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Abstract A tree-ring D14C record and a simple box model
of the global 14C cycle are combined using a method of
optimal estimation theory (Rauch-Tung-Striebel
smoother). The combination is used to infer information
about the time evolution of 14C production in the
atmosphere ðPÞ for the period 9400 year BC to AD

1900 year. Unlike previous attempts to infer P changes
from the tree-ring record, the errors in both the D14C
data and the model, which are assumed to be purely
random (not systematic), are formally considered. The
optimal time evolution of P is compared to independent
evidence of changes in cosmogenic nuclide production
over the Holocene from a variety of records on their
original chronology, e.g., a record of the virtual axial
dipole moment (VADM) based on a compilation of
archeomagnetic data, the record of 10Be concentration
from the GISP2 ice core (Central Greenland), and the
record of 10Be concentration from the PS1 ice core
(South Pole). The rank correlations between
P�VADM; P�10BeðGISP2Þ; and P�10BeðPS1Þ are
highly significant (p < 0.01), indicating that geomag-
netic field intensity and 10Be concentration in GISP2
and PS1 changed monotonically with 14C production.
The linear correlation coefficients between
P�VADM; P�10BeðGISP2Þ; and P�10BeðPS1Þ are
also highly significant (p<0.01) but relatively small
(�0.76, 0.48, and 0.60, respectively). Thus, an important
fraction (42–77%) of the variance in the geomagnetic
and 10Be data is not accounted for by linear regression
on the 14C productions implied by the tree-ring record.
The P variance near the 1500 yr period, which previous

authors interpreted as solar variability, represents a
small fraction of the total variance in the P time series
(<15% for the band 1200–1800 yr) and does not corre-
spond to a spectral peak. Hence, the hypothesis of a
direct solar forcing mechanism for the postulated mil-
lennial climate variability during the Holocene is not
supported.

1 Introduction

The measurements of 14C concentration on dendro-
chronologically dated wood samples (D14C, corrected for
fractionation effects) probably provide one of the most
accurate records in paleoclimatology (e.g., Stuiver et al.
1998). One important application of the tree-ring D14C
record is the estimation of the changes in atmospheric
14C production (P hereafter) over the Holocene (e.g.,
Stuiver and Braziunas 1989, 1993a, b; Stuiver et al. 1991;
Bond et al. 2001). Previous studies interpreted tree ring-
based P ‘‘oscillations’’ on the centennial scale (e.g.,
Stuiver and Braziunas 1989) and millennial scale (Bond
et al. 2001) in terms of changes in solar activity. If this
interpretation is correct, these variations may be rele-
vant to the study of both solar physics and earth
paleoclimates. In particular, they were used to support
the hypothesis that a solar forcing mechanism was
responsible for the postulated millennial climate vari-
ability during the Holocene (Bond et al. 2001). Climate
variability at this time scale is difficult to rationalize, as
the millennial frequency occurs near the middle of a
wide gap in the spectrum of external (orbital) forcing
(Munk et al. 2000). The important question is thus
whether solar forcing is responsible for the presence of
one or several peaks in the orbital gap.

In spite of their importance, almost no attention
seems to have been paid to the uncertainties in the P
values recovered from the tree-ring D14C record.
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Estimating these uncertainties is not trivial, as it requires
accounting for the errors in the tree-ring D14C data and
in the model used to infer the P variations from these
data. A method that considers these two sources of error
is necessary for a rigorous estimation of the P changes
implied by the tree-ring D14C record.

In this paper, we attempt to demonstrate the power
of a method of optimal estimation theory by using a
tree-ring D14C record with a simple box model of the
global 14C cycle to produce an estimate of the time
evolution of 14C production in the atmosphere over the
Holocene. Optimal estimation methods—known vari-
ously as ‘‘state estimation’’ (e.g., in oceanography) or
‘‘data assimilation’’ (e.g., in meteorology)—were iden-
tified as a particular class of ‘‘inverse methods’’ (e.g.,
Wunsch 1996). In the broadest terms, they are directed
at estimating in some optimal fashion the time evolution
of the state of a physical system, given noisy data and an
imperfect dynamical model of the system. In our prob-
lem, the system is the global 14C cycle, the state includes,
among other quantities, the production of 14C in the
atmosphere, and the data are the tree-ring D14C data. If
the time at which an estimate of the state is desired
coincides with the last measurement point of the data
span, the process of determining the estimate is called
filtering (a popular filtering method is the Kalman filter).
If this time is within the data span, it is called smooth-
ing. In our problem, a smoothing procedure is obviously
warranted, as we wish to estimate P at a series of dis-
crete times within the span of the tree-ring D14C record.
Albeit promising, applications of optimal estimation
methods to geochemical problems are scarce. For
example, their application to the interpretation of gas-
eous components from ice cores has been explored only
very recently (Trudinger et al. 2002a, b).

The specific methodology used in this paper is the so-
called Rauch-Tung-Striebel (RTS) smoother (Rauch
et al. 1965). In essence, the method is a form of least-
squares fit of a model to data, both suitably weighted to
reflect their relative errors. The RTS smoother is used to
extract information about the time evolution of the
production of 14C in the atmosphere for the period
9400 year BC to AD 1900 year from the tree-ring D14C
record. Unlike previous attempts to infer production
changes from the tree-ring record (e.g., Stuiver and
Braziunas 1989, 1993a, b; Stuiver et al. 1991; Bond et al.
2001), our analysis formally considers the errors both in
the 14C measurements and in the model. On the other
hand, the errors are considered to be purely random, i.e.,
not systematic. Whereas the systematic errors are obvi-
ously a major issue in any problem of data-model
combination, we believe that our analysis provides a
more rigorous, statistically-based interpretation of the
tree-ring D14C record.

The paper is organized as follows. Section 2 describes
the RTS method, the tree-ring D14C record, and the
model of the global 14C cycle. The results of the combi-
nation, including diagnostics of the analysis, our best
estimate of the time evolution of 14C production, and

sensitivity tests, are reported in Sect. 3. We compare in
Sect. 4 our best production estimates with independent
constraints on cosmogenic nuclide production over the
Holocene from a variety of archives. The comparisons
give insight into the internal consistency between differ-
ent indicators of cosmogenic nuclide production during a
period of relative climate stability. A spectral analysis of
our P estimates is conducted, and the implications of our
results for the hypothesis of a solar forcing mechanism
on Holocene climate variability (e.g., Bond et al. 2001)
are discussed. Conclusions follow in Sect. 5.

2 Method

2.1 Rauch-Tung-Striebel smoother

In this section, we provide a heuristic description of the
method of optimal estimation theory, which is used to
combine the tree-ring D14C record and the model of the
global 14C cycle (details about the method are reported
in Appendix 1). The theory uses vector-matrix notation.
The following conventions are adopted: nonbolded let-
ters represent scalars, lowercase boldface letters denote
vectors, and uppercase boldface letters are matrices. In
the theory, the state variables of the physical system
under consideration are the n elements of a state vector x
and the measurements on the system are the m elements
of a measurement vector z. A subscript such as i or j
added to both vectors, e.g., xi and zj, means the corre-
sponding vectors at some discrete time ti or tj.

The theory of optimal estimation introduces two basic
equations: the ‘‘observation equation’’ and the ‘‘transi-
tion equation’’. The observation equation expresses the
m · 1 measurement vector zi as a function of the n · 1
state vector xi and a m · 1 measurement error vector vi:

zi ¼ Hixi þ vi; ð1Þ

where the m · nmatrixHi is the observation matrix. The
equation states that any measurement performed on the
system can be expressed as the sum of (i) a linear com-
bination of the state variables of the system and (ii) a
noise. The elements of the matrix Hi are the coefficients
appearing in the combinations. They may vary with
time, as implied by the addition of subscript i. In our
problem, zi is the collection of observations (tree-ring
D14C data) at time ti relative to the global 14C cycle, xi is
the set of variables that completely describe the cycle in
terms of the model, and vi includes the errors in the tree-
ring D14C data. The transition equation expresses the
state vector x at time ti+1 as a function of the state
vector x and a p · 1 forcing vector w, both at some
earlier time ti:

xiþ1 ¼ Uixi þ Ciwi; ð2Þ

where Ui is the n · n transition matrix for the state and
Ci is the n · p transition matrix for the forcing. Again,
both matrices may contain elements that vary with time,
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as implied by the addition of subscript i. In our problem,
Eq. 2 is the compact form of a model of the global 14C
cycle, where Uixi represents, e.g., the exchanges of 14C
between different geochemical reservoirs and Ciwi rep-
resents 14C inputs to the reservoirs that are independent
of the state xi.

