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ABSTRACT: Cetacean–habitat modeling, although still in the early stages of development, represents
a potentially powerful tool for predicting cetacean distributions and understanding the ecological
processes determining these distributions. Marine ecosystems vary temporally on diel to decadal scales
and spatially on scales from several meters to 1000s of kilometers. Many cetacean species are wide-
ranging and respond to this variability by changes in distribution patterns. Cetacean–habitat models
have already been used to incorporate this variability into management applications, including im-
provement of abundance estimates, development of marine protected areas, and understanding
cetacean–fisheries interactions. We present a review of the development of cetacean–habitat models,
organized according to the primary steps involved in the modeling process. Topics covered include
purposes for which cetacean–habitat models are developed, scale issues in marine ecosystems, cetacean
and habitat data collection, descriptive and statistical modeling techniques, model selection, and model
evaluation. To date, descriptive statistical techniques have been used to explore cetacean–habitat
relationships for selected species in specific areas; the numbers of species and geographic areas exam-
ined using computationally intensive statistic modeling techniques are considerably less, and the de-
velopment of models to test specific hypotheses about the ecological processes determining cetacean
distributions has just begun. Future directions in cetacean–habitat modeling span a wide range of
possibilities, from development of basic modeling techniques to addressing important ecological
questions.
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INTRODUCTION

Accurately describing and understanding the pro-
cesses that determine the distribution of organisms
is a fundamental problem in ecology, with important
conservation and management implications. Recently,
there has been a rapid increase in the development of
habitat distribution models and tools for the statistical
analysis of spatial distribution patterns (e.g. several
journal issues or profiles have been dedicated to this
subject: Ecological Modelling 2002, Vol. 157, Issues
2/3; Ecography 2002, Vol. 25, Issue 5; and Journal of
Applied Ecology 2004, Vol. 41, Issue 2). These devel-
opments highlight the widespread use of computer-
intensive methods in statistics, facilitated by the in-
creasing availability and speed of computing power.
Specifically, many statistical procedures currently
used for habitat modeling require complex and itera-
tive calculations to integrate non-linear relationships
and an increasing number of explanatory variables
(Diaconis & Efron 1983, Efron & Tibshirani 1991,
Manly 1991, Guisan & Zimmermann 2000). These
developments, however, have tended to focus primar-
ily on terrestrial ecology, particularly vegetation mod-
eling, where habitat patches and ecosystem structure
change over comparatively long temporal scales of
seasons to decades.

Marine ecosystems are dynamic and fluid; temporal
variability operates on diel to decadal scales, while
spatial variability can be observed on scales from
several meters to 1000s of kilometers. This spatio-
temporal variability presents unique challenges when
developing species–habitat models. For example, the
dynamic nature of marine physical processes, such as
upwelling and the transport of planktonic organisms in
surface currents, requires careful selection of habitat
predictor variables and may result in temporal or
spatial lags between physical processes and biological
responses. Marine species–habitat models, therefore,
must be flexible enough to accommodate a wide range
of potential model structures and types of habitat
variables if they are to explain or predict species
distributions.

In this review, we focus on cetacean–habitat model-
ing. Many of the questions, concerns, and method-
ologies that we present are applicable to other apex
marine predators, such as pinnipeds, seabirds, turtles,
and large fishes. Restricting the focus of this review to
cetaceans was necessary to derive a cohesive manu-
script from the breadth of marine ecology. Cetaceans
form a unique assemblage from a natural history per-
spective. For example, cetaceans are entirely pelagic,
whereas pinnipeds, seabirds, and turtles must return
to land for pupping or nesting. Pinnipeds, seabirds,
and turtles are easily accessible to land-based human

observers during this phase of their lives, frequently
resulting in different sampling methodologies. More
complex habitat models, such as central-place foraging
models, may also be needed to capture species distrib-
utions during land-based periods. Additionally, the
majority of cetacean sampling techniques must be
non-invasive, in accordance with national and inter-
national protection regulations, unlike other marine
species, such as fishes, whose abundance is tradition-
ally estimated using catch-rate statistics.

Many cetacean species are wide-ranging and re-
spond to the variability in marine ecosystems by
changes in distribution patterns (Forney 2000), rather
than changes in survival and reproductive success.
Consequently, models that predict habitat for ceta-
ceans are necessary as a means to incorporate
this variability into management decisions regarding
anthropogenic activities that increasingly threaten
cetacean populations. Distribution modeling remains a
relatively new tool in cetacean research, but the
promise of this technique has been demonstrated in
a number of applications including improvement of
abundance estimates (Forney 2000), development of
marine protected areas (Hooker et al. 1999, Cañadas
et al. 2002), and understanding cetacean–fisheries
interactions (Torres et al. 2003, Kaschner 2004).

Ideally, cetacean–habitat modeling would be based
on accurate measures of population size and data
characterizing habitat variability, prey populations,
and predator populations at a range of temporal and
spatial scales, as well as an understanding of the inter-
actions among these components. Obtaining such data
for cetacean populations presents several unique chal-
lenges. Most cetaceans are highly mobile and spend a
substantial amount of time below the surface, making
detection and group size estimation inherently diffi-
cult. For example, Barlow (1999) predicted that there is
a low probability of detecting beaked whale species
(Mesoplodon spp., Ziphius cavirostris, and Berardius
bairdii), which dive for extended periods of time.
Furthermore, challenges involved in identifying the
species in detected groups, from either external char-
acteristics or vocal repertoires, increase in areas with
high diversity, which are often areas of management
concern. Cetacean–habitat modeling is further com-
plicated by the natural history of these species, par-
ticularly their social organization and behavior (Ersts &
Rosenbaum 2003). For example, models developed
for migrating species (e.g. humpback whales Mega-
ptera novaeangliae) on high-latitude summer feeding
grounds may not accurately predict distributions on
low-latitude winter breeding grounds.

We present a review of the development of ceta-
cean–habitat models, with an emphasis on the chal-
lenges inherent in and unique to studies of marine
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ecosystems. This paper is organized according to the
primary steps involved in the modeling process.
Specifically, we begin with a discussion of the pur-
poses for which cetacean–habitat models are devel-
oped and a general overview of scale issues in marine
ecosystems, because these topics provide a framework
for the modeling process. Methods of estimating
cetacean abundance and collecting habitat data are
discussed as the primary foundation for modeling
efforts. We also discuss general data and statistical
considerations, including the unit of observation, co-
variation of habitat variables, and spatial autocorrela-
tion. Various statistical techniques for describing and
modeling cetacean–habitat relationships, as well as
the limitations of these techniques, are described in the
context of specific examples. In particular, standard
references are provided for commonly used descrip-
tive statistical techniques, while statistical modeling
approaches are explored in more detail. Finally, we
discuss different approaches for model selection and
model evaluation.

MODELING PURPOSES

The purpose of a cetacean–habitat model guides the
selection of habitat variables, determines the appropri-
ate statistical tool, and governs the interpretation or
use of the model results. Hence, defining the purpose
of a model is a critical first step in the modeling pro-
cess. The purpose of a model is determined by how
well we understand the ecology of the species, which
varies along a continuum from non-existent to abun-
dant a priori knowledge (Fig. 1).

At one end of the continuum, when little is known
about the ecology of a species, models can be used to
explore empirical associations between cetacean dis-
tributions and the physical and biological features of
the study area. These models employ a variety of
descriptive statistical techniques (such as those dis-
cussed in the ‘Descriptive techniques’ section) to iden-

tify important habitat variables (Kenney & Winn 1986,
Reilly 1990, Fiedler & Reilly 1994, Reilly & Fiedler
1994, Griffin 1999, Baumgartner et al. 2001). Although
a priori knowledge of the species’ ecology is lacking,
an understanding of the dominant oceanographic
features in the study area or the ecology of similar spe-
cies can be used to guide the selection of the habitat
variables used in these analyses.

As data availability and knowledge of the potential
habitat variables influencing cetacean distributions in-
crease, the purpose of developing a model may shift
to predicting cetacean distribution patterns. Although
the ecological processes determining cetacean distrib-
utions may not be understood at this stage, predictive
models can be used to develop hypotheses about these
processes, reduce unexplained variation in population
trends and abundance estimation (Forney 1999, 2000,
Hedley et al. 1999), or minimize adverse anthropo-
genic impacts on cetacean populations. The success of
these models is measured by their ability to predict
novel observations; predictions from a ‘good’ model
will be more accurate than predictions made without
the information provided by the habitat variables.
Statistical modeling techniques (see the ‘Modeling
techniques’ section) are generally used at this stage as
part of an iterative process in which each successive
sample aids in refining the model and improving 
long-term predictive capabilities.

At the other end of the continuum, when substantive
a priori knowledge exists about cetacean–habitat rela-
tionships, models can be used to test specific hypo-
theses about the ecological processes determining
cetacean distributions. For example, Baumgartner et
al. (2003) relied on previous speculation (Gaskin 1987),
descriptive studies (Murison & Gaskin 1989, Woodley
& Gaskin 1996), and studies of individual foraging
ecology (Baumgartner & Mate 2003) to develop hypo-
theses about the habitat variables that influence the
summertime distribution of North Atlantic right whales
Eubalaena glacialis. Ideally, hypothesis-driven model-
ing will be an integral component of ecological re-
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Fig. 1. When little is known about the ecology of a species, the purpose of cetacean–habitat modeling is to describe empirical asso-
ciations between species’ distributions and the physical and biological features of the study area. As ecological knowledge
increases, the purpose of developing a model may shift to predicting cetacean distribution patterns. When considerable a priori
ecological knowledge exists, models can be used to test specific hypotheses about the processes determining cetacean distribu-
tions. Iteratively developing predictive and hypothesis-driven models will further advance our understanding of cetacean ecology
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search that includes visual or acoustic surveys of ceta-
cean distributions, telemetry studies, and intensive
oceanographic measurements (e.g. Croll et al. 1998)
designed to address specific hypotheses about ceta-
cean–habitat relationships.

Very few cetacean species have been studied in
sufficient detail to develop specific hypotheses about
the ecological processes determining distributions, yet
there is a growing demand for predictive models of
cetacean distributions to support conservation and
management efforts. Improvements in predictive mod-
els, such as reducing unexplained variability, will be
gained by incorporating habitat features and oceano-
graphic processes that have been demonstrated to
affect cetacean distributions. Thus, predictive model-
ing and hypothesis-driven modeling can be conducted
iteratively to advance our understanding of cetacean
ecology, conservation, and management.

