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Basic Principles of Climate

Raymond T. Pierrehumbert

One-dimensional climate models

Introduction

In zero-dimensional models, variations of temperature with latitude cannot be taken into
account. This is potentially problematic because there is a significant pole-equator temper-
ature difference, and because the surface properties of the pole can differ remarkably from
those of the equator (due largely to ice). As a next step up in sophistication for simple
climate models, we therefore turn to one-dimensional models, in which the temperature
T (φ, t) depends both on latitude φ and time t.

An important first ingredient is the input solar heating: The amount of solar radiation
per unit area that is received at the top of the atmosphere varies with latitude and with the
time of the year. This is given by the solar constant S0 (which is about 1370Wm−2) times a
flux factor F (φ, t) that gives the dependence on latitude and time, which is given in Fig. 1.
There are two competing effects that determine this flux factor. First, the inclination of
the surface relative to the incoming radiation gives greater weight to the regions where
the sun is overhead (the tropics). This is offset by the second effect, that of the increase
of the length of the day, which promotes solar heating at the poles in summer. For the
present-day Earth’s inclination, the effect of the day’s length exceeds the inclination effect
and as shown in figure 1, the polar region in the summer hemisphere receives more radiation
than the equatorial region. Were it not for moderating influence of the ice, atmosphere and
ocean, the hottest regions would therefore migrate from pole to pole through the year, and
Antarctica would have the warmest summer on Earth.

Given that the climate moderates the annual variation of solar heating, the flux factor
F (φ, t) is not the most useful characterization of the energy input for a watery planet like
Earth. Instead, we turn to the annual average, shown in Fig. 2, which has a minimum at
the poles and a maximum at the equator, and varies by a factor of about two. Also shown
is the annual average for an Earth with zero obliquity, for which the variation between
pole and equator is much larger (because the day’s length is constant and there is only the
inclination effect).

Based on the annual average, one expects that, if there were no latitudinal heat trans-
port, the atmosphere would be in local radiative equilibrium at every position and the
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Figure 1: Flux factor F (φ, t) as a function of time on the horizontal axis and latitude on
the vertical axis. the time range is from January to December, the latitude axis from 90◦S
to 90◦N .

Figure 2: Annual mean flux factor as a function of latitude.

temperature difference between equator and pole would be very large. Because such a se-
vere temperature drop is not observed, there must be a latitudinal transport of heat that
reduces the variation. Satellite imagery of the actual energy budget at the top of the atmo-
sphere (solar heating minus OLR) is shown in Fig. 3. The radiative imbalance is about 75
to 100 Wm−2 in the equatorial region, and about −100 to −150 Wm−2 at the poles. Also
noticeable in the figure are the outlines of the continents (particularly South America) and
the relatively light Sahara desert. The latter is a significant contributor to OLR due to the
high cooling effect of sand, the dry atmosphere and because there are very few clouds. The
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ice cover of Antarctica is also visible to the lower right.

Figure 3: Net energy budget in Wm−2 at the top of the atmosphere.

The latitudinal heat transport occurs partly through the atmosphere and partly through
the oceans. At 45◦N , the atmosphere is responsible for most of the heat transport, except
locally in the North Atlantic (in the Gulf Stream region). A large amount of the atmospheric
heat transport occurs through latent heat transport, as water evaporates in the tropical
region and precipitates at higher latitudes. In the oceans, the heat transport is accomplished
through both the wind-driven and thermohaline circulation.

The latitudinal distribution of the energy budget at the top of the atmosphere is com-
pared with the sea surface temperature (SST) in Fig. 4. The temperature is relatively
constant between about 20◦S and 20◦N . A simple explanation for this flat temperature
profile will be given later with the help of a conceptual model of tropical temperatures.

In addition to temperature, there is also a significant variation with latitude in the
moisture content of the atmosphere; maps of monthly precipitation and specific humidity
are shown in Figs. 5 and 6. Areas of large precipitation are found near the equator over the
Intertropical Convergence Zone (the “ITCZ”), over the warm pool in the western Pacific
ocean (labelled W) and above the storm tracks of the Atlantic and Pacific (labelled ST).
There is also a significant amount over the rainforests of the Amazon basin and the Congo.

The specific humidity is high in a band between 20◦S and the equator (Fig. 6) and there
is a sharp gradient in relative humidity over the central Pacific. This latitudinal distribution
of precipitation and specific humidity does not result from temperature variations, but can
be understood from the mean circulation pattern of the atmosphere in the tropics, which
is part of the low-latitude “Hadley Cell”: Directly above the surface, air converges to the
equator, where it rises in a relatively narrow band (the ITCZ), then spreads out again
to the north and south at higher altitudes to create a compensating subsidence flow of a
much larger scale. Evaporation seeds the surface flow with water vapour which condenses
over the ITCZ as the rising air cools, to produce a large amount of rainfall over that area.
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Figure 4: Net energy budget at the top of the atmosphere (TOA) and surface temperature
averaged over March 1987 as a fuction of latitude.

Figure 5: Climatological precipitation in March in mm/month.

The subsiding flow is much drier, and as it warms with descent, the relative humidity
becomes even lower. Specific humidity is conserved as air subsides, and the air in the
subsiding branch is dry because it is brought down from a cold, dry place. This action
has the potential to create very strong humidity variations with latitude, variations that
are, in fact, much stronger than those which are observed. The subsiding flow is wetter
than this simple picture predicts because of latitudinal transport of moisture by turbulent
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Figure 6: Specific humidity of the 500-700 mb level, averaged over the period of March
24-28, 1993.

eddies (the precise origin of these fluid motions is not completely understood, but possible
candidates are tropical waves, baroclinic instability, westerly wind bursts and the “Madden-
Julian Oscillation”). Although the subsidence region is still dry compared to the ITCZ, the
increase in relative humidity due to the latitudinal eddy transport is important because of
the logarithmic dependence of OLR on specific humidity. Dry as the subtropics are, it still
matters precisely how dry they are.