The problem is how to combine the information
provided by the measurements (as embodied by Eq. 1)
and the a priori knowledge about the dynamical behavior
of the system (Eq. 2), to estimate the state of the system
xi such that some performance measure is maximized.
The RTS methodology, which is used here to solve this
problem, has two essential components: (i) a filter (the
Kalman filter), which provides a first estimate of the state
xi using the measurements up to and including those at
time ti; and (ii) a smoother (the RTS smoother), which
improves the filter estimates of xi by considering all the
available measurements, including those posterior to ti.
Importantly, the solution provides an estimate of the
uncertainties in the state variables, as well as of the
state variables themselves. Several algorithms can be
employed for the RTS smoother, the specific algorithm
used in this study being detailed in Appendix 1.

2.2 Tree-ring data

In this section, we cast a reconstruction of atmospheric
14C concentration into the canonical form (Eq. 1). We
consider the decadal averages of D14C calculated by
Stuiver et al. (1998) for the period between 9400 year BC

(11350 year BP) and AD 1900 year (50 year BP). These
averages are entirely based on 14C measurements on
dendrodated wood samples. They exhibit well-known
features, such as a long-term decrease and many shorter-
term variations (Fig. 1a). The errors in the decadal D14C
(Stuiver et al. 1998) never exceed 7& for the afore-
mentioned period (Fig. 1b). The D14C data must be
converted into data of atmospheric 14C concentration,
which is a state variable of the model (Sect. 2.3). As the
model neglects fractionation effects in the global 14C
cycle, the relationship between atmospheric D14C
(D14Ca,i, in&) and atmospheric 14C concentration (xa,i,
in mol m�3) in the model is simply:

D14Ca;i ¼
xa;i=x�a

r�
� 1

� �
103; ð3Þ

where xa
*=1.184 · 10�2 mol m�3 is a reference con-

centration of CO2 in the atmosphere and r*=1.176 ·
10�12 is a reference 14C/12C ratio of atmospheric CO2.
The following quantities are therefore defined in the
observation Eq. 1:

zi ¼ zi ¼ r�x�a 10�3D14Ctr;i þ 1
� �

; ð4Þ

Hi ¼ 1; 0; 0; 0; 0; 0½ �; ð5Þ

where D14Ctr,i is the tree-ring datum for time ti (Fig. 1a)
and r*xa

*=1.392 · 10�14 mol m�3 is a reference

concentration of 14C in the atmosphere. If time ti occurs
within a decade for which no datum is available, the
observation matrix vanishes, i.e., Hi=0.

The possibility of a sequential correlation in the
measurement errors vi must be assessed, as the presence
of such a correlation would violate an assumption
(Eq. 11) which is used to derive the Kalman filter and
RTS smoother (Appendix 1). The reported errors in the
tree-ring D14C data (Fig. 1b) show features that actually
suggest the presence of sequential correlation. These
features include a long-term trend in the error mean (the
D14C errors for the early Holocene are on average larger
than the errors for the late Holocene) and many time
intervals during which the error is virtually constant
(reflecting most probably the rounding of the errors to
the most significant figures). Bryson and Ho (1975)
discussed two different approaches to account, in the
RTS smoother, for the presence of sequential correlation
in the measurement errors. Both approaches rely on the
probability model viþ1 ¼ vi þWiui; where Wi controls
the variance of the errors and ui has zero mean and is
uncorrelated in time (i.e., E(ui)=0 and E(uiuj

T)=0 for
i „ j, where E(Æ) is the mean and T denotes the trans-
pose). However, this model would not be a generally
valid description of the errors in the tree-ring D14C data,
as it cannot accomodate the large number of time
intervals during which the error is constant (Fig. 1b).
Indeed, this would require (in addition to Wi ¼ 1;

(a)

(b)

Fig. 1 Record of D14C from 14C measurements in wood samples
dated dendrochronologically (a) and D14C errors (b). The values in
panels (a–b) are decadal averages (data from Stuiver et al. 1998)
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perhaps a sensible choice) that the stochastic component
of the error, ui, is constant during the intervals, i.e., E(ui
uj
T) „ 0 for i „ j, which would violate the assumption

in both approaches. Here we adopt the simplest
approach, which is to assume that the data errors are
sequentially uncorrelated, admitting that this is not an
accurate description of some of the features in the error
record. We will show that the diagnostics of the analysis
do not question the validity of the results obtained with
this assumption (Sect. 3.1).

2.3 Geochemical model

In this section, we formulate a box model of the
global 14C cycle in the canonical form (Eq. 2), which

is required for the application of the RTS smoother.
There is obviously arbitrariness in the choice of the
model, and the results of the analysis should be sen-
sitive to this choice to a certain extent. On the other
hand, we will explore the sensitivity of these results to
the (supposedly purely random) errors in the model
(Sect. 3.3). It is hoped that this will give insight into
their robustness. We consider a model with five res-
ervoirs: the atmosphere (labeled ‘‘a’’), the land bio-
sphere (‘‘b’’), the high-latitude surface ocean (‘‘h’’), the
low-latitude surface ocean (‘‘l’’), and the deep ocean
(‘‘d’’; Fig. 2). Radiocarbon is produced in the atmo-
sphere, exchanged with the land biosphere to represent
the photosynthetic uptake and respiratory release of
14CO2, and exchanged with the surface oceans to
represent the air-sea fluxes of 14CO2. In the ocean,
radiocarbon is transported by a meridional overturn-
ing circulation (solid arrows in Fig. 2) and a bidirec-
tional mixing between the high-latitude surface ocean
and the deep ocean (dashed arrow in Fig. 2). Several
studies used a similar, three-box representation of the
world oceans to simulate the carbon cycle on the time
scale of several millennia (e.g., Sarmiento and Tog-
gweiler 1984; Siegenthaler and Wenk 1984; Toggweiler
1999; Legrand and Alverson 2001). For simplicity, the
bidirectional mixing between the deep and low latitude
surface oceans and between the high and low latitude
surface oceans is omitted, as in previous studies (e.g.,
Sarmiento and Toggweiler 1984; Toggweiler 1999).
Nevertheless, the impact of these terms on our results
will be tested (Sect. 3.3).

Now, consider the model formulation. The state
variables of the model are the concentration of 14C in
each reservoir (in units of mol m�3). The state vector is
thus xT� ¼ xa; xb; xd ; xh; xl½ � (a dot subscript is added to
distinguish x� from the vector x that is of higher
dimension and effectively used in Eqs. 1, 2; see below
and Appendix 2). The time evolution of each state var-
iable is governed by an ordinary differential equation.
These equations can be expressed with the compact
notation:

dx�
dt
¼ F�x� þG�w�; ð6Þ

where F� is the transition matrix for the state x� and G� is
the transition matrix for the forcing w�: The matrix F� is:
The definition and value of each quantity in this matrix

is reported in Table 1. The transition matrix G� is a 5 · 1
vector as w� includes only one element, i.e., the pro-
duction of 14C in the atmosphere ðPÞ: Thus
GT
� ¼ ½1; 0; 0; 0; 0�and w� ¼ w� ¼ P:
Insight into the dynamical model (6), its response to

P changes in particular, is obtained from the eigen-
values of F�; which we note as kj, where j=1,2; . . . ;5
(e.g., Luenberger 1979). For a constant F� the 14C
concentration in each reservoir can be expressed as a
linear combination of five terms, where the jth term
includes the pure exponential exp(kjt) (Lasaga 1980).
The intrinsic time scales of model (6) amount to 2.9,
4.5, 12.2, 134.1, and 8267.0 yr (Table 2). The rate of
attainment of steady state for the geochemical cycle as
a whole is given by the negative eigenvalue, k1, with the
smallest absolute value, as this is the last term to decay
in the combinations. For model (6) the intrinsic time
scale |k1|

�1, interpreted as the ‘‘collective geochemical
cycle response time’’ (Lasaga 1980), is equal, within the
uncertainty of our numerical calculations, to the mean
decay period of 14C, i.e., |k1|=k, where k is the decay
constant of 14C (Table 1).