SCALE

Selection of spatial and temporal scales plays a
crucial role in the development of cetacean–habitat
models because cetacean–habitat relationships are
scale dependent. In particular, the outcome of the
model will depend upon the scale at which the data are
collected and analyzed (Wiens 1989). We can begin to
understand how scale influences cetacean–habitat
modeling by looking at the distribution of cetacean
prey species and the oceanographic variables used as
proxy measurements of prey abundance. The distribu-
tion of cetacean prey species, such as small pelagic
schooling fish and crustaceans, can be viewed as a
hierarchical patch structure in which high-density,
small-scale patches are nested within low-density,
large-scale patches (Weber et al. 1986, Murphy et al.
1988, Fauchald et al. 2000). At small scales, prey spe-
cies may form high-density patches of schools and
swarms; for example, krill may form patches ranging in
size up to 100 m (Murphy et al. 1988). The creation and
location of these small-scale patches is driven by tur-
bulent diffusion and mixing for planktonic or weakly
swimming organisms or by the species’ behavior (e.g.
an anti-predator response or spawning) (Murphy et
al. 1988).

Oceanographic features, such as fronts and eddies,
aggregate these schools and swarms to form meso-
scale patches, which can vary in size from approxi-
mately 10 km to 100s of kilometers (Moser & Smith
1993, Logerwell & Smith 2001). Aggregation of meso-
scale patches into large-scale patches of 1000s of kilo-
meters is driven by water masses and current systems,
and reflects components of the prey species’ migration,
spawning, and feeding distributions (Murphy et al.

1988). In general, rates of change are expected to be
high in small patches (e.g. persistence measured in
hours and days), while large-scale patches may be
highly predictable (e.g. persistence measured in
months or years).

Although behavioral factors such as migration,
predator avoidance, and social interactions in-
fluence cetacean distributions, many of the distribu-
tion patterns that we attempt to describe using
cetacean–habitat models are determined by the re-
sponse of cetaceans as predators foraging in this
hierarchical patch structure. In general, predators are
expected to track a hierarchical system using long
travel distances and low turning frequencies at large
scales and short travel distances and higher turning
frequencies at smaller scales (Fauchald 1999). The
position of predators within the patch hierarchy should
be updated using knowledge gained from recent for-
aging experiences (Mayo & Marx 1990, Fauchald
1999).

To understand cetacean–habitat relationships at
small scales, we must explore the small-scale move-
ments and behavior of individual foragers exploiting
patchy food resources. Individual tracking and active
acoustics can be used to understand cetacean move-
ment patterns relative to prey distributions or oceano-
graphic processes, such as diffusion and mixing.
For example, an active acoustic survey of Hawaiian
spinner dolphins Stenella longirostris and their prey
showed an overlap in distributions ranging from 20 m
to several kilometers (Benoit-Bird & Au 2003).

The abundance of apex marine predators (marine
birds and mammals) and the abundance of zooplank-
ton or prey fishes are often strongly correlated at meso-
scales (Schneider & Piatt 1986, Piatt & Methven 1992).
Cetacean–habitat models developed at these scales
typically examine the relationship between cetacean
abundance and prey abundance or habitat variables
comprised of water column data (e.g. thermocline
depth and strength, mixed layer depth), surface data
(e.g. temperature, salinity, chlorophyll concentrations),
or oceanographic features (e.g. fronts, eddies, up-
welling). For example, Ferguson et al. (2006b) used a
9 km unit of analysis to describe the relationship
between beaked whale abundance in the eastern trop-
ical Pacific and habitat variables comprised of water
column data, surface data, and bathymetry. At large
scales, cetacean–habitat models may be used to define
a species’ range relative to ocean basin characteristics,
such as water masses and current systems, or shifts in
population distributions relative to long-term (e.g. sea-
sonal, annual, or decadal) oceanographic changes. For
example, Kaschner et al. (2006) used long-term aver-
ages of 3 habitat variables to generate hypotheses
about global cetacean distributions.
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As the examples above illustrate, cetacean–habitat
models have been developed at a range of spatial
scales. Multi-scale studies have also been conducted,
typically exploring the change in the explanatory
power of the habitat variables relative to the scale of
the unit of analysis (e.g. Jaquet & Whitehead 1996,
Jaquet et al. 1996). Ideally, cetacean–habitat models
would be developed in a hierarchical scale framework,
in which patterns at small, meso-, and large scales are
identified and the influence that each scale exerts on
the patterns observed at other scales is taken into
account (Fauchald et al. 2000). However, the design of
cetacean–habitat surveys is subject to the trade-off
between high sampling intensity to capture small-
scale patterns and long-range or broad spatial scale
sampling to capture large-scale patterns. Hence, it is of
primary importance to ensure that the scale of data col-
lection and the unit of observation used in analyses
match the temporal and spatial scales determined by
the purpose of the model.

DATA COLLECTION

Cetacean data

Cetacean data used in habitat modeling may come
from designed studies including ship, aerial, and
acoustic surveys, as well as individual tagging studies
(Fig. 2). Ship and aerial surveys generally rely on line-
transect sampling methods (Buckland et al. 2001) to
make quantitative estimates of abundance. Transect
lines are designed to ensure equal sampling probabili-
ties throughout the study area. However, transect
design is, in reality, a compromise between sampling
theory and logistical considerations (e.g. safety, vessel
re-fueling, funding, etc.), and the actual transect lines
are likely to be compromised by days lost to weather
and mechanical breakdowns. When strata are incorpo-
rated in survey design, transects should be allocated
among strata according to expected cetacean densities
(i.e. effort should be higher in areas where cetaceans
are abundant). If prior knowledge of cetacean densi-
ties is not available, transects should be allocated
according to the size of the strata. Ferguson & Barlow
(2001) derived stratified density estimates for cetacean
species in the eastern Pacific Ocean from line-transect
survey data. Their analyses highlight the frequent
problem that adequate sample sizes for stratified den-
sity estimates can only be obtained at a coarse spatial
resolution.

In both ship and aerial cetacean surveys, animals
may be missed due to perception bias (animals are at
the surface and, hence, available for detection but are
missed) and availability bias (animals are submerged)

(Marsh & Sinclair 1989). Perception bias is affected by
factors associated with the animals (e.g. behavior and
group size) and survey conditions (e.g. sea state, swell
height, visibility) (Barlow et al. 2001); availability bias
is affected by species’ dive durations and the relative
proportion of time spent at the surface. Independent
observer and dual platform methods (Buckland et al.
2001) can be used to estimate these sources of bias if all
cetaceans are likely to surface within the visual range
of observers; simulation models may be used to esti-
mate bias for long-diving species (Doi 1974, Barlow
1999, Okamura 2003). Acoustic methods, such as
towed hydrophone arrays, may also be used to de-
tect vocalizing submerged cetaceans on ship surveys
(Barlow & Taylor 2005).

Data collection from ship or aerial surveys is expen-
sive, and sophisticated analytical methods are re-
quired to deal with the challenges involved in detect-
ing cetaceans from these platforms. Acoustical survey
methods may provide a less expensive alternative for
recording limited cetacean data (see Di Sciara &
Gordon [1997] for a summary of the potential benefits
of acoustic surveys). Currently, quantitative estimation
of cetacean density solely from acoustic detections is
not possible, because we do not know the rates at
which animals vocalize or how these rates vary with
season, area, and the sex and behavior of the vocaliz-
ing animal. Additionally, many vocalizations have not
been identified to the species level, and it is difficult
to estimate the distance to a sound source. However,
acoustic data can provide information about cetacean
presence on large spatial and temporal scales (Fig. 2).
For example, arrays of military hydrophones have
been used to study the distribution of vocalizing
whales at distances of 100s of miles (Watkins et al.
2000), and autonomous seafloor instruments have been
used to continuously assess cetacean presence for
periods up to a year (Stafford et al. 1998, Mellinger et
al. 2004).

Cetacean tagging can also provide data for habitat
modeling at a range of spatial and temporal scales
(Fig. 2). For example, Baumgartner & Mate (2005)
were able to infer summer and fall habitat of North
Atlantic right whales using satellite tagging. In partic-
ular, the temporal coverage of the satellite tags
allowed them to track individual movements over 100s
of kilometers. Obtaining fine-scale data on cetacean
behavior, physiology, and ecology has also been fa-
cilitated by advances in cetacean tagging (e.g. Costa
1993, Mate et al. 1999) and the development of com-
puter programs to facilitate visualization and analy-
sis of spatial data, such as geographic information
systems. Increasingly, tags are capable of recording
information about an individual’s location (e.g. lati-
tude, longitude, and depth) and behavior (e.g. dive
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profiles), as well as fine-scale habitat data including
water temperature and salinity. As tags become larger,
however, they are more invasive and potentially alter
the behavior of the individual (Watkins & Tyack 1991,
Schneider et al. 1998). Other less invasive and rela-
tively inexpensive data collection techniques, such
as photo-identification and focal follows, can also be
used to obtain information on species’ habitat use
and migration patterns.

The constraints on tagging studies, particularly the
amount of time or expense required to collect and pro-
cess the data, typically result in small sample sizes.
Consequently, habitat data collected from tagging
studies may span a limited range of environmental
conditions, and extrapolation of results to population
distribution patterns must proceed with caution. Addi-
tionally, caution is necessary when using these data to
assess habitat preferences, because comparative data
are not recorded in areas that are not used.

In addition to data collected using studies designed
to estimate cetacean abundance and distribution (e.g.
tagging studies or ship, aerial, and acoustic sur-
veys), opportunistically collected data can be used in
cetacean–habitat models (Fig. 2). Studies conducted
on platforms of opportunity (e.g. situations in which an
observer takes advantage of an opportunity to work
from a research vessel, ferry, merchant marine ship, or

fishing vessel that is dedicated to another purpose) can
result in large databases of observations, such as the
atlas of cetacean distributions compiled for European
waters (Reid et al. 2003). Potential limitations of data
collected from platforms of opportunity include vari-
ability in the quality and reliability of the observations
(e.g. the expertise of observers) and restrictions in
space and time due to logistical and financial consider-
ations of the parent project (e.g. ferries cross water-
ways that connect populated land masses). For
cetacean–habitat modeling purposes, however, data
collected from platforms of opportunity may be consid-
ered equivalent to data collected using designed sur-
veys if trained observers and rigorous survey protocols
are used and data collection is broad enough spatially
and temporally to incorporate a range of habitat vari-
ability (e.g. Cañadas et al. 2005). In particular, such
surveys must record effort (i.e. the time spent or dis-
tance covered searching for aminals in different areas)
and standardize or record conditions under which the
survey is conducted (e.g. Beaufort sea state). If the goal
of the model is to estimate density rather than the
probability of cetacean occurrence, these surveys must
also record school sizes.

