with density diffusion in the horizontal or vertical direction supports the un-
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damped Rossby wave R(w, + iw;) = —Bk/K?, which is the barotropic mode of adiabatic
theory. This result is expected, since fluid parcels in a barotropic wave do not experience
any buoyancy forces and are therefore insensitive to the vortex stretching induced by
mixing (Eq. 8). On the other hand, density diffusion modifies the properties of baroclinic
waves. Horizontal diffusion does not alter the frequency of the waves and only gener-
ates damping (Eqgs. 22a—22b and Eqs. 37a—37b). The capability of horizontal diffusion to
damp baroclinic waves stems from its tendency to counteract the deformation of isopycnal
surfaces which is produced by the passage of these waves. The damping rate increases (i)
linearly with the horizontal diffusivity and (ii) nonlinearly with the horizontal wave num-
ber and mode number (Egs. 22a-22b). When the horizontal wavelength is considerably
smaller than the internal radius of deformation, the damping rate becomes insensitive to
the horizontal scale of the wave (Figure 1). This behavior is identical to the decay caused
by bottom friction on a barotropic wave in a layer of uniform density (Pedlosky, 1987).
Similar results are obtained for variable background stratification with uniform N only

near the bottom and the surface (Eqs. 37a—37b).

Vertical diffusion, on the other hand, modifies both the real and imaginary parts of the
complex frequency of Rossby waves. For increasing values of 0 = w;/w, the wave period
must increase in order for the wave to maintain both its scale and orientation in the
horizontal plane (Eq. 53; Figure 3). For a fixed o the rate of damping increases linearly
with vertical diffusivity and quadratically with the horizontal wave number (Eqgs. 52a—
52b; Figure 2b). A complete description of the wave is obtained for the long-wave limit. In
this limit the wave is critically damped at a rate which increases linearly with the square
roots of vertical diffusivity and zonal wave number (Egs. 55a-55b). Similar results are
found for variable background stratification with (i) uniform N near the bottom and the

surface; and (ii) identical N at these two levels (Eq. 73).

The remainder of this section discusses the oceanographic implications of our results. The
relevance of the discussion obviously depends on Fickian diffusion being an appropriate
model for the effects of small-scale buoyancy transport on Rossby waves and on the

accuracy of the available estimates of (k, k) in the ocean. Density diffusion can have
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at least three effects on the waves: (i) an attenuation of amplitude; (ii) a modification of
phase speed; and (iii) a change in vertical structure. The three effects are discussed in

turn below.

5.1 Amplitude Attenuation

The importance of amplitude attenuation for the wave is measured by the ratio of wave
decay rate to wave frequency (o). Consider first o in the presence of horizontal diffusion.
For uniform background stratification the ratio o is given by (from Eq. 22b)

K? /nmV?
o= Khﬁ*k* (E) : (75)

This expression also holds for variable stratification provided that Lp is based on the
depth-integral of N (Eq. 37b). Oceanic observations are used below in order to derive
plausible estimates of o. It is important to note that the horizontal diffusivity x; and the
wave numbers (K, k,) in Eq. (75) cannot be chosen independently, since x; depends on
the scale of motion it is intended to parameterize. Estimates of horizontal dispersion on
several scales are available from the North Atlantic Tracer Release Experiment (NATRE)
which took place near 26°N, 28°W (Ledwell et al., 1998). A passive tracer was released
along an isopycnal surface near 300 m depth and surveyed over a period of 30 months as
it dispersed in different directions. Ledwell et al. (1998) concluded that Fickian diffusion
may perhaps be an appropriate model for tracer dispersion at lateral scales from 300 km
to 1000 km, i.e., larger than the scales of the mesoscale eddy field. The eddy diffusivity
estimated from the tracer dispersion at these scales was of the order of 1000 m? s=!, which
is consistent with estimates for this oceanic region based on other approaches such as
deep float drifting (see references in Ledwell et al. (1998); Ollitrault and Colin de Verdiére
(2002)). For simplicity consider an estimate of o at NATRE for the first baroclinic mode
(n = 1) with zero meridional wave number (K, = k,). Expression (75) is used with a
climatologic estimate of Lp near 26°N, 28°W (Fig. 6 of Chelton et al. (1998)). Thus,
assuming rp, = 10®> m? s™' (Ledwell et al., 1998), Lp = 4.5 x 10* m (Chelton et al., 1998),

and 8, =21 x 107" m™! s7!, it comes 0 = 1.2 for k, = 5 x 107® m™! (long wave) and
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o= 2.3 for k, = 1075 m~! (short wave). It seems therefore that horizontal mixing could

cause significant attenuation over the wave period, even for the first mode.