The ordinary differential equations (6) are approxi-
mated by finite difference equations using the first order
Euler scheme. The difference equations are denoted by
the compact form:

x�iþ1 ¼ U�ix�i þ C�iw�i; ð7Þ

where U�i is the transition matrix for x�i and C�i is the
transition matrix for w�i: We assume that all quantities
in U�i are constant in time except the piston velocity gi

� Agf
Va
þ 1

sa
þ k

� �
1
sa

0 aAg
Va

ð1�aÞAg
Va

1
sb

� 1
sb
þ k

� �
0 0 0

0 0 � JþJhd
Vd
þ k

� �
JþJhd

Vd
0

aAgf
Vh

0 Jhd
Vh

� JþJhdþaAg
Vh

þ k
� �

J
Vh

ð1�aÞAgf
Vl

0 J
Vl

0 � Jþð1�aÞAg
Vl
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� �

2
6666666664
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for the air-sea gas exchange. The consideration of a
variable gi allows us to represent in the model the effects
on atmospheric D14C of the changes in atmospheric CO2

concentration (xca below) during the Holocene. The fol-
lowing relation is used (Stocker and Wright 1996):

gi ¼ g�
xCa;i
xCa;0

; ð8Þ

where g* is a reference velocity (Table 1), xca;i is the
concentration at time ti, and xca;0 is the concentration at
the initial time of the analysis (9400 year BC). To con-
strain the changes in atmospheric CO2 concentration we
use the CO2 record from the Dome C ice core (Fig. 3;
Flückiger 2002). In order to obtain a CO2 value for each
discrete time ti of the analysis, the raw CO2 data for
Dome C are interpolated onto a regular temporal grid

LAND BIOSPHEREATMOSPHERE

LOW-LATITUDE
OCEAN

DEEP OCEAN

HIGH-LATITUDE
OCEAN

Fig. 2 Schematic diagram of
the five-reservoir model of the
global 14C cycle used in this
study. The staggered arrow
represents the production of
14C in the atmosphere. The
dashed arrows denote the
photosynthetic uptake by, and
the respiratory release from the
land biosphere, the air-sea gas
exchanges, and the bidirectional
mixing between oceanic
reservoirs. The solid arrows
depict a meridional overturning
circulation

Table 1 Parameters of the global 14C cycle model

re Radius of earth 6,371 km
ha Scale height of atmosphere 8,320 m Stocker and Wright (1996)
hl Depth of low-latitude surface ocean 100 m Toggweiler and Sarmiento (1985)
hh Depth of high-latitude surface ocean 250 m Toggweiler and Sarmiento (1985)
V Volume of ocean 1.292·1018 m3 Levitus (1982)
S Area of ocean 3.49·1014 m2 Sverdrup et al. (1942)
a Fractional area of high-latitude surface ocean 0.15 Toggweiler and Sarmiento (1985)
Va Volume of atmosphere 4.244·1018 m3 4pre

2ha
Vl Volume of low-latitude surface ocean 2.966·1016 m3 (1�a)Shl
Vh Volume of high latitude surface ocean 1.309·1016 m3 aShh
Vd Volume of deep ocean 1.249·1018 m3 V�Vl�Vh

DIC* Reference content of dissolved inorganic C in ocean 2.250 mol m�3

xa
* Reference content of CO2 in atmosphere 1.184·10�2 mol m�3

f Factor to convert xa in units of oceanic content 190 DIC*/xa
*

Ia C inventory in reference atmosphere 730 PgC IPCC (2001)
Ib C inventory in reference land biosphere 2,000 PgC IPCC (2001)
F C flux between atmosphere and land biosphere 120 PgC yr�1 IPCC (2001)
sa Residence time of C in atmosphere w.r.t. F 6.08 yr Ia/F
sb Residence time of C in land biosphere w.r.t. F 16.7 yr Ib/F
J Meridional overturning circulation 20 Sv Toggweiler and Sarmiento (1985)
Jhd Mixing between high-latitude surface ocean and deep ocean 60 Sv Toggweiler and Sarmiento (1985)
Jdl Mixing between deep and low-latitude surface oceans 1 Sv Toggweiler and Sarmiento (1985)
Jhl Mixing between high and low-latitude surface oceans 10 Sv Toggweiler and Sarmiento (1985)
g* Reference piston velocity for air-sea gas exchange 7.13 m yr�1 Stocker and Wright (1996)
r* Reference 14C/12C ratio of atmospheric CO2 1.176·10�12
k Decay constant of 14C 8,267�1 yr �1

Table 2 Eigenvalues of FÆ and instrinsic time scales of the contin-
uous system dx:=dt ¼ F:x:þG:w

j Eigenvalue kj (yr
�1) Intrinsic time scale |kj|

�1 (yr)

1 �0.000121 8267.0
2 �0.007458 134.1
3 �0.081801 12.2
4 �0.222457 4.5
5 �0.340450 2.9
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using a cubic smoothing spline with a smoothing
parameter equal to 10 (Fig. 3). Note that the choice of
the CO2 record does not affect our major results, as the
effects of changing atmospheric CO2 on the inferred 14C
production variations are actually very small (Sect. 3.3).

As for the measurement errors vi, we must assess
whether the forcing w�i is correlated in time. Indeed, the
presence of a sequential correlation in the forcing would
violate an assumption (Eq. 12) which is used to derive
the Kalman filter and RTS smoother (Appendix 1).
Time correlation in the forcing w�i ¼ Pi is actually
expected on geophysical grounds. A substantial fraction
of the variability in the production of cosmogenic
nuclides presumably stems from the variability in the
geomagnetic field and solar activity. Although both
phenomena may conceivably contain a random com-
ponent, they vary relatively slowly in time and certainly
are not white sequences in the present application. That
is, if we were to use a relatively small time step in (7) (we
use Dt = 1 year), we would find that the resulting
forcing w�i would be strongly correlated in time. The
presence of colored system forcing is not a fundamental
problem, however, as different approaches are known
for dealing with it. The specific approach used in this
study is detailed in Appendix 2.

3 Results

3.1 Diagnostics

The combination of the tree-ring D14C data with the
global 14C cycle model requires the specification of dif-
ferent quantities (Appendix 1): (1) the covariance matrix
for the measurement errors Ri, (2) an estimate of the
initial state x̂0; (3) the covariance matrix for the errors in
this state P̂0; and (4) the covariance matrix for the
model errors Q. The determination of each of
these quantities is detailed in Appendix 3. Consider a

particular solution to the combination problem obtained
with Va=Dt

ffiffiffiffiffiffi
qP
p

= 3 mol yr–1, where Va is the volume of
the model atmosphere (Table 1) and qP ; an element of
Q, governs the amount by which P can change from one
discrete time to the next in the model (Appendix 2). A
visual comparison between the tree-ring D14C data, the
Kalman filter estimates of atmospheric D14C, and the
RTS smoother estimates of atmospheric D14C during
three portions of the Holocene, shows how the methods
of optimal estimation operate (Fig. 4a–c). In particular,
it reveals how the filter and the smoother negotiate
different features in the tree-ring record, such as high
frequency variability (e.g., between 7900–8000 year BC;
Fig. 4a), missing data (at �7800 year BC; Fig. 4a), and
varying data error (Fig. 4a–c). Although a visual com-
parison is instructive, it does not provide an objective
assessment of the quality of the analysis. To obtain such
an assessment, we consult two particular diagnostics of
the analysis. The first diagnostic is based on the vector
difference between the measurement zi and the estimate

(a)

(b)

(c)

Fig. 4 Three portions (a–c) of the tree-ring D14C record (dots), of
the time series of the Kalman filter estimate of atmospheric D14C
(dashed line), and of the time series of the RTS smoother estimate
of atmospheric D14C (solid line). The errors in the tree-ring D14C
data (vertical lines) are also shown. The optimal estimates were
obtained with Va=Dt

ffiffiffiffiffiffi
qP
p

= 3 mol yr–1. Panel (c) corresponds
chronologically to the Maunder minimum of solar activity

Fig. 3 Records of CO2 concentration from the Dome C ice core
(data from Flückiger 2002). The dots are the mean values on several
samples and the vertical bars are their standard errors. The solid
curve is the cubic smoothing spline calculated with a smoothing
parameter equal to 10
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of the state before measurement �xi (Appendix 1),
mi ¼ zi �Hi�xi; referred to as the ‘‘innovation’’. Mehra
(1970) showed that for an optimal filter the innovation
sequence mi is a normal (gaussian) white sequence under
some conditions. One of the conditions is that both
the system and the filter have reached steady-state.
Although strictly steady state cannot occur for our
problem (e.g., Ui and Ri are not constant in time), it is
instructive to consult the (probability) density function
of the innovation mi normalized to the square root of its
variance Hi �PiH

T
i þ Ri ð�Pi being the covariance matrix

for the errors in xi; Appendix 1Þ: In our case, the
normalized innovation is the scalar mi