Other types of opportunistic data include whaling
records and information from fishery observer pro-
grams. Both sources of data typically include informa-
tion about the location of the catch, as well as life-
history information. For example, information on the
global distribution of large whales is available from the
International Whaling Commission’s (IWC) extensive
database of 20th century catch records. These sources
of opportunistic data, however, may be subject to
several important limitations that must be taken into
account during the modeling process. First and fore-
most, effort data are frequently absent. For example,
lack of effort data in the IWC whaling database makes
it difficult to determine whether whales were absent
from an area or simply not harvested in that area. In
addition, although data from fishery observer pro-
grams typically contain effort information, absence of
by-catch does not necessarily mean the absence of
cetaceans, because a myriad of behavioral and ecolog-
ical factors influence the probability of by-catch and
some by-catch may be undetected.

Habitat data

Habitat data used to model cetacean distributions
may be collected during cetacean surveys and tagging
studies or be derived from broadly available sources,
including bathymetric data, remotely sensed data, and
models of oceanographic processes. During ship sur-
veys of cetacean abundance, a number of potential
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habitat variables can be measured to describe surface
water conditions, water column properties, or broad
characteristics of the ecological community, such as
densities of prey, competitor, and predator species.
Measurements of surface conditions include tempera-
ture, salinity, fluorescence, chlorophyll a, dissolved
oxygen content, and water color. Properties of the
water column that may be of interest in modeling
cetacean distributions include the depth and strength
of the thermocline, the depth of the mixed layer, the
depth of the euphotic zone, and the mean or total
chlorophyll concentration in the euphotic zone
(e.g. Reilly 1990, Reilly & Fiedler 1994, Ferguson et
al. 2006a).

Physical oceanographic data, however, typically
represent proxies for prey abundance or availability,
which are expected to directly influence cetacean
distributions. Continuous vertical and horizontal distri-
butions of prey fishes and squid can be measured
directly using active acoustic devices such as echo-
sounders. Discrete measures of the relative abundance
of prey species can be obtained using net sampling.
The patchy nature of marine ecosystems, however,
makes it challenging to apply discrete indices of prey
distribution and abundance to a broad geographic
area. Estimates of the abundance of other species that
may influence cetacean distributions, such as competi-
tors and predators, can be directly incorporated into
the cetacean survey (e.g. the survey can be expanded
to include estimates of other cetacean densities).
However, techniques for incorporating the effects of
competition and predation into cetacean–habitat
modeling remain to be developed.

When in situ oceanographic data are not available
(e.g. for cetacean data collected using aerial surveys),
habitat variables may be derived from bathymetric
data, remotely sensed data, and models of oceano-
graphic processes. Bathymetric data are available for
many parts of the world, making it easy to include vari-
ables such as bottom depth, bottom slope, and distance
to shore, or other topographic features in cetacean–
habitat models. Significant relationships between
bathymetric variables and population distributions
have been observed for many cetaceans, including
bottlenose dolphin Tursiops truncatus ecotypes in the
northwest Atlantic (Torres et al. 2003), harbor porpoises
Phocoena phocoena in northern California (Carretta et
al. 2001), and northern bottlenose whales Hyperoodon
ampullatus in Nova Scotia (Hooker et al. 2002).

Satellite-derived data are also readily obtainable;
variables typically used in cetacean–habitat models
include sea surface temperature, chlorophyll a concen-
tration, and dynamic height (Smith et al. 1986, Davis et
al. 2002, Baumgartner et al. 2003). Satellite-derived
data can also be used to infer the presence of dynamic

oceanographic features, such as frontal regions (e.g.
Baumgartner et al. 2001). For example, Smith et al.
(1986) calculated the variance in satellite-derived
chlorophyll concentrations and used this measure of
habitat heterogeneity to examine cetacean distribu-
tions off the California coast. Perhaps the biggest chal-
lenge to using remotely sensed data is that the finest
temporal resolution possible is generally daily or
greater. In areas with persistent cloud cover, weekly or
even monthly composites must be used for passive
sensor data such as advanced very high resolution
radiometer (AVHRR). Hence, there can be a temporal
lag of several hours to several months between
cetacean data and satellite-derived habitat data.

Numerical ocean circulation models are another
source of habitat data for cetacean modeling. Circula-
tion models provide a time-varying, 3-dimensional
estimate of the state of the ocean, including sea surface
temperature and salinity, mixed layer depth, and the
horizontal gradients of these fields. Significant pro-
gress has been made in the development of models
that couple circulation to biological processes at lower
trophic levels, including simulating the timing and dis-
tribution of nutrients and phytoplankton (J. K. Moore
et al. 2002, Spitz et al. 2003). Progress has also been
made in modeling the transport and bioenergetics of
zooplankton populations and the early life stages of
fishes (Carlotti et al. 2000, Werner et al. 2001, Runge
et al. 2004) that may serve as prey for cetaceans.
In general, the accuracy of ocean circulation models
increases as the spatial and temporal resolution
increases. At fine scales, ocean circulation models can
simulate realistic features and dynamics, such as vari-
ability in frontal and eddy structures and its effect on
biogeochemical fields (McGillicuddy et al. 2003), but
the precise timing and location of these features may
not be accurately simulated. Data assimilation, a class
of techniques that merges observations with models
(see reviews in Bennett [1992] and Wunsch [1996]), can
improve the accuracy of circulation model predictions
(Stammer & Chassignet 2000, Hofmann & Friedrichs
2002, Robinson & Lermusiaux 2002). In areas where
oceanographic observations are present, the output of
data-assimilative models provides an interpolation of
the observations in a manner that is consistent with
the underlying ocean dynamics. There are currently
several observing and forecasting efforts that provide
daily estimates of circulation on regional (e.g. see the
special issue on ocean observing systems in the Marine
Technology Society Journal 2003, Vol. 37, Issue 3) and
basin scales (e.g. Koblinsky & Smith 2001, Rowley
et al. 2002). The amount of effort and the quality of
these products is likely to increase considerably in
the coming years with the establishment of interna-
tional ocean observing programs such as the global
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ocean observing system (GOOS) (available at: http://
ioc.unesco.org/goos/).

Cetacean–habitat models may be built at finer spa-
tial and temporal resolutions when using in situ data
rather than satellite-derived data or predictions from
oceanographic circulation models. In situ data also
provide information about water-column properties
that is not obtainable from satellite-derived data and
that may be more accurate than predictions from cir-
culation models. However, collection and processing
of in situ data is time consuming and expensive, limit-
ing the area surveyed and the frequency of such sur-
veys. In contrast, satellite imagery can provide synop-
tic coverage of broad ocean areas on a repetitive
basis. Additionally, the ‘real-time’ nature of satellite-
derived data allows cetacean management decisions
to be based on the current state of the system. Per-
haps the best data for modeling cetacean distributions
will be created by blending multiple sources of habi-
tat data to enable ‘real-time’ predictions over broad
geographic areas.

DATA CONSIDERATIONS

Critical decisions made during data processing
determine the scope of the model, including selecting
the habitat variables considered in the model and
selecting the unit of observation. Ideally, the habitat
variables will be chosen based on an a priori under-
standing of the factors influencing a species’ distribu-
tion. For species about which little is known, however,
initial models may be built using a suite of available
habitat variables. Latitude and longitude may be
included in models as proxy variables for specific habi-
tat features, such as water masses, bathymetric re-
gions, or species range limitations (Forney 2000). The
use of latitude and longitude as a general proxy for
unmeasured variables is not recommended, because
the resulting models are difficult to interpret ecologi-
cally. Similarly, the use of year as a general proxy is not
recommended if the purpose of the model is pre-
diction, because inclusion of this term precludes
prediction in a novel year.

The units of observation used in cetacean–habitat
models span a wide range of spatial scales (see the
‘Scale’ section). For example, Jaquet et al. (1996) used
grid cells ranging in size from 220 to 1780 km2 to
study the relationship between sperm whale Physeter
macrocephalus abundance, as determined from whal-
ing data, and phytoplankton pigment concentrations,
as measured from satellite data. Other units of obser-
vation that may be used in cetacean–habitat models
include strata defined by relatively uniform habitat
variables (e.g. water masses), segments of transect

lines (Jaquet & Whitehead 1996), or time spent sam-
pling (e.g. dividing transects from ship surveys into
units defined by daily effort, see Reilly & Fiedler 1994).
Some key points to consider when choosing the unit of
observation are the characteristics and resolution of
the available data, the purpose of the model, and
the scale at which the question of interest can be
effectively analyzed.

Once a candidate unit of observation has been se-
lected, cetacean and habitat variables need to be sum-
marized within each unit. Depending on the type of
data available and the purpose of the model, cetacean
data may be summarized by presence/absence
(Hamazaki 2002), abundance or relative abundance
(e.g. the number of cetaceans or cetacean groups per
unit of search effort, see Forney 1999), density (Benson
et al. 2002), or line-transect variables, such as en-
counter rate and mean school size (Ferguson et al.
2006a). When habitat data are available at a finer
resolution than the selected unit of observation (e.g.
remotely sensed habitat variables), simple averages
may be used to summarize the habitat. However, habi-
tat data are frequently available only at a relatively
coarse resolution and must be interpolated using tech-
niques such as inverse distance weighting, negative ex-
ponential distance weighting, or kriging (Cressie 1993).

Evaluation of the candidate unit of observation
should include an exploration of the autocorrelation in
the summarized cetacean data, as well as exploration
of the relationships among the habitat variables. Posi-
tive spatial autocorrelation (e.g. cetacean abundances
measured at nearby locations are more similar than
randomly associated pairs of observations) is the norm
for ecological data (Lennon 2000). Spatial autocorrela-
tion invalidates the common assumption in traditional
statistical methods that observations are independent,
and the frequency of Type I errors (i.e. mistakenly
identifying a non-significant relationship as signifi-
cant) may increase if autocorrelation is not accounted
for in cetacean–habitat models. Autocorrelation can be
assessed using statistical techniques such as Moran’s I,
Geary’s C, Mantel tests, variograms, and correlograms
(an excellent discussion of spatial statistics is provided
in a special issue of Ecography 2002, Vol. 25, Issue 5).

Methods for addressing spatial autocorrelation may
be separated into 2 general categories: (1) removing
autocorrelation from the data and (2) explicitly
accounting for autocorrelation in statistical tests and
models. Autocorrelation may be removed from the
data to investigate the influence of habitat variables
on cetacean distributions in the absence of spatial
structure. The simplest technique for removing auto-
correlation is to discard intermediate observations
until spatial independence is achieved, a process
called rarefaction. This approach may not be satisfac-
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tory for cetacean–habitat modeling in which initial
sample sizes are typically small. Alternatively, the unit
of observation can be increased to achieve spatial
independence.