Consider then ¢ in the presence of vertical diffusion. For uniform stratification o should

satisfy (from Eq. 52b),

(1 - 02)2 =0 (1 + 02) Ky B}f/f* <%>2 : (76)

where it has been assumed that o # 0. The factor v = k,(K?*/(8.k.))(N/ f.)? is very small
for waves with K, =~ k,, as shown for example by observations at NATRE. The vertical
(actually diapycnal) diffusivity estimated for the first 6 months of the tracer survey was
(0.12+0.02) x 10~* m? ™!, whilst for the subsequent 24 months it was (0.1740.02) x 10~*
m? s7! (Ledwell et al., 1998). The vertical tracer distribution remained very close to
Gaussian for the full 30 months, as the root mean square dispersion grew from 5 to 50
m. Here a value k, = 0.15 x 107* m? s7! is adopted. It is further assumed that (i)
N =T7x10"* s, which the buoyancy frequency observed at NATRE near 300 m during
the May 1993 survey (Fig. 3 of Ledwell et al. (1998)), and (i) K, = k, = 107> m™1
i.e., a wave with a relatively small zonal scale, which should lead to a conservative (i.e.,
upper) estimate of ©. With f, =6.4x 10° st and § =21 x 107 m~! s7}, it comes
1 =0(1077). A similar result is found if one considers instead the diapycnal diffusivities
at mid-latitudes inferred from lowered ADCP/CTD profiles, which are also of O(107°
m? s7!) on average (Kunze et al., 2006). Given the smallness of ¢, the quartic (76) can
safely be approximated by (1 —0?)? = 0, which has the obvious roots o = 41 (Figure 5).
Thus, the damping caused by vertical diffusion is nearly critical also for waves with small

horizontal scales. A similar result can be derived for variable stratification using Eq. (73).

Note that our estimates of o for both horizontal and vertical mixing are sensitive to the
assumed orientation of the wave K, /K,. In the presence of horizontal mixing, the ampli-
tude of o is relatively large for a wave whose phase advances primarily in the meridional
direction (Eq. 75). Damping by vertical mixing can also be supercritical for such a wave
(Figure 5). This behavior arises from the anisotropy, not in the influence of mixing, but in

the planetary [-effect: if phase propagation is mostly meridional, the horizontal motion
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of fluid parcels in the quasigeostrophic wave is chiefly zonal, so the parcels experience
only small changes in planetary vorticity, i.e., the wave frequency is low. Thus, for waves
with comparable horizontal scales (K), the ratio of decay rate to frequency is larger for

those waves whose phase advances primarily in the north-south direction.

5.2 Change in Phase Speed

Longitude-time sections (Hovmoller diagrams) are commonly used to characterize Rossby

waves. The discussion is thus focused on the influence of mixing on the zonal phase speed

C,
oz Op/ot
c=(Z) =- . 7
<8t )p Op/0x (77)
With the pressure field p(z,y, z,t) given by Eq. (12), the phase speed has the general
form
C= % [1+ o cot (kz + ly + S(2) — wt)], (78)

where S(z) is the phase of p(z). Thus, in the presence of damping (o # 0), the isobars in
longitude-time sections are deflected from the direction defined by w,/k, the amount of
deflection being proportional to the ratio of wave decay rate to wave frequency. Consider
first the particular form of C in the presence of horizontal mixing. In the long-wave limit

the dispersion relation (37a) becomes (from Eq. 22a):

| B2 o,
R (w, + iw;) = — Bk <n7rf> — 1By, K~ (79)
The phase speed C), can thus be written as
Cn = cp[1 + opcot (k[z — cut] + 1y + S(2))], (80)

where ¢, = —(8/R)(BY2/nr f)? is the phase (or group) speed of the nth baroclinic mode
and o, = Ej,(nwf/B2)2K?/(Bk) is the value of o for that mode. Note that ¢, is always
negative, i.e., long waves in adiabatic theory propagate their phase and energy to the
west. The term proportional to o, in Eq. (80) is the change in phase speed brought

about by horizontal mixing. Let us define # = k [z — ¢,t] + ly + S(z). It comes
oC, c2 P> <n7rf>2£2

(81)

ot sin20 "\Biz) B
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The rate of change 0C,, /0t is always positive, which shows that horizontal mixing tends

to decelerate westward propagating waves.