* defined as

m�i ¼
zi � �xa;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pa;i þ ri
p ; ð9Þ

where �pa;i ¼ Eðxa;i � �xa;iÞ2 is the element in the first row
and first column of �Pi; and ri is the data error squared
(Appendix 3). The second diagnostic is based on the
vector difference between the measurement zi and the
RTS smoother estimate of the state ~xi (Appendix 1),
li ¼ zi �Hi~xi; which we call the smoother residual. We
will consult the density function of the smoother residual
li normalized to the square root of the variance of the
data errors Ri. In our case, the normalized smoother
residual is the scalar l�i defined as

l�i ¼
zi � ~xa;iffiffiffiffi

ri
p : ð10Þ

To illustrate the benefits of mi
*and l�i as diagnostics, we

consider their density functions for three different
analyses with Va=Dt

ffiffiffiffiffiffi
qP
p

= 1, 3, and 6 mol yr�1 (Fig. 5a–
c). The analysis with Va=Dt

ffiffiffiffiffiffi
qP
p

= 1 mol yr–1 permits
only a relatively small variation of 14C production from
one discrete time to the next in the model, which implies
a relatively small capability of the model to fit the tree-
ring D14C data. Accordingly, the distributions of mi

*

and l�i are too flat compared to the normal distribution
(Fig. 5a). An unreasonable fraction of the smoother
estimates ~xa;i are removed by more than 2

ffiffiffiffi
ri
p ¼ 2ri from

the tree-ring data. The analysis with Va=Dt
ffiffiffiffiffiffi
qP
p

=
6 mol yr–1 permits much higher variation of 14C pro-
duction and capability to fit the data. Here the distri-
butions of mi

* and l�i are too peaked compared to the
normal (Fig. 5c). That is, the fit of ~xa;i to the data is not
warranted given the errors in these data. The analysis
with Va=Dt

ffiffiffiffiffiffi
qP
p

= 3 mol yr–1 results in distributions of
mi
* and l�i that are much more consistent with the nor-

mal distribution (Fig. 5b). Although additional analyses
could be conducted and a more detailed examination of
diagnostics is possible (e.g., the best adjustments to the
normal distribution could be sought, formal tests of

(a)

(b)

(c)

Fig. 5 Diagnostics of the
Kalman filter and RTS
smoother. The left panels show
(probability) density functions
of the innovations normalized
to their standard deviations.
The right panels show density
functions of the smoother
residuals normalized to the
observation errors
(uncertainties in the tree-ring
D14C). The density functions
correspond to the case where
Va=Dt

ffiffiffiffiffiffi
qP
p

= 1 mol yr–1 (a),
3 mol yr�1 (b), and 6 mol yr�1

(c). The dashed curve in each
panel represents the
standardized normal density
function
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normality and randomness could be performed, etc.), we
consider in the sequel the analysis with Va=Dt

ffiffiffiffiffiffi
qP
p

=
3 mol yr–1 as providing our best estimate of the time
evolution of 14C production over the Holocene. This
estimate is described in some detail in Sect. 3.2 and its
robustness is assessed in Sect. 3.3.

3.2 Optimal estimate of 14C production changes

Our best estimate of the time evolution of P has a
rich structure, characterized by apparent changes in
mean level and some high frequency variability, which
have a comparable order of magnitude of Oð102Þ
mol yr�1 (Fig. 6a). Whereas the mean level shows
apparent changes, the production variations do not
exhibit a conspicuous long-term decline such as in the
concentration (D14C) record from which these varia-
tions are inferred (Fig. 1a). This suggests that the
decline in the tree-ring D14C data reflects a slow
adjustment of the concentration to production chan-
ges, a possibility which could have been anticipated
from the long collective response time of the global
14C cycle (Sect. 2.3). Our best estimate of the time
evolution of P seems to show similarities with previ-
ous estimates also based on the tree-ring record but
obtained from procedures that are not statistically

grounded (e.g., Fig. 19 of Stuiver et al. 1991; Fig. 7 of
Stuiver and Braziunas 1993b).

In contrast to previous studies, our analysis provides
an estimate of the error in the 14C production rates
recovered from the tree-ring record (Fig. 6b). Overall,
the relative error never exceeds 8% and is generally
much lower. The changes in mean level and the high
frequency variability in P mentioned above are thus
significant features, a statement that must be tempered
by the fact that our analysis does not consider systematic
errors. The time evolution of the P error can be ex-
plained as follows (Fig. 6b). The rapid error increase at
the very beginning of the time series indicates that our a
priori estimate of the errors in the initial state ( P̂0;
Appendix 3) was too optimistic, which is rapidly
accounted for in the analysis. The P error exhibits a
subsequent decrease, which, albeit relatively slow, is
faster than the collective response time = 8267 yr. The
error decrease is due to the increasing availability of
D14C data to estimate 14C production. The small errors
<5 mol yr�1 at the end of the period reflects the small
uncertainties <1& of the tree-ring D14C data for that
time (Fig. 1b). Finally, the rapid error increase at the
end of the period is due to the fact that the production
estimate is not constrained by D14C values posterior to
AD 1900 year, i.e., the filter and smoother estimates of
P are similar for the last measurement point (Eq. 19;
Appendix 1).

3.3 Sensitivity tests

In this section, we assess the robustness of our best
estimate of the time evolution of P described in the
previous section. Different analyses are conducted, each
with a different value of a particular quantity intro-
duced in the estimation process (Appendix 3). The
resulting estimates of P are compared to our best
estimates of P on the basis of the cross-correlation
coefficient at zero lag and the mean of the absolute
differences between the two P estimates (Table 3).
Consider first the sensitivity of our results to the
covariance of the model errors Q. The sensitivity to the
variances qk ¼ Eðwk � �wkÞ2; where k 2 {a, b, d, h, l}, is
tested by introducing the fraction �, where qk ¼ ðex̂k;0Þ2;
� being taken the same for the stochastic component for
each state variable (for our best estimates of P we used
�=0; Appendix 3). The above formulation implies that
the error in the model equations could lead, in one time
step (1 yr), to a concentration change equal to �e times
the initial concentration in the reservoir. Were the error
always be systematic and the exchanges between
the reservoirs to vanish, it would produce in each
reservoir a hypothetical cumulative change over the
investigation period equal to �11,300e times the initial
concentration. Assuming �=10�4 (hypothetical cumu-
lative change �100% the initial concentration) leads to
a cross-correlation coefficient = 1.00 and a mean
difference of only 2 mol yr�1. Using �=10�3 results in

(a)

(b)

Fig. 6 a Optimal estimate of the time evolution of 14C production
in the atmosphere. b Error in this estimate
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a cross-correlation coefficient of 0.84 and a mean
difference of 24 mol yr�1. With �=10�3, however, the
density function of the normalized innovations and
normalized smoother residuals is much too peaked
compared to the normal distribution (not shown).
Thus, the P estimates inferred from the tree-ring record
appear relatively insensitive to the diagonal elements of
Q for reasonable choices of �. Consider then the sen-
sitivity to the covariance of the errors in the initial state
P̂0. The sensitivity to the error variances p̂k;0; where
k 2 fb; d; h; l;Pg; is tested by introducing the fraction h,
where p̂k;0 ¼ p̂a;0ðhx̂k;0=x̂a;0Þ2 (for our best estimates of P
we used h=1). Assuming h=10 leads to a cross-cor-
relation = 1.00 and a mean difference = 2 mol yr�1.
All the other analyses, which are based on a different
value of a model parameter, result in a cross-correla-
tion coefficient that is similarly very high, whereas the
mean difference varies between the analyses (Table 3).
For example, consideration of the bidirectional mixing
between the deep and low-latitude surface oceans (Jdl)
and between the high and low-latitude surface oceans
(Jhl) has a negligible influence. Using a 3-box ocean
model similar to ours, Toggweiler and Sarmiento (1985)
adopted Jdl = 1 Sv (1 Sv = 106 m3 s�1) and Jhl =
10 Sv to fit chemical observations for the preindustrial
ocean and atmosphere. Assuming Jdl = 1 Sv (Jhl =
10 Sv) leads to a cross-correlation of 1.00 (1.00) and a
mean difference of 1 (5) mol yr�1. In summary, the
changes in our best P estimates appear robust.