The effects of spatial autocorrelation can also be
explicitly taken into account in statistical tests and
models. Tests of statistical significance may be modi-
fied by penalizing the number of degrees of free-
dom (see Legendre 1993 for an overview of these
techniques). Another option is to assess statistical
significance using permutation tests (e.g. random re-
assignment of the observations among the units of
observation) rather than traditional statistical tests. For
example, Schick & Urban (2000) used resampling and
Mantel tests to show that the distribution of bowhead
whales in the Alaskan Beaufort Sea is affected by the
presence of oil-exploration activities. Alternatively,
the information contained in the spatial structure of
the cetacean data may be directly incorporated into
cetacean–habitat models. Specifically, autocorrelation
can be included in cetacean–habitat models by
extending the predictor variables to include spatial
measures, such as sampling locations or geographic
distances (Legendre 1993), or measures of the auto-
correlation structure (Augustin et al. 1996, Keitt et
al. 2002).

An exploration of the relationships among habitat
variables may also influence the final selection of the
unit of observation. Interpretation of statistical models
is easier if all predictor variables are uncorrelated. For
example, the effects attributed to uncorrelated predic-
tor variables in a regression model (see ‘Regression
models’ in the ‘Modeling techniques’ section) are inde-
pendent of the other variables in the model (Neter et
al. 1996). The habitat variables used to model cetacean
distributions may be correlated, in which case multi-
collinearity among the variables is said to exist (Neter
et al. 1996). The presence of multicollinearity does not
prohibit the development of models that provide a
good fit to the data, nor does it affect inferences about
the mean response or predictions of the mean response
within the range of observed habitat values (Neter et
al. 1996). However, multicollinearity does affect the
interpretation of model coefficients. In particular, the
coefficients for correlated variables in regression
models will have large sampling variances and cannot
be interpreted as measuring the marginal effects of the
variables (Neter et al. 1996). Gregr & Trites (2001)
tested the colinearity of predictor variables used to
model critical habitat for sperm, sei Balaenoptera bore-
alis, fin B. physalus, humpback, and blue B. musculus
whales off the coast of British Columbia. The predictor
variables did not show significant colinearity at the
chosen unit of observation; hence, all predictor vari-
ables were considered in the models.

DESCRIPTIVE TECHNIQUES

Overlay of sightings and maps of 
habitat variables

The simplest and most frequently used technique to
describe cetacean distributions consists of plotting spe-
cies locations on maps of habitat variables, such as
bathymetry (S. E. Moore et al. 2002, D’Amico et al.
2003, Fulling et al. 2003), sea surface temperature
(Gaskin 1968, Au & Perryman 1985, Kasamatsu et al.
2000b), or the edges of sea ice (Murase et al. 2002).
Frequency of occurrence may also be calculated in
pre-defined habitat categories. For example, several
studies have mapped the frequency of species occur-
rence in regions defined by sea floor depth (Fertl et
al. 2003, Naud et al. 2003).

These overlay techniques can be used to develop a
general understanding of species spatial patterns and
distribution boundaries. However, the lack of con-
sideration or documentation of effort information in
many published overlays of species’ occurrence and
habitat variables may render the resulting maps
misleading or difficult to interpret. For example, an
analysis of 70 yr of IWC data by Kaschner et al. (2006)
showed that the majority of minke whale Balaenoptera
bonaerensis catches around the Antarctic continent
occurred at depths between 2000 and 4000 m. These
results could be interpreted as suggesting that minke
whales, generally considered to prefer coastal or shelf
water, predominately occurred in the deeper waters
around the Antarctic continent during the time period
examined (Kaschner et al. 2006). Simple catch fre-
quencies per environmental stratum are misleading,
however, because effort data must be included in the
analysis. When relative encounter rates, defined as the
proportion of minke whale catches in the total catch,
were plotted, it was apparent that minke whales were
more frequently encountered at shallower depths
(Kaschner et al. 2006).

Although whaling operations may represent an
extreme case of skewed effort distributions, hetero-
geneous survey effort relative to habitat variables
can occur in designed surveys. Therefore, correcting
sighting frequencies for effort, using relative indices
of abundance or encounter rates (Kasamatsu et al.
2000b, Griffin & Griffin 2003, MacLeod et al. 2003),
or producing stratified estimates of cetacean den-
sities is recommended. Alternatively, categories of
habitat variables may be defined so that they con-
tain equal effort. For example, Baumgartner (1997)
defined depth categories containing equal survey
effort to understand the distribution of Risso’s dol-
phins Grampus griseus in the northern Gulf of
Mexico.
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Correlation analysis

Correlation analysis can be used to investigate the
relationship between species occurrence and a single
habitat variable (e.g. Kasamatsu et al. 2000a). Para-
metric correlation analyses assume that all variables
have a normal distribution. Griffin (1997) used data
transformations to achieve normality in a parametric
correlation analysis of the relationship between odon-
tocete distributions and habitat variables along the
southern edge of Georges Bank. Alternatively, Jaquet
et al. (1996) used Spearman’s rank correlation analysis,
a non-parametric technique, to relate the distribution
of sperm whale catches to chlorophyll concentration.

The most important assumption in both parametric
and non-parametric correlation analyses is that the
functional relationship between variables is linear.
Linear relationships, effectively representing simple
direct or indirect resource selection along a habitat
gradient, are considered rare or unlikely (Austin 2002,
Oksanen & Minchin 2002). Hence, although exploring
simple linear relationships may be an appropriate
starting point for species about which little is known,
lack of a significant correlation does not necessarily
imply that there is no relationship between the species
and the habitat variable.

Goodness-of-fit metrics

Goodness-of-fit techniques can be used to test hypo-
theses concerning frequencies of observations. This
section focuses on the use of goodness-of-fit techniques
for hypothesis testing, and thus is included under the
general framework of descriptive techniques; good-
ness-of-fit techniques can also be used in model evalu-
ation, which is discussed in the ‘Model evaluation’
section. In a hypothesis testing context, goodness-of-fit
tests have been used to determine whether cetacean
occurrence is evenly distributed with respect to one or
more classes of habitat variables (Hui 1979, 1985, Smith
et al. 1986, Selzer & Payne 1988, Brown & Winn 1989,
Ribic et al. 1991, Waring et al. 1993, Woodley & Gaskin
1996, Baumgartner 1997, Raum-Suryan & Harvey 1998,
Davis et al. 2002, Elwen & Best 2004a,b). The chi-
squared test and G-test (or log-likelihood ratio test) are
the most commonly used goodness-of-fit techniques in
cetacean–habitat studies. These tests are well suited to
handle categorical habitat variables; continuous habitat
variables must be divided into 2 or more contiguous
classes.

Smith et al. (1986) used chi-squared techniques to
test the null hypothesis that cetacean occurrence was
randomly distributed with respect to chlorophyll con-
centrations off the California coast. Results indicated

that some cetacean species occurred more frequently
in regions of higher chlorophyll concentration, provid-
ing a foundation to help interpret observed distribution
patterns. Moore et al. (2000) also used chi-squared
goodness-of-fit tests to investigate habitat selection for
3 cetacean species off the northern coast of Alaska.
Approximately 2000 cetacean sightings, collected dur-
ing 10 yr of aerial surveys, were available for this
study; however, the only habitat features recorded on
the same temporal and spatial scale as the cetacean
sightings were water depth and sea ice cover. Moore et
al. (2000) stratified the study area using these 2 habitat
variables to test the null hypothesis that the distribu-
tion of cetacean sightings was proportional to survey
effort in all habitat categories. Results from the chi-
squared analysis were used to describe seasonal depth
and ice cover habitats. Jaquet & Gendron (2002) used
the G-test to determine whether sperm whales were
uniformly distributed with respect to 3 habitat va-
riables (depth, underwater relief, and sea surface
temperature) at a range of spatial scales in the Gulf
of California. The significance of the G-test was de-
pendent on both the scale and oceanographic feature.

The Kolmogorov–Smirnov test is a non-parametric
goodness-of-fit test that is applicable to continuous
frequency distributions and is useful for small sample
sizes. This test can be used to evaluate whether a species
is distributed randomly with respect to a habitat vari-
able (i.e. the distributions of cetacean abundance and
the values of the habitat variable are identical), with-
out the arbitrary categorization of continuous habitat
variables that is necessary for both the chi-squared
test and G-test. Hooker et al. (2002) used the Kol-
mogorov–Smirnov test to compare the distribution of
effort and encounter data relative to 2 habitat variables,
bottom depth and slope, for northern bottlenose whales
near a submarine canyon and found that both bathymet-
ric features may influence the population’s distribution.

Goodness-of-fit techniques are computationally sim-
ple, can be used with relatively small sample sizes, and
can be applied to continuous and categorical data. These
attributes make goodness-of-fit techniques a popular
choice for cetacean–habitat analyses, because it is often
difficult to obtain a large number of cetacean sightings
with simultaneous habitat data collected at an appropri-
ate resolution. However, caution is needed when apply-
ing chi-squared tests and G-tests, because the definition
of habitat categories affects the outcome of the tests. In
particular, the selection of categories for continuous
habitat data is subjective; alternative definitions may
reveal different relationships, making Kolmogorov–
Smirnov tests generally preferred. Additionally, good-
ness-of-fit metrics cannot be used to quantify cetacean–
habitat relationships, although use of these techniques
may indicate that a relationship exists.
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Analysis of variance

Analysis of variance (ANOVA) techniques have been
used to examine whether cetacean species or species
groups can be differentiated with respect to habitat
variables (Mullin et al. 1994, Davis et al. 1998, Gardner
& Chavez-Rosales 2000). This section describes the use
of ANOVA techniques for hypothesis testing, and thus
is included under the general framework of descriptive
techniques; use of ANOVA for predictive modeling is a
special form of generalized linear modeling, which is
discussed in ‘Regression models’ in the ‘Modeling tech-
niques’ section. In hypothesis testing, ANOVA is used
to compare the means of a single habitat variable for
several cetacean species or species groups. Statistically
significant results provide evidence of differences
among groups, but do not identify which means differ
from one another. Multiple, unplanned comparison
tests (e.g. Tukey–Kramer, Scheffé’s) can be used to
identify differences among means. For example, Mullin
et al. (1994) detected differences in mean water depths
among 7 cetacean species or species groups in the
northern Gulf of Mexico using ANOVA. Using Dun-
can’s multiple range test, Mullin et al. (1994) were able
to identify depth characteristics for pantropical spotted
dolphins and sperm whales (lower continental slope),
pygmy and dwarf sperm whales and Risso’s dolphins
(upper continental slope), and Atlantic spotted dolphins
and bottlenose dolphins (continental shelf and upper
continental slope).