A similar deceleration occurs in the presence of vertical mixing. It is illustrated for a wave
with & < 0 and w, > 0 (Figure 6). The meridional coordinate y is taken as zero without
loss of generality. The pressure perturbation is assumed to be nil at z =1 and ¢ = 0, so

S = |k| + /2. The zonal phase speed is then

C:%ll—cot<|k\(1—x)—%+g>], (82)

where it has been assumed that the wave is critically damped. The region below the line
|k|(1 — z) — |w[t/+/2 = 0 represents undisturbed fluid, whereas the region above that line
represents fluid affected by the wave disturbance (Figure 6). The wave is decelerated since

2
aa—f = M\Zﬁ >0, (83)
where, here, 6 = |k|(1 — z) — |w|t/v/2 + 7/2. The rate of change (0x/0t), vanishes along
the line |k|(1 — z) — |w|t/v/2 + /4 = 0 (Figure 6). In the region below this line the
pressure increases as the wave moves to the west, whilst in the region above this line the

pressure decreases as the wave becomes attenuated.

5.3 Change in Vertical Structure

Horizontal diffusion does not modify the vertical structure of (baroclinic) Rossby waves.
Indeed, in the presence of horizontal diffusion, the vertical structure equation remains of
second order, so the eigenvalues (n?7?, with n = 1,2,...) are those of adiabatic theory.
The vertical distribution of the pressure in the wave is therefore unaltered (Egs. 19 and

31).

Vertical diffusion, on the other hand, raises the order of the vertical structure equation
and can therefore influence the vertical structure of baroclinic waves. Such influence can

be examined from the third factor in the WKB solution (62),

Cs exp (% / ,/[zB(zf)]fsdz') + Cyexp <_§ / ,/[eB(zf)]sdz') . (84)
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Two fundamentally different effects are present, which correspond to the real and imagi-

nary parts of the argument
% /1 JIEB(Pdz. (85)

The real part describes an exponentially growing and decaying pair, whereas the second
part is an oscillation. The presence of an oscillation indicates that vertical mixing may
influence the wave structure far from the horizontal boundaries. Such remote influence
justifies a posteriori using the WKB approach as a general solution method, as it pro-
vides a global approximation of p(z) (a boundary-layer approach, for example, would be
inappropriate). It is revealing to consider the long-wave limit with uniform N, in which

case

%/1 VieB@par - - (Rf:|)5/2 (B?lk‘)w <cos% _isin %) (z4+1), (86)

where |w| = |w,|v/1 + 02 and tan ¢ = 0. The length scales dp and dg, defined by

(0, 0g) =0 <sec %, csc %) , (87)
where ) 32
_2(Rw)” (S
=205 (o) 9

determine, respectively, the exponential and oscillatory influences on the vertical structure

of the wave. In dimensional form, the common factor ¢ is

2 (I [ el
=2 (SN )

This relation can be used to estimate d, for a range of values of |w,| and |k.|. The 4,

values obtained in this way can then be usefully represented in the dispersion diagram
for the long baroclinic waves of adiabatic theory (Figure 7). Assuming x, = 107> m?
s7L |f«|/N =0.1, and 8, = 107 m~! s71, it is found that the length scale d, generally
exceeds the ocean depth by several orders of magnitude (Figure 7). Thus, vertical diffusion
appears to be too small to significantly affect the vertical structure of baroclinic waves,
except for the waves with very small frequencies, i.e., for the high modes. If , is taken as

107* m? 57!, as estimated for some regions at abyssal depths (e.g., Kunze et al. (2006)),
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vertical diffusion still appears to be too weak to notably modify the vertical structure
of the gravest mode (n = 1) (note also that use of the abyssal diffusivity of 10™* m?
s ! may be questioned for studying the influence of diffusion on baroclinic modes given
their near-surface intensification). This result is consistent with numerical solutions of

the eigenvalue problem (Farneti and Killworth, 2005).