4 Discussion

4.1 Comparison with independent evidence

In this section, we compare our best estimate of the time
evolution of P with independent evidence of changes in
the production of cosmogenic nuclides in the atmo-
sphere between 9400 year BC and AD 1900 year. First, we
consider a relatively recent compilation of magnetic
measurements on archeological samples (Yang et al.
2000). The archeointensity data set (3243 values) is
based on samples from the European region (2203) and
the rest of the world (1040). It is almost three times
larger than the one of McElhinny and Senanayake
(1982) and does not show ‘‘major differences’’ with re-
spect to this earlier compilation (Yang et al. 2000). The
data set suggests long-term changes in the VADM
(Fig. 7b) that visually resemble the changes in P
(Fig. 7a). For a more objective comparison, we average
the P values in each time interval for which an estimate
of VADM is available (Yang et al. 2000), and plot the
average P versus these estimates (Fig. 8a). Although
models suggest a power-law dependence of P on the
intensity of the geomagnetic field (for a review see Frank
2000), the data do not support or refute a particular
dependence given their relatively small number and high
dispersion (Fig. 8a). For example, the pattern in the
linear regression residuals does not seem inconsistent
with a linear relationship between P and VADM
(Fig. 8b; note that no attempt is made in the regression
analysis to consider the errors in both variables). The
linear correlation coefficient between both variables
amounts to �0.76 with a significance level p<0.01
(n=14). Thus, approximately 0.762 = 58% of the var-
iance of P is accounted for by linear regression on
VADM data. A (negative) linear relationship between
both variables would be highly significant assuming that
their underlying joint distribution is binormal (Brownlee
1965). We consider the rank correlation coefficient
Kendall tau as another measure of the intensity of the
relation between the two random variables (Kendall and
Gibbons (1990); p 41, Eq. 3.3). This coefficient is based
on the ranking (not directly on the values) of the vari-
ables and measures the intensity of a monotonic rela-
tionship between them. Using this other measure of
correlation is motivated by the fact that testing the sig-
nificance of rank correlation requires weaker assump-
tions about the distribution of the variables than linear
correlation (e.g., binormality is not required). The rank
correlation coefficient amounts to �0.67 with a p value
<0.01 (using Table 1 of Appendix in Kendall and
Gibbons (1990)). That is, P and VADM show a negative
monotonic relation, which also is highly significant.

Second, we compare our best estimates of 14C
production with a recent record of relative paleointen-
sity (RPI) obtained from magnetic measurements on
sediment core MD99-2220 raised from the St. Lawrence
Estuary (St. Onge et al. 2003). Owing to the high

Table 3 Sensitivity of the optimal estimates of 14C production

Analysis Cross-correlationa Mean differenceb

(mol yr�1)

� 10�4 1.00 2
� 10�3 0.84 24
h 10 1.00 2
ha 5,550 m 0.99 10
ha 11090 m 1.00 10
hl 67 m 1.00 2
hl 133 m 1.00 1
hh 167 m 1.00 0
hh 333 m 1.00 0
a 0.10 1.00 5
a 0.20 1.00 4
gi 7.13 m yr�1 1.00 2
g* 4 m yr�1 1.00 14
gi 10 m yr�1 1.00 7
J 10 Sv 0.99 16
J 30 Sv 1.00 9
Jhd 3 Sv 0.99 15
Jhd 300 Sv 1.00 5
Jdl 1 Sv 1.00 1
Jhl 10 Sv 1.00 5
sa 3 yr 0.98 21
sa 9 yr 1.00 7
sb 10 yr 0.99 9
sb 24 yr 1.00 9

a Cross-correlation coefficient at zero lag between the time evolu-
tion of P in the particular analysis and the time evolution of P in
the reference analysis.b Mean of the absolute differences between P
in the particular analysis and P in the reference analysis.
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accumulation rates, these data have a much higher
temporal resolution than the archeomagnetic data
(Fig. 7). The scatter plot of our P estimates versus RPI
data for MD99-2220 suggests a nonlinear pattern, with
relatively high P values at low and high paleointensities
(Fig. 9a). The linear regression residuals suggest a
systematic, u-shaped pattern (Fig. 9b). Thus, a linear
model does not appear not to be a valid description of
the relation between our P estimates and the paleoin-
tensities in MD99-2220. The rank correlation coefficient
between both variables amounts to �0.33 (n=1207;
p<0.01). Although the Kendall tau is statistically more
robust than the linear correlation coefficient, the pattern
in the scatter plot suggests that the rank correlation
statistics should be interpreted with caution as well.

Third, we compare our best estimates of P with 10Be
concentration data from the GISP2 ice core, Central
Greenland (Finkel and Nishiizumi 1997). For the

comparison, we follow Finkel and Nishiizumi (1997) by
using the GISP2 chronology of Meese et al. (1994) to
assign absolute ages to the depth intervals for which 10Be
concentration has been measured (Fig. 10b). Our P
estimates are averaged in these intervals for a consistent
comparison, and the scatter plot is produced (Fig. 11a).
Previous studies assumed that 10Be concentration in
Greenland ice of Holocene age is directly proportional
to the global production rate of 10Be as to that of 14C
(e.g., Beer et al. 1988; Yiou et al. 1997). The linear
regression residuals do not show a clear pattern that
would contradict a linear relation between P and 10Be
concentration in GISP2 (Fig. 11b). The linear correla-
tion coefficient between both variables amounts to 0.48

(a)

(b)

(c)

Fig. 7 a Optimal estimate of the time evolution of 14C production
in the atmosphere. b Record of the virtual axial dipole moment
based on a compilation of magnetic measurements on archeological
samples. The horizontal bars denote the time intervals for which an
average value of VADM has been estimated and the vertical bars
denote the 95% confidence intervals for the averages (data from
Yang et al. 2000). c Record of relative paleointensity based on
magnetic measurements on sediment core MD99-2220 raised from
St. Lawrence Estuary (eastern Canada). The vertical bars are one
standard deviations about the mean (data from St. Onge et al.
2003)

(a)

(b)

Fig. 8 a Scatter plot of the optimal estimates of 14C production Pð Þ
versus VADM estimates from archeomagnetic data. The P values
are the averages in the time intervals for which an estimate of
VADM is available. The errors in 14C production estimates
(vertical bars) are the errors at the middle of these intervals. The
errors in VADM (horizontal bars) are the 95% confidence intervals.
The dashed line is the linear regression line. b Linear regression
residuals (difference between P and its value on the regression line)
versus VADM estimates. The dashed line is the zero line (VADM
data from Yang et al. 2000)
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(n=183; p<0.01). Thus, approximately 23% of the
variance of P is ‘‘explained’’ by linear regression on
GISP2 10Be data, a linear relationship between both
variables being highly significant assuming binormality.
The rank correlation coefficient between P and GISP2
10Be data amounts to 0.29 (p<0.01), i.e., the two vari-
ables show a positive monotonic relationship which is
also very significant.

Finally, we compare our best estimates of P with 10Be
concentration data from the PS1 ice core, South Pole
(Raisbeck et al. 1990). These data are available only for
the recent time interval from AD �750 year onwards, but
they occur at a much higher temporal resolution than the
GISP2 10Be data (Fig. 12). Like 10Be concentration in
Greenland ice cores, 10Be concentration in PS1 has been
assumed to be directly proportional to the global rate of
10Be and 14C production (Bard et al. 1997). The linear
regression residuals do not display a clear pattern that

would question a linear relation between P and 10Be
concentration in PS1 (Fig. 13b). The linear correlation
coefficient between both variables is 0.60 (n=133;
p<0.01), i.e., about 36%of the variance inP is accounted
for by linear regression on PS1 10Be data. Again, a linear
relationship would be highly significant assuming binor-
mality. The rank correlation coefficient between P and
10Be concentration in PS1 is 0.42 (p<0.01), i.e., positive
monotonicity is highly significant as well.

In summary, our optimal estimates of atmospheric
14C production inferred from the tree-ring D14C record
correlate strongly with archeomagnetic data and with
10Be concentration data from polar ice cores of both the
northern and southern hemisphere (all p values <0.01).
We find, however, that an important fraction of the
variance in the paleointensity and 10Be records is not
related to 14C production changes as implied by the tree-
ring data (42–77% according to the linear regressions).
These relatively high fractions of unexplained variance
could be due to different causes. For example, it is
possible that stronger correlations could be obtained by
altering the original chronology of the paleointensity
and 10Be records. This exercise is not attempted here.
Also, a major source of variability in 10Be concentration
records from ice cores is changes in the (snow)
accumulation rate (e.g., Yiou et al. 1997), which is not
expected to covary with 10Be production in the atmo-
sphere. A more consistent comparison between the 10Be
data and our P estimates should therefore consider the
effects of accumulation changes on 10Be concentration.