Multivariate analysis of variance (MANOVA) is an
extension of ANOVA that is used to detect differences
among group means for many habitat variables simul-
taneously. As with ANOVA, identification of detected
differences requires the use of additional techniques,
such as discriminant function analysis (DFA). DFA is
an ordination technique (see ‘Ordination’, this section,
for a discussion of other ordination techniques) that
reduces the dimensionality of multivariate data by
finding linear combinations of the habitat variables
that best differentiate among species or species
groups. Often 1 or 2 of the linear combinations of habi-
tat variables will capture most of the variability. These
linear combinations can be used to determine which
habitat characteristics influence the species differ-
ences detected by MANOVA and to evaluate success
in classifying sightings among species based on
habitat variables. Baumgartner et al. (2001) used
MANOVA and DFA to examine habitat differences
among several cetacean species and species groups
found in the northern Gulf of Mexico. Like Mullin et al.
(1994), Baumgartner et al. (2001) found cetacean habi-
tat to be strongly partitioned by water depth. However,
the DFA also indicated that sperm whales were found
in waters with a shallower 15°C isotherm than the

other cetaceans. These results suggested that sperm
whales avoided warm-core eddies in the northern Gulf
of Mexico. Reilly (1990) used MANOVA techniques
to examine differences in water column properties
among 3 dolphin groups in the eastern tropical Pacific
Ocean; DFA was then used to assess success in classi-
fying sightings among the 3 dolphin groups based on
water column properties.

ANOVA and MANOVA can be used to compare
habitat among different species or groups. Both tech-
niques assume that the data for each group are nor-
mally distributed and that the group variances are
similar. Although these techniques are valid for small
departures from these assumptions, large departures
may require data transformation or the use of non-
parametric statistics (e.g. rank-transformation of habi-
tat data used in MANOVA or Mood’s median or
Kruskal–Wallis tests as non-parametric substitutes for
ANOVA). Direct comparisons of habitat data for differ-
ent species also assume that sighting conditions and
detection probabilities are identical for all groups. This
assumption of similar sighting conditions is typically
valid when all sightings are derived from the same
source (e.g. a platform used during a single survey).
Caution, however, is warranted when comparisons are
made between species with vastly different detection
probabilities (e.g. harbor porpoise and humpback
whales). Similar to other descriptive techniques, clas-
sification studies using ANOVA, MANOVA, or their
non-parametric equivalents can only be used to detect
a relationship between cetacean distributions and
habitat variables; these techniques, however, cannot
be used to quantify the relationship.

Ordination

Ordination is a class of multivariate statistical tech-
niques used to arrange species along habitat gradients
(Jongman et al. 1995). These techniques partition the
variance in cetacean abundance among axes that are
orthogonal, or mutually independent, linear combina-
tions of measured or latent (i.e. unknown or theoreti-
cal) habitat variables (Jongman et al. 1995). Ordination
axes represent a smaller set of new predictor variables
that capture the patterns in the original predictor vari-
ables (Jongman et al. 1995). The power of ordination
techniques lies in this ability to reduce the dimension
of multivariate data to a level that is easier to interpret.
Hence, ordination techniques are valuable tools for
exploring relationships in community ecology, which
typically involve multiple species and habitat variables
that may be best analyzed simultaneously.

Examples of ordination techniques include principal
components analysis (PCA), redundancy analysis
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(RDA), correspondence analysis (CA), and canonical
correspondence analyses (CCA) (Jongman et al. 1995).
PCA and RDA assume linear relationships between
cetacean distributions and the latent or measured
habitat variables. CA and CCA assume unimodal rela-
tionships between cetacean distributions and habitat
variables (Jongman et al. 1995), thereby avoiding the
potentially unrealistic assumption of linear species–
habitat relationships. PCA and CA are ‘indirect gradi-
ent analysis’ techniques, because the axes are com-
prised of latent habitat variables and are typically in-
terpreted indirectly using additional information about
the habitat characteristics of the sampling sites. RDA
and CCA are ‘direct gradient analysis’ techniques that
extend PCA and CA by incorporating measured habi-
tat variables directly into the ordination. For example,
in CCA, the canonical axes are linear combinations of
the measured habitat variables. The axes are chosen
to maximize the dispersion, or spread, of the species
scores, which are defined as the average of the mea-
sured habitat values at the sites where the species was
present (Jongman et al. 1995). Hence, the canonical
axes are comprised of the habitat characteristics that
provide the maximum differentiation among species.

The results of PCA, RDA, CA, and CCA can be 
easily interpreted from ordination diagrams (Fig. 3). In
PCA, each species is represented by a vector, graphi-
cally displayed as an arrow, indicating the direction

in which the species’ abundance increases most with
respect to the latent habitat variables represented by
the axes (Jongman et al. 1995). The length of the arrow
is proportional to the corresponding rate of change in
abundance. In CA, arrows are used to represent the
latent habitat variables, while in RDA and CCA arrows
represent specific habitat variables. Longer arrows are
associated with the latent or measured habitat vari-
ables that have the greatest explanatory power (Jong-
man et al. 1995). In RDA, CA, and CCA, species and
sampling sites are represented by points. Sites that
tend to have a high abundance of a given species
are located close to the point for that species in the
ordination diagram (Jongman et al. 1995).

Reilly & Fiedler (1994) used CCA to examine habitat
use by the dominant dolphin species in the eastern
tropical Pacific. Species studied included spotted
Stenella attenuata, spinner, common Delphinus del-
phis, and striped S. coeruleoalba dolphins; all of these
species are affected by the purse seine tuna fishery.
Common dolphins were separated from spotted and
spinner dolphins based on their associations with cool
upwelling habitat and warm tropical habitat, respec-
tively (Fig. 3). Whitebelly and eastern spinner dolphins
both occurred in tropical water, but were separated by
thermocline topography (Fig. 3). Overall, the habitat
data explained 15% of the variance in the species data,
ranging from 34% of the variance for common dol-
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phins to 5% of the variance for whitebelly spinner
dolphins.

Ordination techniques reduce the dimensionality of
many, potentially interacting, variables to provide
quantitative habitat definitions. CCA can be used to
understand species distributions relative to the original
habitat variables included in the analysis, the habitat
gradients defined by the axes, and the habitat charac-
teristics of the other species included in the analysis.
Advantages of CCA over other ordination techniques
include the assumption of unimodal, rather than linear,
species–habitat relationships and the direct incorpora-
tion of habitat variables in the ordination. Additionally,
CCA is insensitive to the high frequency of zero ob-
servations common in most cetacean surveys. A dis-
advantage of CCA is that it typically explains less vari-
ance than indirect gradient methods, such as CA,
because the axes are restricted to linear combinations
of the measured habitat variables (Jongman et al.
1995). Application of both CA and CCA is restricted to
species–habitat relationships that are predominantly
unimodal. The most common application of all ordina-
tion techniques is the exploration of species–habitat
relationships, making them subject to the general
limitations of descriptive techniques.

MODELING TECHNIQUES

Environmental envelope models

Environmental envelope modeling is the simplest
technique available for quantifying large-scale rela-
tionships between cetacean distributions and habitat
variables. Traditionally, subjective outlines of species
ranges were derived from overlay analyses (see over-
lay of sightings and maps of habitat variables in the

‘Descriptive techniques’ section) to define potentially
suitable habitat (e.g. Jefferson et al. 1993). Species’
ranges produced using this technique can show con-
siderable variation. Environmental envelope modeling
is a more objective approach that generates repro-
ducible results using clear and modifiable assump-
tions. Specifically, an envelope defined by minimum
and maximum values of the habitat variables is
calculated so that the envelope encompasses a pre-
determined percentage of the observed species’
occurrences. Fitted envelopes are generally multi-
dimensional and may range from simple rectilinear
shapes to more complex polytopes. Although envelope
models are an objective approach, extrapolations
based on these models or the results of models built
from sparse data may benefit from cross checking
against expert opinion.

Kaschner et al. (2006) developed a rule-based enve-
lope model to map global distributions of 115 marine
mammal species. Species were assigned to broad-
scale habitat categories defined by depth, sea surface
temperature, and ice edge association based on pub-
lished quantitative and qualitative habitat preference
data (Fig. 4). Habitat variables were averaged within
0.5° latitude and longitude grid cells; relative habitat
suitability for a particular species was determined by
relating the broad-scale habitat categories to the habi-
tat averages for each cell. Validation of the model
using large-scale, long-term data sets indicated that
the model captured a significant amount of the ob-
served variability in occurrence for several well-
studied species. Additionally, the distributions pre-
dicted by the model closely matched published ranges
for most species. The model results, however, provide
more information about species distributions than the
published ranges, because they illustrate the hetero-
geneity in suitable habitat within a species’ range.
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Fig. 4. An environmental envelope model, developed by Kaschner et al. (2006), assigning Sowerby’s beaked whales Mesoplodon
bidens to broad-scale habitat categories defined by depth, sea surface temperature, and ice edge association based on published
quantitative and qualitative (e.g. expert opinion) habitat usage data. The habitat categories are represented by the trapezoidal
probability distributions; frequency distributions of ‘presence’ cells are included for comparison. The analyses suggest that this
species occurs mainly on the continental slope in subpolar (e.g. warm temperature) waters and has no association with the ice
edge. Envelope models were also developed for 115 other species of marine mammals. These models were used to map global 

species distributions, which can be viewed in Kaschner (2004)

Mainly continental slope

Si
gh

tin
gs

Subpolar – warm temperature No association with ice edge



Mar Ecol Prog Ser 310: 271–295, 2006

The vast distribution of many cetacean species, as
well as the difficulty of conducting dedicated cetacean
surveys, restricts the application of data-intensive
modeling techniques to select species and regions.
Environmental envelope models do not require large
samples sizes and can be applied to data sets in which
effort information is missing. Hence, these models can
be used to evaluate assumptions about the occurrence
of infrequently studied species. Envelope models can
also be used to test hypothesized ecological relation-
ships between species distributions and habitat char-
acteristics because of their simple conceptual frame-
work. The benefits of envelope models, however, come
with a sacrifice of ‘detail for generality’ (Gaston &
McArdle 1994). Hence, these models are best applied
to broad questions about large-scale species distribu-
tions. Interpolation to finer scales or novel geographic
areas must proceed with caution because the broad,
static nature of environmental envelope models may
obscure important cetacean–habitat relationships.

Regression models

Regression is one of the most commonly used tech-
niques to model the relationship between cetacean
distributions and one or more habitat variables. Re-
gression encompasses a broad range of techniques
that differ in their assumptions about the distribution of
the variables and the functional form of the relation-
ship. The simplest technique is linear regression,
which relates the variability in n observed values, Yi

(i = 1, …, n), to a sum of linear functions of k predictor
variables, Xij ( j = 1, …, k), such that:

where α is the intercept term, εi is a stochastic error
term, and the coefficients, βj , represent the change in
the mean response, Ŷ, for a unit change in the inde-
pendent variable Xj, assuming all other independent
variables are held constant. Both the mean response,
Ŷ, and the error terms are assumed to have a normal
distribution. The predictor variables, Xij, can either be
categorical or continuous. Many classical significance
tests (e.g. the t-test and ANOVA) are special forms
of linear regression.