5.4 Comparison to Other Effects

The influences of buoyancy mixing on Rossby waves which are investigated in this paper
are briefly compared with other ‘secondary’ effects on Rossby waves which have been
examined in earlier work. Many of these effects were studied in the context of the ‘too
fast’ propagation of long waves (first mode), which has been postulated by Chelton and
Schlaz (1996). Killworth et al. (1997), for example, showed that a background zonal flow
with vertical shear can speed up long waves as the flow modifies the potential vorticity
gradient which is perceived by these waves (see also Dewar (1998)). It is found here that
density diffusion would rather slow down the westward propagation of long waves (Egs.

80-82).

Of particular interest to the present study is the work of Qiu et al. (1997). These authors
used linear shallow water theory to explore the role of horizontal friction (parameterized
as eddy diffusion or Newtonian damping) in the propagation of long baroclinic Rossby
waves. They found that the layer thickness anomalies generated by free waves emanating
from the eastern boundary decay westward at a scale which decreases with latitude and
wave frequency. Our study shows that buoyancy mixing could also contribute to the
dissipation of boundary-generated waves. Indeed, it is found that the damping factor
o can be of order 1 for both horizontal and vertical mixing (section 5.1), implying that
the wave amplitude would be substantially attenuated over a wave period (by e*" for
lo| = 1). Provided that mixing can be described as Fickian diffusion and that existing
estimates of (kp, k,) are sufficiently accurate, the adiabatic theory of Rossby waves would

therefore need to be re-assessed.
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6 Conclusions

Linear hydrostatic theory is used in order to study the influences of buoyancy mixing
(in the form of density diffusion) on the radiation of Rossby waves in a mid-latitude
ocean. The ocean is vertically bounded, but the wave disturbances are assumed to occur
far from lateral boundaries. Free wave solutions of the vorticity equation are sought by
imposing impermeability and insulation conditions at the bottom and at the surface. No

background flow is considered and the bottom is flat.

It is found that the vorticity equation supports the undamped wave R(w, + iw;) =
—Bk/K?, which is the barotropic mode of adiabatic theory. On the other hand, den-
sity diffusion modifies the properties of baroclinic modes. Horizontal diffusion damps
these modes but does not alter their vertical structure. The damping rate increases (i)
linearly with the horizontal diffusivity, and (ii) nonlinearly with the horizontal wave num-
ber and mode number. When the horizontal scale of the waves is much smaller than the
internal radius of deformation, the damping rate becomes insensitive to K. Vertical diffu-
sion produces both damping and a change in the vertical structure of baroclinic waves. A
complete description of the wave is obtained for the long-wave limit. In this limit the wave
is critically damped at a rate which increases linearly with the square roots of vertical
diffusivity and zonal wave number. Observational estimates of diffusitivies suggest that
horizontal and vertical mixing strongly attenuates baroclinic waves in the ocean. The

vertical structure of the gravest modes, however, would not be notably affected.
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Figure 1. Damping rate of baroclinic waves as a function of horizontal wave number for
the first three baroclinic modes. The damping rate is scaled by the ratio L% /kj;, and the
horizontal wave number is scaled by Lp, where L is the internal deformation radius and

Ky, the horizontal diffusivity.

Figure 2. Dispersion relation in the presence of vertical mixing for uniform background
stratification. Panels (a) and (b) show, respectively, the real and imaginary part of w as
a function of the zonal wave number. The meridional component of the wave vector is

taken as 1.

Figure 3. Propagation diagram for Rossby waves in the presence of vertical mixing. The
diagram is shown for different values of the ratio of wave decay rate to wave frequency
(0 =0,0.2,0.4, and 0.6). The ratio 3/(—2Rw,) is arbitrarily taken as 1 (its amplitude is

much larger in the oceanic situation).