(a)

(b)

Fig. 9 a Scatter plot of the optimal estimates of 14C production
versus RPI estimates from magnetic data for sediment core MD99-
2220. To avoid congestion the errors in both estimates are not
reported. The dashed line is the linear regression line. b Linear
regression residuals (difference between P and its value on the
regression line) versus RPI estimates. The dashed line is the zero line
(RPI data from St. Onge et al. 2003)

(a)

(b)

Fig. 10 a Optimal estimate of the time evolution of 14C production
in the atmosphere. b Record of 10Be concentration in the GISP2 ice
core, Central Greenland. The horizontal bars indicate the time
intervals for which 10Be concentration has been measured. The
vertical bars are the estimated errors in the concentration values
(10Be data from Finkel and Nishiizumi 1997; GISP2 time scale of
Meese et al. 1994)
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Finkel and Nishiizumi (1997) used one of the three
accumulation records calculated by Cuffey and Clow
(1997) to estimate 10Be fluxes at GISP2, which should
reduce these effects. To test these effects on our results,
we compute 10Be fluxes for GISP2 using the accumula-
tion rates calculated by assuming a 100 km retreat of the
ice sheet margin during the deglaciation (Cuffey and
Clow 1997). We find that both the linear and rank cor-
relations with our P estimates (coefficients of 0.27 and
0.18, respectively) are actually less when changes in
accumulation are not considered (0.48 and 0.29,
respectively). Thus, considering accumulation changes
does not, at least systematically, improve the correla-
tions with these estimates.

4.2 Paleoclimate implications

Our best estimate of the time evolution of atmospheric
14C production (Fig. 6) should contain information
about the variability in solar activity on time scales
>10 yr (the resolution of tree-ring D14C data) during the
Holocene. Our results may therefore give insights into
the hypothesized link between variations in solar activity
and climate during this period. More specifically, it has
been argued that a solar forcing mechanism may
underlie at least the Holocene segment of a ‘‘1500-year’’
climate cycle in the North Atlantic (Bond et al. 2001).
The argument was based on a comparison between (1) a
reconstruction of 14C production from tree-ring D14C
data and a composite record of 10Be flux at Central
Greenland with (2) different records of drift ice proxies
measured in North Atlantic sediment cores. For the
comparison, the P and 10Be flux records were detrended
using a gaussian band-pass filter designed to remove all
energy at periods >1800 yr and smoothed using a
binomial function with a smoothing window of 70 yr
(the mean resolution of the marine records). That is, all
components in the records with energy at periods shorter
than 1800 yr were considered of solar origin.

We conduct a spectral analysis of our best estimates of
14C production to examine the contention of Bond et al.
(2001). These estimates are available on a regular tem-
poral grid (with Dt = 1 yr), so that data interpolation,
which could influence the spectrum estimate (e.g., Yiou
et al. 1996), or the use of a relatively sophisticated

(a)

(b)

Fig. 11 a Scatter plot of the optimal estimates of 14C production
versus 10Be concentration data for GISP2 ice core (Central
Greenland). The P values are the averages in the time intervals
(ice core section) for which 10Be concentration has been measured.
The errors in 14C production estimates (vertical bars) are the errors
at the middle of these intervals. The errors in the 10Be concentra-
tion data are shown by horizontal bars. The dashed line is the linear
regression line. b Linear regression residuals (difference between P
and its value on the regression line) versus 10Be concentration data
for GISP2. The dashed line is the zero line (10Be data from Finkel
and Nishiizumi 1997)

(a)

(b)

Fig. 12 a Optimal estimate of the time evolution of 14C production
in the atmosphere. The upper (lower) curve is the optimal estimate
plus (minus) its error. b Record of 10Be concentration for the PS1
ice core, South Pole (data from Raisbeck et al. 1990). The vertical
bars are the estimated errors in the concentration values (7%; Bard
et al. 1997)
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method (e.g., Schulz and Stattegger 1997) are not nec-
essary. First, we compute the periodogram (Fig. 14a).
Although the periodogram is the ‘‘natural’’ estimator of
the power spectrum, its poor bias and variance properties
imply that it is actually of limited use in estimating this
spectrum (e.g., Percival and Wanden 1993). Albeit
instructive, it should thus be interpreted with particular
caution. The periodogram of our P estimates is essen-
tially red, with most energy present at low frequencies (by
Parseval’s theorem the total area under the periodogram
is equal to the total variance or energy in the time series).
According to the periodogram, the energy at periods
<1800 yr represents 62% of the total energy in the P
estimates. Assuming as Bond et al. (2001) that all the
energy at periods <1800 yr is of solar origin, the solar
component in these estimates would therefore be domi-
nant. However, the energy in the band 1200–1800 yr

(which is centered at 1500 yr and is taken here as the
‘‘millennial band’’) amounts to only 0.5% of the total
energy and 0.8% of the ‘‘solar’’ energy at periods
<1800 yr. Importantly, the band corresponds to a
trough, not to a peak, in the periodogram.

A smoothed spectrum calculated so as to reduce the
variance of the spectral ordinates may increase the
fraction of energy in the millennial band but obviously
should not lead to a spectral peak. To produce a power
spectrum estimate, we average the spectral ordinates of
the periodogram in groups of fixed number m of Fourier
frequencies, using in the averages the same weight for
each ordinate; the resulting spectrum estimate is identi-
cal to the one obtained from the Daniell window with a
lag window calculated from the same value of m (e.g.,
Chatfield 1996). Assuming m=11 reduces considerably
the variance of the spectrum at most frequencies and the
intensity of the trough in the millennial band (Fig. 14b).
The energy at periods <1800 yr then represents 68% of
the total energy in the P time series. The energy in the
band 1200–1800 yr represents 4% of the total energy
and 6% of the ‘‘solar’’ energy at periods <1800 yr.
Sensitivity tests show that both fractions remain lower
than 15% for a wide range of m values (Fig. 14c).

These results are not consistent with the hypothesis
that variations in solar activity contributed to the
postulated climate variations at the millennial time scale
during the Holocene (e.g., Bond et al. 2001). Confidence
in this hypothesis would be increased if it can be dem-
onstrated that cosmogenic nuclide production records
contain an energy maximum in the millennial band
(consider, e.g., the role played by the ‘‘discovery’’ of
Milankovitch frequencies in marine sediment records in
promoting an orbital theory of climate change). In
contrast, the spectrum of our 14C production estimates
near 10�3yr�1 frequency corresponds to a trough or is
flat, but does definitively not show a peak (Fig. 14a–b).
Schulz and Paul (2002) argued that the existing pale-
oceanographic evidence for �1400–1500 yr climate
oscillations during the Holocene is actually question-
able. They suggested that deep-sea records from the
North Atlantic may be reconciled with 900-yr climate
oscillations during this period as they found in the
GISP2 d18O record. Our P estimates do not show a peak
at this time scale either (Fig. 14b). Sensitivity tests using
the same values of m as in Fig. 14c reveal that the energy
in the band 800–1000 yr represents 1–8% of the total
energy and 1–9% of the ‘‘solar’’ energy at periods
<1800 yr. Thus, the existence of a direct solar forcing
mechanism for climate oscillations at the �900-yr time
scale is also not supported.

Our results have also some implications regarding
claims that changes in solar activity contributed to
Holocene climate variability at time scales much shorter
than 1500 yr such as the centennial time scales (for
recent studies see, e.g., Neff et al. 2001; Fleitmann et al.
2003; Hu et al. 2003). Several studies supported their
claim by a cross-spectral analysis of a climate proxy
record with a residual D14C record obtained by removing

(a)

(b)

Fig. 13 a Scatter plot of the optimal estimates of 14C production
versus 10Be concentration data for PS1 ice core (South Pole). The
errors in 14C production estimates are shown by vertical bars. The
errors in 10Be concentration data are shown by horizontal bars (7%;
Bard et al. 1997). The dashed line is the linear regression line.
b Linear regression residuals (difference between P and its value on
the regression line) versus 10Be concentration data for PS1. The
dashed line is the zero line (10Be data from Raisbeck et al. 1990)
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some long-term (variable) trend from the tree-ring D14C
data. This approach implies several assumptions—three
of them are discussed below. First, it is assumed that the