Linear regression produces a model that is relatively
simple to understand and apply. Hooker et al. (1999)
used linear regression to understand cetacean habitats
in a proposed marine protected area on the Scotian
Shelf. Their results quantitatively demonstrate sig-
nificant depth preferences for the species in their study
area, from which they were able to propose reserve
boundaries. Data transformations can be used to

achieve normal error distributions or to better approxi-
mate a linear relationship between the response and
one or more predictors. For example, Benson et al.
(2002) used linear regression of log-transformed
cetacean densities to investigate the effects of habitat
variables in Monterey Bay, California. This analysis
helped interpret changes in cetacean assemblages
relative to large-scale changes in oceanographic con-
ditions (e.g. El Niño and La Niña). Higher-order terms
of predictor variables and interactions among predictor
variables can also be included in linear regression
models. Additionally, regression models are ideally
suited for dealing with variables that are not of imme-
diate interest in habitat analyses but which may affect
the response variable. For example, although sea state
is not a habitat variable, it may be included as an in-
dependent variable in habitat regression analyses,
because it can affect cetacean encounter rates.

Situations may arise, however, in which more sophis-
ticated techniques are needed to deal with discrete
response variables and non-normal error distributions.
Generalized linear models (GLMs) use a link function
to induce linearity between response and predictor
variables, incorporate non-constant variances directly
into analyses, and constrain the response within a
specific range (e.g. a positive response or a response
from 0 to 1). For example, logistic regression can be
used to relate binary response variables, such as
cetacean presence/absence, to habitat variables. In a
logistic GLM, the logit transformation of the prob-
ability, p, that y = 1 (e.g. indicating cetacean presence)
is a linear function of predictor variables, such that:

Logistic regression has been used to investigate habi-
tat for a number of cetacean species, including North
Atlantic right whales (Moses & Finn 1997, Baum-
gartner et al. 2003), sperm whales (Waring et al. 2001,
Davis et al. 2002), humpback whales (Yen et al. 2004b,
Tynan et al. 2005), beaked whales (Waring et al. 2001),
and small cetaceans (Davis et al. 2002, Hamazaki 2002,
Yen et al. 2004b, Tynan et al. 2005). Poisson regression,
another form of GLM, can be used when the response
variable is a count, with large outcomes being rare
events. Cañadas et al. (2002) used Poisson regression
to relate cetacean encounter rates to physiographic
habitats defined by depth and slope. Gregr & Trites
(2001) used Poisson regression to predict critical habi-
tat off the coast of British Columbia for 5 whale species
(sperm, fin, sei, humpback, and blue whales).

Both linear regression and GLM assume that the
relationship between the response variable (or some
linking function of the response variable) and the pre-
dictor variables is parametric (for example, a linear or
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quadratic relationship), which may be an unrealistic
assumption for many cetacean–habitat relationships.
Generalized additive models (GAMs, Hastie & Tibshi-
rani 1990) are a non-parametric extension of GLMs, in
which the linear function of the predictor variables is
replaced by a smoothing function, fj (Xij), such that:

(Fig. 5). Smoothing functions include moving averages,
running medians (Goodall 1990), smoothing splines
(Eubank 1988, Wood 2003, Wood & Augustin 2003),
and kernel smoothers (Hardle 1991). Selection of a
smoothing function may be based on ease of cal-
culation, weighting schemes, degree of smoothness,
or resistance to outliers (see Goodall [1990] for a
discussion of these issues).

Hedley et al. (1999) developed methods for applying
GAMs to cetacean–habitat data collected during strip
and line-transect surveys. Forney (1999) detected a sig-
nificant, non-linear effect of sea surface temperature on
harbor porpoise sighting rates using a Poisson-based
GAM. Forney (2000) applied GAMs to understand the
effect of habitat variability on estimates of cetacean
abundance and showed that variability in sighting rates
for Dall’s porpoise Phocoenoides dalli and short-beaked
common dolphins were partially accounted for by
changes in habitat variables. Most of the cetacean–
habitat relationships in Forney’s (2000) study were non-
linear. Ferguson et al. (2006b) also used GAMs to exam-
ine beaked whale habitat in the eastern Pacific Ocean.

GAMs can be used when the response variable is bi-
nary (i.e. presence/absence data), discrete (e.g. count
data), or continuous. Perhaps the greatest benefit of
using GAMs, however, is their flexibility in capturing
non-linear cetacean–habitat relationships (Fig. 5). A
major assumption of GAMs is that the effects of predic-

tor variables are additive; GAMs are less efficient than
GLMs when interactions among predictor variables
are present, especially when the number of predictor
variables is large. The results of GAMs may also
be more difficult to interpret ecologically than GLM
results, because the smoothed cetacean–habitat rela-
tionships produced by GAMs may not be a simple
functional form.

Currently, regression is the most common technique
for modeling cetacean–habitat relationships. Choice of
a specific regression technique depends upon the
characteristics of the data set and the purpose of the
model. Caution must be used to ensure that the
theoretical assumptions of the technique are not vio-
lated. All regression techniques assume independence
among the observations of the response variable; this
assumption is violated by spatially or temporally auto-
correlated data (see the ‘Data conderations’ section).
Caution is also needed when using regression models
to predict cetacean distributions. Cetacean–habitat
regression models must be developed using observa-
tions that span a wide range of spatial and temporal
habitat variability to describe general ecological rela-
tionships. Additionally, the parameter α in cetacean–
habitat regression models represents a baseline, such
as the probability of a cetacean sighting in logistic re-
gression, which may vary spatially or temporally. Con-
sequently, application of regression models to predict
cetacean distributions may be limited by the spatial
and temporal availability of survey and habitat data.

Classification and regression trees

Tree-based models provide a completely non-para-
metric alternative to linear and additive regression
models; classification trees are used when the re-

sponse variable is categorical, and regres-
sion trees are used when the response
variable is numeric. The goal of a tree-
based model is to resolve relationships
within a complex data set by producing
the best empirical classifier (Breiman et
al. 1984). This classifier is a binary tree
that is created by a recursive partitioning
method that successively divides the
data into increasingly homogeneous sub-
groups. Specifically, the tree originates
from a single ‘root’ that includes the
entire data set. At each split, 2 ‘daughter
nodes’ containing subsets of the data are
produced; these nodes are then evaluated
for further splitting. Each split is based on
the single predictor variable that pro-
duces the most homogeneous data sub-
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Fig. 5. Generalized additive models can be used to explore the shape of
cetacean–habitat relationships. In this hypothetical example, smoothing
splines were used to model the relationship between cetacean encounter
rate and several habitat variables. A linear fit was selected between
encounter rate and distance to shore. A smoothing spline with 2 degrees of
freedom suggests that encounter rates may level off with increasing temper-
ature, while a smoothing spline with 3 degrees of freedom captures a peak 

in encounter rate at a depth of approximately 3500 m
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sets as evaluated by a statistical metric such as the
deviance (see the ‘Model fitting’ section). The tree ends
with a set of ‘terminal nodes’ that show the prediction
or classification rules. Without a rule that determines
when to stop the binary partitioning, these ‘terminal
nodes’ would contain only 1 data point. Cross valida-
tion is commonly used to determine an appropriate
stopping point; it selects the tree-based model that has
the highest prediction accuracy for an independent
data set (see the ‘Model evaluation’ section for further
details).

Tree-based models have been used to predict the at-
sea distribution of marbled murrelets (Yen et al. 2004a)
and to identify odontocete species from acoustic
recordings (Oswald et al. 2003); currently there are no
published examples using tree-based models to ex-
plore cetacean–habitat relationships. One potential
advantage that can be gained from using tree-based
rather than regression models to explore cetacean–
habitat relationships is the ability of tree-based models
to explicitly and intuitively capture non-additive rela-
tionships (i.e. interactions) among predictor variables.
Tree-based models are also easy to interpret, particu-
larly when categorical and numeric predictor variables
are combined. Only predictor variables that create
homogeneous data subsets, and hence explain some of
the variation in the response variable, are retained in
the model. Classification and regression trees, how-
ever, require large data sets (Michaelsen et al. 1994),
which are not common in cetacean–habitat studies.
Tree-based models also produce discrete predictions
of cetacean–habitat relationships; hence, they cannot
capture smooth gradients in the response of cetaceans
to habitat variables. Caution is also needed when
using tree-based models, because the tree structure
may be unstable (i.e. small changes in the data may
lead to a different series of splits).

MODEL FITTING: PARAMETER ESTIMATION,
MODEL SELECTION, UNCERTAINTY ESTIMATION

Parameter estimation

Fitting a statistical model consists of 3 steps: para-
meter estimation, model selection, and uncertainty
estimation. Parameter estimation is an integral compo-
nent of the model selection process, and the 2 steps are
often conducted iteratively because the appropriate
model form is not known a priori and parameter esti-
mates are necessary to evaluate candidate models. The
third step, estimating uncertainty, is infrequently
included in the model fitting process, but it is a critical
component in quantifying the limitations of our knowl-
edge and modeling techniques.

Statistical modeling techniques rely on parameter es-
timation to quantify cetacean–habitat relationships.
The primary methods used to estimate parameters in-
clude least squares, maximum-likelihood, and Baye-
sian techniques. The method of least squares is com-
monly used to estimate parameters in linear regression
models; it assumes a normal (i.e. Gaussian) error distri-
bution for the response variable. In particular, least
squares methods use analytical solutions or numerical
search procedures to find the parameter values that
minimize ∑(Yi – Ŷ )2, where Yi is the observed value of
the response variable and Ŷ is the value predicted by
the model (Neter et al. 1996). If the distribution of the
response variable is not normal, maximum-likelihood
methods are typically used to derive parameter esti-
mates (Sokal & Rohlf 1995). The likelihood function
summarizes the information about the unknown para-
meters provided by the data (Collett 1991). Specifically,
the likelihood defines the probability density of the
data as a function of the unknown parameters. Maxi-
mum-likelihood methods use analytical solutions or nu-
merical search procedures to find the parameter values
that maximize the probability of obtaining the observed
data given the hypothesized model and parameter esti-
mates (Hilborn & Mangel 1997). Consequently, maxi-
mum-likelihood methods require explicit knowledge or
assumptions about the probabilistic mechanisms gener-
ating the observed values of the response variable (i.e.
the probability distribution of the response variable).

Bayesian techniques provide a framework for incor-
porating prior information (such as data from previous
studies or expert opinion) about the distribution of
the parameters into estimation procedures (Hilborn &
Mangel 1997). Specifically, Bayes’ theorem updates
the prior information with the likelihood of the data to
derive the posterior probability distribution, which is
the probability of the hypothesized parameter esti-
mates given the observed data and the specified model
structure (Hilborn & Mangel 1997). For most cetacean
species, little information exists from which to con-
struct prior probability distributions. Consequently,
it may be necessary to use information from other
species, regions, or time periods.