Figure 4. Eigenfunction in the presence of vertical mixing for (a) 0 = 0 and (b) 0 = —1.
For both panels ¢, = 1/(8 - 167%) and BK?/f? = 0.001 (the curves with K = 0 would be
indistinguishable). The eigenfunction is normalized to its maximum value in the displayed
Ay interval (0-200). For reference the eigenvalues of adiabatic theory are shown (vertical

dashed lines).

Figure 5. Representation of the functions g;(c) = (1 — ¢%)? and g»(0,v) = o(1 + o2)7,
where o is the ratio of the wave decay rate to wave frequency and 1 = &, (K2/(B.k:))(N/ f+)%.
The function g, is displayed for different arbitrary values of ¢ = 0, 0.1, and 1. Wave so-

lutions are defined by the points of intersection g; = gs.

Figure 6. Field of pressure (p/p) in a critically damped Rossby wave (for £k = —1). The
zero isoline, which is defined by |k|(1 — ) — |w|t/v/2 = 0, separates the region undisturbed
by wave motion below from the region affected for the passage of the wave above. The
dotted line, which is defined by |k|(1 — z) — |w|t/v/2 + 7/4 = 0, separates the region
where the pressure increases as the wave phase moves westward from the region where

the pressure decreases owing to damping by vertical mixing.
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Figure 7. Length scale J, describing the influences of vertical diffusion on the vertical
structure of baroclinic waves (solid lines; the line labels are the exponents ¢ of 6, = 107 m).
The length scale is depicted in the frequency—zonal wave number space and is computed
assuming , = 107 m? s7', |f,|/N = 0.1, and 3, = 107" m™' s7'. The relation between
frequency and zonal wave number of adiabatic theory is also shown for the first four modes

(dashed lines).
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Figure 1: Damping rate of baroclinic waves as a function of horizontal wave number for
the first three baroclinic modes. The damping rate is scaled by the ratio L2 /k; and the
horizontal wave number is scaled by Lp, where Lp is the internal deformation radius and
Ky the horizontal diffusivity.
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Figure 2: Dispersion relation in the presence of vertical mixing for uniform background
stratification. Panels (a) and (b) show, respectively, the real and imaginary part of w as
a function of the zonal wave number. The meridional component of the wave vector is
taken as 1.
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Figure 3: Propagation diagram for Rossby waves in the presence of vertical mixing. The
diagram is shown for different values of the ratio of wave decay rate to wave frequency
(0 =0,0.2,0.4, and 0.6). The ratio 5/(—2Rw,) is arbitrarily taken as 1 (its amplitude is
much larger in the oceanic situation).
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Figure 4: Eigenfunction in the presence of vertical mixing for (a) ¢ =0 and (b) 0 = —1.

For both panels ¢, =1/(8 - 167%) and BK?/f? = 0.001 (the curves with K = 0 would be
indistinguishable). The eigenfunction is normalized to its maximum value in the displayed
Ay interval (0-200). For reference the eigenvalues of adiabatic theory are shown (vertical
dashed lines).
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Figure 5: Representation of the functions gi(0) = (1 — 0?)? and g»(0,%) = o1
0%)y, where o is the ratio of the wave decay rate to wave frequency and
ko(K2/(B.k))(IN/ f.)?. The function gs is displayed for different arbitrary values of ) =
0.1, and 1. Wave solutions are defined by the points of intersection g; = gs.
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Figure 6: Field of pressure (p/p) in a critically damped Rossby wave (for & = —1). The
zero isoline, which is defined by |k|(1—z) — |w|t/v/2 = 0, separates the region undisturbed
by wave motion below from the region affected for the passage of the wave above. The
dotted line, which is defined by |k|(1 — z) — |w[t/V2 + 7/4 = 0, separates the region
where the pressure increases as the wave phase moves westward from the region where
the pressure decreases owing to damping by vertical mixing.
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Figure 7: Length scale d, describing the influences of vertical diffusion on the vertical
structure of baroclinic waves (solid lines; the line labels are the exponents ¢ of 6, = 107 m).
The length scale is depicted in the frequency-zonal wave number space and is computed
assuming k, = 107° m? s7!, |f.|/N = 0.1, and B, = 107" m~" s7'. The relation between
frequency and zonal wave number of adiabatic theory is also shown for the first four modes
(dashed lines).