trend applied to the tree-ring D14C data captures most of
the (unwanted) effects of the changes in the earth mag-
netic field. There is obviously an infinite number of
trends that can be calculated from the original D14C
record, and no guarantee that the selected one best
captures these effects. The spectrum of our P estimates
suggests that the variability of 14C production is con-
tinuous over a wide range of frequencies (Fig. 14b) and
illustrates the difficulty, from knowledge of D14C data or
14C production estimates only, of separating the effects
of the geomagnetic field and solar activity. Second, it is
assumed that, when considered in the frequency domain,
the residual D14C record is a reliable analog of a 14C
production record. The validity of this assumption is not
clear. Even for stable linear systems, the spectrum of the
output is not equal to the spectrum of the input (Jenkins
and Watts 1968). Consider the power spectrum estimate
of atmospheric D14C in the analysis corresponding to
our best P estimates (dashed line in Fig. 14b). Although
the concentration and production spectra show the same
overall (red) shape, notable differences are found in the
partitioning of total energy between the two times series,
particularly near 10�2 yr�1 frequency. It is probably
wise to check that results obtained from cross-spectral
analyses are insensitive to the choice of the proxy used
for solar activity (e.g., residual D14C versus 14C pro-
duction). Finally, the error bars in spectral analyses are
based on certain assumptions about the process gener-
ating the series; this is true also for relatively sophisti-
cated methods, such as the multitaper (Percival and
Walden 1993). It was strongly recommended to apply
several independent techniques to test the robustness of
spectral results obtained for any time series (Ghil and
Yiou 1996). Many procedures of statistical inference
assume that the variables have an underlying normal
distribution. Several tests of normality exist, which are
based on different characteristics of the normal distri-
bution and whose power depends on the nature of the
non-normality. The Lilliefors test, for example, is based
on the maximum vertical distance between the sample
and normal distribution functions (e.g., Dudewicz and
Mishra 1988). According to this test, the null hypothesis
that our best P estimates are normal, against the com-
posite hypothesis that they are not, can be rejected at the
1% level. Whereas other normality tests should be used,
this suggests that the error bar for the spectrum of our P
estimates (e.g., Fig. 14b) should be interpreted with
some caution. Thus, it is probably wise to also examine
the distribution of the variables involved before inter-
preting the error bars in spectral analyses.

In summary, the fundamental difficulty remains, of
explaining a peak near 10�3 yr�1 frequency in the spec-
trum of climate variability in the absence of a peak in the
spectrum of external (orbital) forcing at a similar fre-
quency; the millennial frequency is 5 octaves above the
highest Milankovitch frequencies and 5 octaves below
the lowest tidal frequencies (Munk et al. 2000). In the
absence of a millennial peak in the forcing, the hypoth-
eses to explain climate variability at this time scale

Fig. 14 a Raw periodogram of our best 14C production estimates
over the Holocene. b Smoothed periodogram (power spectrum
estimate) of the 14C production values obtained by averaging
spectral ordinates in groups of size m=11 (solid line) and of the
RTS smoother estimates of atmospheric D14C (linearly detrended
values) obtained by averaging spectral ordinates in groups of the
same size (dashed line). The criss-cross is the approximate 95%
confidence interval for both spectra. In panels (a, b) the spectral
ordinates are normalized to the total power. c Ratio (for 14C
production) of the power in the band 1200–1800 yr to the total
power in the time series (x) and ratio of the power in the band
1200–1800 yr to the total power at periods <1800 yr (o). For
panels (a, b), the x-axis is frequency, whereas for panel (c) it is
(m Dt)�1
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appear relatively sophisticated and speculative. Consider
the hypothesis of a solar forcing mechanism. Even if a
millennial periodicity in solar (magnetic) activity can be
demonstrated, the relation between changes in solar
activity and the climatically more relevant changes in
solar irradiance (i.e., the integral of the electromagnetic
spectrum) on the millennial time scale must be known
(for a review of the role of the sun in forcing climate
variability, see Beer et al. (2000)). The best constraint on
the relation between the two phenomena are for the
decadal time scale. During a typical Schwabe cycle, 14C
production is estimated from a model to vary by several
tens of percents (Masarik and Beer 1999). In contrast,
satellite measurements indicate that solar irradiance
varied by only �0.1% during solar cycle 22 (Beer et al.
2000) (for reference, the seasonal variation in solar irra-
diance outside the atmosphere amounts to�100% at 45�
of latitude). This reminds us of how efficient a possible
‘‘amplifier’’ in the climate system has to be for the
changes in solar irradiance per se to affect climate, at
least at the decadal time scale.

5 Conclusions

An optimal estimate of the time evolution of 14C pro-
duction in the atmosphere over the Holocene has been
inferred from a combination of a tree-ring D14C record
and a box model of the global 14C cycle. The estimate is
optimal in the sense that it is consistent with both the
tree-ring data and the model conservation equations
within the estimated (supposedly purely random) errors
in these data and in these equations. Whereas the
estimate is precise, no guarantee can be given as to
whether it is also accurate given that systematic errors
have not been addressed. Nevertheless, it is thought that
our approach provides a more rigorous interpretation,
both conceptually and operationally, of the tree-ring
D14C record in terms of production changes than earlier
studies. Our optimal estimates of P show highly signif-
icant correlations (p<0.01) with independent evidence
of changes in cosmogenic nuclide production in the
atmosphere during the Holocene from different archives.
However, an important fraction of the variance in data
of the geomagnetic field intensity and ice core 10Be
concentration (42–77% according to the linear regres-
sions) is not related to the P changes implied by the tree-
ring D14C data. The P variance in the millennial band
(1200–1800 yr), which some authors interpreted as solar
variability, represents a small fraction of the total vari-
ance (<15%) and does not correspond to a spectral
peak. Hence, our results do not strengthen the hypoth-
esis that the purported climate variability at the
millennial time scale during the Holocene results from a
direct forcing by the sun.
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Appendix 1: RTS methodology

This Appendix describes the RTS methodology used in
the paper. The methodology is detailed enough to permit
other investigators to repeat the analysis or to use our
approach for other problems of a similar nature. More
detailed and rigorous accounts can be found in the origi-
nal reference (Rauch et al. 1965) and in several textbooks
of applied optimal estimation (e.g., Meditch 1969; Gelb
et al. 1974; Bryson and Ho 1975; Wunsch 1996; Brown
and Hwang 1997). The RTS methodology is based on the
Kalman filter and the RTS smoother. The Kalman filter
assumes a probabilistic description for the measurement
error vi, the system forcing wi, and the initial state x0:

EðviÞ ¼ 0 and Eðviv
T
j Þ ¼ Ridij; ð11Þ

EðwiÞ ¼ �wi and Eðwi � �wiÞðwj � �wjÞT ¼ Qidij; ð12Þ

Eðx0Þ ¼ �x0 and Eðx0 � �x0Þðx0 � �x0ÞT ¼ �P0; ð13Þ

where E(Æ) is the expectation, d is the Kronecker delta
(dij=1 if i=j and dij=0 if i „ j), Ri is the covariance
matrix for the measurement errors, Qi is the covari-
ance matrix for the system forcing, and �P0 is the
covariance matrix for the errors in the initial state.
The relations (11) and (12) state that the measurement
errors and the system forcing are individually uncor-
related in time. Thus, the sequences v1,v2,... and
w0,w1,... are assumed to be purely random sequences
(‘‘white sequences’’). This implies that the cross-co-
variances between vi, wi, and x0 also vanish. From
assumptions (11), (12) and (13) the Kalman filter
estimate of the state xi is derived:

�xi ¼ �xi þ Ki zi �Hi�xið Þ; ð14Þ

where

�xiþ1 ¼ Uix̂i þ Ci �wi; ð15Þ

Ki ¼ P̂iH
T
i R
�1
i ; ð16Þ

P̂i ¼ P̂
�1
i þHT

i R
�1
i Hi

� ��1
; ð17Þ

�Piþ1 ¼ UiP̂iU
T
i þ CiQiC

T
i : ð18Þ
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The matrix Ki is the Kalman gain, �Pi ¼
E xi � �xið Þ xi � �xið ÞT is the covariance matrix for the
errors in the state estimate prior to measurement �xi; and
P̂i ¼ E xi � x̂ið Þ xi � x̂ið ÞT is the covariance matrix for the
errors in the state estimate after measurement x̂i: The
relations (14), (15), (16), (17), (18) all have physical
interpretation. The vector difference zi �Hi�xi in relation
(14) represents the new information brought about by
the measurements. The Kalman gain Ki is essentially a
measure of the ratio between the uncertainty in the state
P̂i and the uncertainty in the measurements Ri (relation
16). Relation (14) thus shows that, when the ratio is
large, the filter tends to give less weight to the state
estimated prior to measurement ( �xi; calculated using
Eq. 15) and more weight to the measurements (zi), in
estimating the state x̂ið Þ: As the matrix HT

i R
�1
i Hi is

positive-definite, relation (17) states that, on average, the
measurements zi decrease the uncertainty in our
knowledge of the state xi. Similarly, as CiQiC

T
i is positive

semi-definite, Eq. 18 (a covariance propagation equa-
tion) shows that, on average, the effect of the uncertainty
in wi is to increase the uncertainty in our knowledge of
xi. The effect of UiP̂iU