One advantage of using Bayesian techniques is that
the prior probabilities define the uncertainty associ-
ated with the range of parameter values considered in
model fitting, clarifying the assumptions used in the
parameter estimation process. Additionally, new data
can easily be incorporated into a Bayesian analysis by
using the posterior distribution from the original ana-
lysis as the prior distribution for the new analysis.
This prior distribution is updated with the likelihood
function of the new data to create a new posterior dis-
tribution, which gives the probabilities of the revised
parameter estimates.
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Historically, the application of Bayesian techniques
was limited to simple models for which analytical solu-
tions could be derived (e.g. linear regression with a
normally distributed response variable). The advent of
fast computers has made it possible to apply Bayesian
techniques to a wide range of models, including non-
linear models and models with a large number of vari-
ables. For example, Qian et al. (2003) discuss using
Markov chain Monte Carlo simulation techniques to
solve the difficult problem of sampling from a high-
dimensional distribution, which arises for models with
a large number of variables.

Model selection

Parameter estimation is the common element in the
wide variety of approaches to model selection. Typi-
cally, model selection is not used when the purpose of a
model is to test specific hypotheses (e.g. Baumgartner
et al. 2003). Model selection, or determining which
variables should be included in a model, is an impor-
tant component of developing predictive models. A
computationally simple approach to model selection
consists of simultaneously estimating the parameters
for all variables in a model and retaining only those
variables for which the parameter estimate is signifi-
cantly different from 0, as assessed using statistical
tests such as a t-test (Neter et al. 1996). At the other
end of the spectrum, separate tests can be used to
assess the significance of the relationship between the
response variable and each predictor variable; a mul-
tivariate model is then fit, and parameter values are
estimated using all variables for which a significant
relationship existed. A primary problem with both of
these approaches is that the Type I error rate is com-
promised because multiple comparisons are made
using the same data.

Model selection can also proceed by evaluating can-
didate models composed of different combinations of
the predictor variables to determine the best fit to the
observed data. For example, sequential selection
methods can be used to serially test each predictor
variable for inclusion in a model. Forward selection
starts with a null model to which a single predictor
variable is added at each step in the procedure. Predic-
tor variables are added in the order that optimizes the
model selection criterion; the procedure is terminated
when the addition of variables no longer increases the
fit of the model, as judged by the model selection crite-
rion. Backward selection, by contrast, begins with the
global model (the model containing all of the variables)
from which variables are sequentially removed to opti-
mize the model selection criterion. Forward–backward
selection is an amalgam in which previously selected

variables are re-examined for inclusion in the model
each time a new variable is added to the model
(Burnham & Anderson 1998). Alternatives to sequen-
tial selection procedures include testing all possible
variable combinations (also known as ‘all subsets’ or
‘exhaustive search’ selection methods) or testing a
specific subset of candidate models. The exhaustive
search method requires computation and evaluation of
all 2K candidate models, where K is the number of vari-
ables in the model; this approach can be prohibitively
time consuming. In contrast, a subset of candidate
models may be selected for evaluation if a priori infor-
mation exists about the cetacean–habitat relationship.

Evaluation of the candidate models to determine
which combination of variables provides the best fit to
the observed data proceeds using a model selection
criterion. Common model selection criteria include
deviance (i.e. likelihood ratio tests), Akaike’s informa-
tion criterion (AIC), and Bayesian information criterion
(BIC). Deviance (D) is calculated using likelihood func-
tions, such that:

where L^c is the maximized likelihood of the current
model and L^f is the maximized likelihood of a full
model that fits the data perfectly (i.e. a model in which
the number of parameters is equal to the number of
data points) (Collett 1991). The full model is not useful
except as a measure of comparison, because it does not
provide any summarization of the data. However, the
change in the deviance between 2 nested models (i.e.
D1 – D2, where Di is the deviance for model i and
Model 2 contains a subset of the variables considered
in Model 1) allows a relative assessment of which
model provides a better fit to the data (Collett 1991).
The statistical significance of the change in deviance
can be assessed, because the change in deviance
approximates a chi-squared distribution in which the
degrees of freedom are equal to the difference in the
degrees of freedom between the 2 models (Collett
1991). In general, a large decrease in deviance indi-
cates that the variable under consideration should be
included in the model. Caution is needed when using
the change in deviance to select the best-fit model,
because comparisons are restricted to nested models
(Burnham & Anderson 1998, Anderson et al. 2000,
Johnson & Omland 2004) and the results may de-
pend upon the order in which models are compared
(Johnson & Omland 2004).

AIC can be used to compare nested or non-nested
models (Hilborn & Mangel 1997). AIC attempts to
select the model that provides the best fit to the data,
as measured by a decrease in variance, while minimiz-
ing the number of variables included in the model,
which reduces the bias in the model. Specifically, AIC

D L Lc f(log ˆ log ˆ )= − −2

287



Mar Ecol Prog Ser 310: 271–295, 2006

is defined as 2log L^c + 2pi , where L^c is the maximized
likelihood of the current model and pi is the number of
variables in the model (Hilborn & Mangel 1997). The
term 2pi is a penalty term; the strength of the penalty
increases with the number of variables included in the
model. Thus, the AIC model selection criterion opti-
mizes the trade-off between bias and variance. AIC is
meaningful only on a relative scale; therefore, AIC
differences between models are more important than
the AIC values themselves. AIC differences <2 provide
no credible evidence that one model is better than
another, while AIC differences >4 provide evidence
that the model with the smaller AIC value provides a
better fit to the observed data (Burnham & Anderson
1998). In general, larger AIC differences provide
stronger evidence that one model provides a better fit.
Alternative forms of AIC have been developed to deal
with small-sample bias (AICc) and overdispersion
(QAIC and QAICc) (Burnham & Anderson 1998). While
AIC does provide a solution to comparing non-nested
models, this model selection criterion can only be used
to test competing models fit to the same data set, using
the same definitions of the predictor variables (e.g.
data cannot be grouped in one model and ungrouped
in another model) and the same response variable
(e.g. it is not valid to compare ln[y] with y) (Burnham &
Anderson 1998).

Two Bayesian techniques, the Bayes factor and the
BIC, can also be used as model selection criteria. The
Bayes factor is defined as the ratio of the posterior odds
(defined as the ratio of the posterior probabilities of the
2 models under consideration) to the prior odds
(defined as the ratio of prior probabilities of the 2 mod-
els) (Kass & Raftery 1995). Hence, the Bayes factor
summarizes the evidence in the observed data for one
model over another (Kass & Raftery 1995). The Bayes
factor can be used to compare non-nested models and
has the advantage of explicitly incorporating prior
information into the model selection process. However,
the Bayes factor is sensitive to the assumptions in the
likelihood function and the prior distribution, and an
assessment of this sensitivity should be conducted as
part of the model selection process (Kass & Raftery
1995). The BIC (also known as the Schwarz criterion)
approximates the logarithm of the Bayes factor in large
samples. It assumes that the prior distribution is normal
rather than requiring an explicit definition of the dis-
tribution (Wintle et al. 2003). In general, BIC selects
simpler models than AIC and its derivatives, because
BIC penalizes additional variables more heavily.

Cross validation can be combined with any of the
model selection criteria to determine the model that
gives the most accurate predictions. In cross validation,
subsets of the original data set are iteratively withheld
during model fitting. During model selection, the

predictive accuracies of the resulting best-fit models
are evaluated using the withheld data. For example,
Ferguson et al. (2006a) used 6 yr of data to model del-
phinid–habitat relationships in the eastern tropical
Pacific Ocean. Their original data set was divided into
5 subsets, each of which excluded a single year of data.
They fit GAMs of delphinid encounter rates and school
sizes to these 5 data subsets using a forward–back-
ward procedure with AIC as the model selection crite-
rion. The resulting 5 best-fit models were used to pre-
dict delphinid encounter rates and school sizes for the
excluded year of data. The model with greatest agree-
ment between observed and predicted values was
selected as the final model.

Estimating uncertainty

The final step in model fitting is determining the
uncertainty in the parameter estimates of the selected
model as well as the uncertainty in the model predic-
tions. Sampling, process, and model selection errors
contribute to model uncertainty. Sampling error occurs
during data collection and arises due to the sample
design and the resolution of collected data. Attempts to
minimize sampling error occur during sample design,
and this source of uncertainty is not generally ad-
dressed during model fitting. Process error arises
from the inherent stochasticity in ecological processes.
For example, the mechanistic processes determining
cetacean distributions are not, and may never be, fully
understood; consequently, cetacean–habitat models
do not perfectly predict cetacean distributions. Addi-
tional sources of error result from the model selection
process. Model selection criteria are restricted to
evaluating specific types of models (e.g. nested vs.
non-nested models), and the output of model selection
procedures may be subject to the order in which vari-
ables are considered. Furthermore, selecting a single
best model can lead to biased parameter estimates,
implying that the expected value or mean parameter
estimate differs from the true, but unknown, value of
the parameter (Burnham & Anderson 1998). If the opti-
mal model is not selected or the parameter estimates
are biased, predictions derived from the model will be
subject to error. The precision or amount of variability
in parameter estimates and model predictions are
another component of model uncertainty. Factors that
may influence the precision of parameter estimates
include correlations among predictor variables and
overfitting the model (i.e. including non-significant
predictor variables).

A variety of methods exist to assess uncertainty in
parameter estimates and model predictions arising
from process and model selection error. For example,
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uncertainty may be represented by confidence inter-
vals. In classical (Neyman–Pearson) statistics, con-
fidence intervals define the upper and lower limits
that would contain the true mean of the parameters or
model predictions in a specified percentage of samples
(typically 95%) if the samples were repeatedly drawn
from the population and the analytical methods used
to derive estimates or predictions remained constant
(Sokal & Rohlf 1995). Confidence intervals are derived
from other measures of uncertainty, including variance
and standard error. Analytical formulae are usually
available for calculating these metrics, but care must
be taken to account for departures from the assump-
tions used in the formulae (e.g. a normal error distribu-
tion is often assumed). Frequently, analytical formulae
are not available to quantify uncertainty and alterna-
tive methods are used, such as the bootstrap, jack-
knife, or model averaging.