T
i in Eq. 18 is less obvious as it

depends on the stability of the system, i.e., on the
eigenvalues of Ui:

In contrast to the Kalman filter, the RTS smoother
provides an estimate of xi using all the measurements in
the sequence z1; z2; . . . ; zN ; where i<N. The measure-
ments zi+1 yield information about the state xi and
about the transition from state i to state i+1, i.e., about
the forcing wi. The smoother therefore permits an esti-
mation of wi, as well as of xi. We denote the RTS
smoother estimate of the state by ~xi; of the forcing by ~wi;
of the covariance matrix for the state errors by ~Pi; and of
the covariance matrix for the forcing by ~Qi: The RTS
smoother is:

~xi ¼ x̂i � Ci �xiþ1 � ~xiþ1ð Þ; ~xN � x̂N ; ð19Þ

~wi ¼ �wi � Bi �xiþ1 � ~xiþ1ð Þ; ð20Þ

~Pi ¼ P̂i � Ci �Piþ1 � ~Piþ1
� �

CT
i ;

~PN � P̂N ; ð21Þ

~Qi ¼ Qi � Bi �Piþ1 � ~Piþ1
� �

BT
i ; ð22Þ

where

Ci ¼ P̂iU
T
i

�Piþ1; ð23Þ

Bi ¼ QiC
T
i

�Piþ1: ð24Þ

Thus, to determine the smoother estimates, the Kalman
filter estimates x̂i; P̂i; and the intermediate quantities
xi;Pi must first be calculated. This calculation requires a
forward sweep through the measurements zi using the
relations (14), (15), (16), (17), (18). Since ~xN � x̂N and
~PN � P̂N ; the smoother estimates ~xi; ~wi; ~Pi; and ~Qican
then be computed through a backward sweep with the
recursion relations (19), (20), (21), (22), (23), (24).

Appendix 2: state augmentation

This Appendix describes the state augmentation
approach (e.g., Brown and Hwang 1997) that is used to
account for the presence of sequential correlation in the
system forcing (i.e., in the 14C production variations). As
implied by its terminology the approach is based on the
addition of one element in the state vector x: (hence,
the addition of a dot subscript to distinguish x: from the
state vector x, which is of a higher dimension and
effectively used in the analysis). First, we assume that a
valid probabilistic description of P is the random walk:

Piþ1 ¼ Pi þ wP;i; ð25Þ

where EðwP;iÞ ¼ 0 and EðwP;iwP;jÞ ¼ qPdij: The pro-
duction Piþ1 is taken as the sum of the production Pi at
some earlier time and of a stochastic component that has
zero mean, constant variance qP ; and zero time corre-
lation. By assuming a random walk, we allow the esti-
mated P to have a variable expectation and variance
over the Holocene, i.e., nonstationary features such as
‘‘trends’’ may be present in the estimated time evolution
of P (e.g., Chatfield (1996)). We then define the fol-
lowing quantities in the transition equation xiþ1 ¼
Uixi þ Ciwi (Eq. 2 in the main text). The state vector xÆ is
augmented to include P as an additional variable, i.e.,

xT ¼ xa; xb; xd ; xh; xl;P½ �: ð26Þ

The transition matrix for the state is a 6 · 6 partitioned
matrix, i.e.,

Ui ¼
U�i

..

. 1

0
. . . . . . . . .

0 ..
.

1

2
664

3
775:

The transition matrix for the forcing, Ci; is the 6 · 6
identity matrix. Finally, the forcing wi is a 6 · 1 vector,
i.e., wT

i ¼ wa;i;wb;i;wd;i;wh;i;wl;i;wP;i
� 	

: The first five
elements of wi are the stochastic components in the
equations for 14C concentration. The sixth element is the
stochastic component in the random walk model for 14C
production in the atmosphere. Conceptually, the ele-
ments of wi could be viewed as the model errors.

Appendix 3: a priori statistics

In this Appendix, we describe how the different quan-
tities that must be specified a priori to estimate the time
evolution of P have been determined. Consider first Ri.
Because we dispose of only one record of observations,
the matrix Ri is a scalar, i.e., Ri=ri. We set ri=ri

2, where
ri is (10

�3r*xa
*) times the reported error in the tree-ring

D14C datum for time ti (Fig. 1b). Consider then x̂ð0Þ:
The first element of x̂0; i.e., the estimate of the concen-
tration of 14C in the atmosphere at 9400 yr BCðx̂a;0Þ; is
obtained directly from the tree-ring record using Eq. 4
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(Fig. 1a). The second-to-fifth elements of x̂0; i.e., the
estimates of the initial 14C concentration in each of the
other reservoirs, are obtained from a steady state solu-
tion of the model for which the atmospheric 14C con-
centration = x̂a;0: The sixth element of x̂0; i.e., the
estimate of the initial 14C production in the atmosphere,
is then diagnosed from this solution, leading to a value
of 420 mol yr�1. For reference, observational studies
based on the analysis of the specific activity of 14C and
theoretical models led to estimates of the global average
14C production in the modern atmosphere in the range
1.75–2.02 atoms cm�2 s�1 (see compilation in Masarik
and Beer 1999), i.e., 467–540 mol yr�1. Whereas our
diagnosed values do not have to match these estimates
(for example, the model atmosphere has some arbitrary
volume, Va, and the two periods are clearly different), we
note the broad agreement between them. Now consider
P̂0: The diagonal elements of P̂0 are the expected values
of xk;0 � x̂k;0

� �2
; where k 2 a; b; d; h; l;Pf g: The first

diagonal element, noted p̂a;0 ¼ E xa;0 � x̂a;0
� �2

; is set
equal to r0. For the other diagonal elements, we assume
that the uncertainty of the estimated state variable at
9400 yr BC scales as the uncertainty in the tree-ring da-
tum for this time, i.e., p̂k;0 ¼ p̂a;0 x̂k;0=x̂a;0

� �2
; where

k 2 b; d; h; l;Pf g: For simplicity, we assume that the
off-diagonal elements of P̂0 vanish, i.e., P̂0 is a diagonal
matrix, which we write as P̂0 ¼ diag p̂a;0; p̂b;0; p̂d;0; p̂h;0;

�
p̂l;0; p̂P;0�: The sensitivity of our results to the diagonal
elements of P̂0 are explored in Sect. 3.3.

Finally, the covariance matrix for the model errors
Qi must also be prescribed. A sensible approach is to
assume that Qi is constant and diagonal, i.e.,
Qi ¼ Q ¼ diag qa; qb; qd ; qh; ql; qP½ �; where qk is the var-
iance of the stochastic component for state variable k
(in units (mol m�3)2). On the other hand, the pre-
scription of a positive value for each diagonal element
of Q is motivated both conceptually (the model is not
exact) and computationally (Brown and Hwang 1997).
Consider first qP ; which dictates the amount by which
14C production can change from one discrete time to
the next in the random walk model (Eq. 25). The
choice of qP can be guided by physical considerations
and/or by statistical considerations about some diag-
nostics of the Kalman filter and RTS smoother. An
important contributor to the year-to-year variation in
the production of cosmogenic nuclides in the atmo-
sphere is the 11-yr (Schwabe) cycle in the solar activity
(Masarik and Beer 1999). These authors used a cos-
mogenic nuclide production model to simulate the
variations of P during a ‘‘typical’’ cycle. In their model,
the global production rate P during the solar minimum
(maximum) is 1.19 (0.82) times the average rate over a
complete solar cycle (Masarik and Beer 1999; p 12,
107). Approximating the change in P as the function A
cos(xt), where A is the amplitude and x=2p /11 yr�1

is the angular frequency, the variance of P during one
half of the cycle is equal to A2/2, and the corre-
sponding standard deviation = 13% of the average
production. The production deviation would then

amount to 61–70 mol yr�1, where the range reflects the
different estimates of the modern global production
reported above. Our analysis, on the other hand, is
based on decadal averages of D14C data. Thus, the
amount by which P should change from one time to
the next in the random walk model should be lower
than the above estimates of the production deviation
associated with the 11-yr solar cycle. In our study, we
test different values of Va=Dt

ffiffiffiffiffiffi
qP
p

which are lower than
these estimates and constrain the ‘‘best’’ value from
diagnostics of the analysis (Sect. 3.1). With the values
of qP tested in this study, we have not encountered any
computational problem in assuming qa, qb, qd, qh, and
ql all set to zero. For simplicity, these five variances will
therefore be set to zero. The sensitivity of our results to
different values of qk, where k 2{a, b, d, h, l}, are
explored as well (Sect. 3.3).
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