The bootstrap can account for model selection uncer-
tainty and process error when estimating uncertainty
metrics for model parameter estimates and predictions.
The bootstrap is a Monte Carlo technique, meaning
that the data are stochastically or randomly generated
(Hilborn & Mangel 1997). In the non-parametric boot-
strap, a new data set is created by sampling with
replacement from the original data set. The parametric
bootstrap, in contrast, creates a new data set from a
sampling distribution such as the normal, Poisson,
gamma, or beta distributions, which is selected using
knowledge or assumptions about the sampling process
producing the data. One method for estimating the
parameter values of the sampling distribution is to use
the sample mean and variance from the original data
set. In both the non-parametric and parametric boot-
strap, the number of samples drawn is equal to the
sample size of the original data. Parameter estimates
for the best-fit model can be derived from the new data
set, or a new model can be fit using the pre-specified
model selection criterion to account for model selection
uncertainty. The entire process is repeated, and the
resultant parameter estimates and model predictions
are accumulated; the number of replications needed
varies, but is typically within the range of 1000 to esti-
mate standard errors and within 100000 to accurately
determine the tails of a distribution. The accumulated
parameter estimates and model predictions are used to
calculate the uncertainty metrics of interest, such as
the standard error and confidence intervals. To calcu-
late confidence intervals for parameter estimates or
model predictions, values from the bootstrap replica-
tions are placed in an ordered list and values at the
desired percentile are extracted (Efron & Tibshirani
1993). Hedley et al. (1999) developed a parametric
bootstrap algorithm to estimate uncertainty in abun-
dance estimates of minke whales in the Antarctic.

The jackknife is essentially similar to the non-
parametric bootstrap algorithm; the primary difference
is that the jackknife constructs new data sets by
sequentially excluding some portion of samples (usu-
ally a single sample) from the original data set (Sokal &
Rohlf 1995). Hence, the number of new data sets eval-
uated using the jackknife is determined by the size of
the original data set and the number of the samples
excluded in each iteration. The bootstrap and jack-
knife techniques are powerful tools for assessing
uncertainty that can be applied to many statistical
estimation problems (Efron & Tibshirani 1991), can
generate a variety of uncertainty metrics, and can
incorporate both model selection and process error.
The primary disadvantage of these techniques is the
computational power and time required to evaluate
the replications.

If a priori information exists about the cetacean–
habitat relationship, a subset of candidate models may
be selected for evaluation, the best-fit model may
be determined using a model selection criterion, and
uncertainty may be assessed using the bootstrap or
jackknife. An alternative to choosing a single best-fit
model is to derive parameter estimates and predictions
from all candidate models using weights such as the
AIC values, the inverse of the variance, or the posterior
probabilities derived in a Bayesian framework. This
technique, known as model averaging, is recommen-
ded if the goal of the analysis is to determine the best
estimates of a set of parameters or model predictions
that are common to all models (Burnham & Anderson
1998). Model averaging can reduce uncertainty arising
from the model selection process if the correct set of
predictor variables, the functional form of the relation-
ships, or the distributional assumptions are unknown
(Anderson et al. 2000, Wintle et al. 2003, Johnson &
Omland 2004).

MODEL EVALUATION

The final stage of the modeling process is to assess
the predictive accuracy of the model and determine
its applicability to particular ecological, management,
and conservation questions. To assess the accuracy of
model predictions, comparisons are made between
observed and predicted values using an independent
data set; the statistical technique used for the com-
parison depends on whether the response variable is
quantitative or qualitative. The independent data set
can be derived from additional survey effort in the
study area or by withholding a portion of the original
data set from the model-building process. The latter
scenario requires a large original data set to ensure
adequate samples sizes for model fitting. It is also
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important that the data subsets used in model fitting
and model evaluation include the full range of variabil-
ity in the habitat data, or the applicability of the result-
ing best-fit model may be restricted to a limited range
of habitat conditions. In practice, it may be difficult to
achieve such a division.

Agreement between observed and predicted values
can be evaluated using a number of statistical tests;
the particular test selected depends on the type of
response variable. For numeric response variables the
evaluation is generally straightforward and uses sim-
ple statistical tests, including the correlation between
the observed and predicted values and goodness-of-fit
tests (see ‘Goodness-of-fit metrics’ in the ‘Descriptive
techniques’ section). The mean square prediction
error,

where n is the number of observations, is also com-
monly used to compare the predictive power of
multiple models.

When the response variable is categorical, such as
cetacean presence/absence, model outcomes are typi-
cally expressed as probabilities (e.g. probability of a
‘presence’). Hence, to determine the predictive accu-
racy of the model, a probability threshold must be cho-
sen to classify predictions as presences or absences.
Selection of the threshold is critical; thresholds that are
too low result in too few presences (errors of omission),
while thresholds that are too high result in too few
absences (errors of commission). For optimal habitat
classifications we would like to minimize both errors of
omission and errors of commission. For particular man-
agement applications, however, these errors may have
qualitatively different costs or risks. Consequently, it
may be more important to minimize one type of error.
Receiver operating characteristic (ROC) curves pro-
vide a tool for selecting the ‘optimal’ threshold, mini-
mizing both errors of omission and commission, or
selecting alternative thresholds to minimize a particu-
lar source of error (Pearce & Ferrier 2000, Pontius 2000,
Cummings 2001). Once the predicted number of pres-
ences and absences is obtained, classification accuracy
can be examined using classification error (confusion)
matrices (Pearce & Ferrier 2000, Pontius 2000, Cum-
mings 2001) and Kappa (Foody 1992) or Tau (Ma &
Redmond 1995) statistics.

An additional goal of model evaluation may be to
determine the applicability of the best-fit model to
particular ecological, management, and conservation
questions. This type of evaluation may be more qua-
litative in practice, involving an assessment of the
relative costs associated with the different types of
model error for the particular application. For example,

managers evaluating the utility of a habitat model for
reducing ship encounters with endangered cetaceans
may wish to reduce errors of omission at the expense of
overall model performance to ensure that the model
yields broad predictions of cetacean occurrence.

CONCLUSIONS

Cetacean–habitat modeling, although still in the
early stages of development, represents potentially
powerful techniques for predicting cetacean distribu-
tions and understanding the mechanisms determining
these distributions. Consequently, cetacean–habitat
models may be an important tool for mitigating anthro-
pogenic impacts on these species, many of which are
endangered. To date, descriptive statistical techniques
have been used to explore cetacean–habitat relation-
ships for selected species in specific areas. The number
of species and geographic areas examined using com-
putationally intensive statistic modeling techniques
are considerably less, and the development of mecha-
nistic models of cetacean distributions has just begun.
Consequently, future cetacean–habitat research spans
a wide range of possibilities, from development of
basic modeling techniques to addressing important
ecological questions.

Future development of cetacean–habitat modeling
techniques should be driven by the need to integrate
data across multiple spatial and temporal scales,
understand the ecological processes determining
cetacean distributions, and quantify the uncertainty in
model-derived estimates of cetacean distributions.
Predictions from cetacean–habitat models are con-
strained by the spatial and temporal resolution of the
habitat data used to fit the models. For example, mod-
els built using seasonally averaged habitat data cannot
accurately predict cetacean distributions at shorter
time scales, because the habitat data do not capture
the daily or weekly dynamics of the system. To solve
the problem of simultaneously modeling cetacean dis-
tributions across scales, a hierarchical analysis frame-
work incorporating tiers of generalized, broad-scale
models and models of increasingly smaller-scale
dynamics is needed. Development of this hierarchical
framework will require the application of modeling
techniques not currently used by the cetacean re-
search community, such as the Bayesian maximum
entropy approach, non-linear state–space models, con-
ditional autoregressive models, neural network mod-
els, and individual-based models. It will also entail the
integration of data collected using field methods spe-
cific to each spatial scale (Croll et al. 1998). Cetacean
researchers may gain insight from terrestrial studies in
which these approaches have been successfully used

( )observed predicted

n

−∑ 2
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to address ecological, management, and conservation
questions.

Regardless of the modeling technique used, conser-
vation and management applications of cetacean–
habitat models require quantification of the uncer-
tainty in model predictions. Without quantification of
uncertainty, the accuracy of the model output and,
hence, the utility of the model to address particular
real-world questions cannot be understood. Methods
developed to quantify uncertainty in cetacean–habitat
models must address autocorrelation in cetacean dis-
tributions. Potentially powerful techniques for model-
ing cetacean distributions and quantifying uncertainty
in the presence of autocorrelation may be derived from
spatial statistics (Ecography 2002, Vol. 25, Issue 5).
Once uncertainty has been quantified, techniques for
presenting the uncertainty in model predictions must
also be developed. For example, if the model output
can be represented as a spatial map of cetacean abun-
dances, the uncertainty in the estimated abundances
needs to be reflected on the map.

Perhaps the most immediate progress in cetacean–
habitat modeling will come from expanding the cur-
rently used modeling techniques to include a greater
variety of species, geographic areas, and habitat condi-
tions. Very little is known about the habitat or ecology
of a vast number of cetacean species. Data from large-
scale surveys can be used to develop cetacean–habitat
models, which may increase our understanding of the
habitat variables influencing species distributions. It
may also be beneficial to take a community ecology
approach to cetacean–habitat modeling by including
abundances of prey species, competitors, and preda-
tors in models. Inclusion of these community ecology
variables will provide insight into the mechanistic pro-
cesses determining cetacean distributions. Expanding
the range of habitat variability incorporated in models
of cetacean distributions may also increase the predic-
tive power of the models. Cetacean–habitat relation-
ships are expected to be non-linear; consequently,
models must be fit using the entire range of habitat
variability to accurately describe the functional form of
the relationship (Fig. 6). To expand the range of habi-
tat variability included in cetacean–habitat models, we
need long time series of data to capture interannual
variability (such as the El Niño Southern Oscillation),
decadal oscillations (such as the Pacific Decadal Os-
cillation), and ‘regime shifts,’ which may produce
changes in the mean and variance of habitat variables,
as well as changes in the sign and magnitude of
cetacean–habitat relationships.

The future directions for cetacean–habitat modeling
identified in this paper require additional data collec-
tion to provide a foundation for new model develop-
ment and to evaluate and refine existing models. Sub-

stantial quantities of data are currently available from
large-scale surveys designed to estimate cetacean
abundance in particular geographic locations. For
example, large-scale surveys have been conducted by
the National Oceanic and Atmospheric Administration
(NOAA) Fisheries in the eastern tropical Pacific Ocean
since the 1980s, to estimate the abundance of dolphin
species impacted by tuna fishing. Continuation of such
surveys is essential to increase the time series of
cetacean and habitat data in these locations. Surveys
also need to be conducted on broader geographic
scales; in particular, it is important that surveys in-
clude areas of high and low cetacean densities, so that
habitat may be clearly differentiated from non-habitat.
Perhaps, most importantly, surveys of cetacean abun-
dance need to be supplemented with studies designed
to address specific ecological questions about the
mechanistic processes determining cetacean distribu-
tions. Future data collection efforts should be imple-
mented using an iterative approach in which models
are used to explore cetacean–habitat relationships
and agreement between observations and model
predictions are used to guide further research efforts.
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