The circulation of the Hadley cell is an essential element of the meridional heat transport.
Between 20◦S and 20◦N the coriolis force is relatively weak and the circulation is dominated
by the Hadley cell. In fact, the structure of the Hadley cell is more complicated than
suggested above: The rising motions typically occur in the summer hemisphere, and the
downward motions in the winter one. As a result, at a particular time, the circulation in
the meridional-vertical plane is quite asymmetric, with rising air in one hemisphere and
subsidence in the other. Moreover, during the year, the ITCZ moves only over a relatively
short distance, whereas the subsidence region moves over a much greater distance. This
makes the annually averaged Hadley circulation rather symmetric around the equator, in
contrast to the instantaneous pattern.

From the perspective of energetics, the Hadley circulation is powered by two different
mechanisms acting in the rising and subsiding parts of the flow. The rising flow is ener-
gized by sunlight, which through evapouration laces the upflow with water vapour (“liquid
sunshine”); the vapour subsequently condenses to release latent heat on adiabatic cooling.
The descending flow acts like a huge compressor, heating the air and generating upward
infra-red radiation. Any imbalances between the two regions are rapidly communicated and
equalized by pressure forces, which is why diffusive effects are secondary and strong water
vapour gradients can be maintained. Overall, this relatively rapid pressure equalization sus-
tains a fairly constant temperature throughout the tropics; the toy model described below
illustrates these physical ideas.
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Tropical heat transport

Since the total energy reaching the earth’s surface arrives primarily in the equatorial regions,
it’s important to understand the mechanisms of heat transport there. We formulate this
problem in terms of a one-dimensional model, in which all longitudinal variation is neglected.
The model is based on work by Held & Hou (1980) and Lindzen & Hou (1988, JAS, 24,
151).

The basic equations we start with are the zonal and meridional shallow-water equations
on the equatorial β−plane:

∂tU + U∂xU + V ∂yU − βyV = −∂xh
∂tV + U∂xV + V ∂yV + βyU = −∂yh

,

where U and V are the zonal and meridional velocities respectively, and h is the depth of
the atmosphere.

We consider relatively slow (linear), steady motions with no zonal structure, and so the
shallow-water equations reduce to

{

V ∂yU − βyV = 0
βyU = −∂yh

Note that, in the tropical regions of interest, f ≈ 0. Because there is then no Coriolis
term to balance the longitudinal pressure gradient, the usual geostrophic balance cannot
be attained. Also, the mass below a surface of constant potential temperature is roughly
proportional to the mean temperature of the layer. In the following we will therefore use
h as a proxy for temperature T in order to determine the thermodynamic state of the
atmosphere.

This model is a fairly good representation of the upper branch of the Hadley cell (the
high-altitude flow), where we can reasonably neglect dissipative effects. The lower branch
of the cell (the flow just above the surface), however, is controlled in part by stronger
dissipation, which one might try to model by adding friction terms to the equations.

The x−momentum equation can be re-arranged to give

V ∂y

(

U −
1

2
βy2

)

= 0, (1)

so that
(

U −
1

2
βy2

)

= constant. (2)

This is essentially a statement of angular momentum conservation. If we consider a equatorially-
symmetric Hadley circulation, then U = 0 at y = 0 and we have:

U =
1

2
βy2. (3)

Integrating the y−momentum equation over y now gives the following relation for the
meridional profile of the height of the tropopause:

h = heq −
1

8
β2y4, (4)
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which is plotted in Fig. , and roughly corresponds to the meridional temperature distribu-
tion. The flatness of the curve near the equator comes from the dependence of h on the
fourth power of y.
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latitude (y)

heq

Figure 7: Layer depth (mean temperature) as a function of latitude

This profile is obtained with the assumption of zero zonal velocity, U , at the equator.
On the other hand, we could have imposed the following, less restrictive, condition: U(y =
0) = Ueq, which case,

∂h

∂y
= −βy

(

Ueq +
1

2
βy2

)

(5)

and

h = −
β2y4

8
−

βy2Ueq

2
+ heq. (6)

The quadratic term on the right-hand side of equation (6) may cause (for Ueq < 0) a
depression of the height of the tropopause at the equator (see figure 8).

At this stage we have not introduced the solar heat input, and so the symmetry proper-
ties of the temperature profile are independent of the details of the solar forcing. Also, we
have no way of determining the latitudinal extent of the Hadley cell, [−ymax, ymax]. Given
that the cell must continuously match onto a mid-latitude atmosphere in which we might
wish to prescribe the depth h(ymax) = hmid(ymax) by the condition of radiative equilib-
rium (which determines the function hmid(ymax)), this is equivalent to having an arbitrary
equatorial depth, heq. The cell size and equatorial depth are, however, related by

heq = hmid +
1

8
βy4

max +
1

2
βUeqy

2
max. (7)

To complete the solution, we evaluate the global atmospheric meridional mass flux:

∂

∂y

(V h) = −
h

τ
+ Q, (8)
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Figure 8: Layer depth as a function of latitude for a situation with non-zero zonal velocity
at the equator

where the two terms on the right hand side represent the upper radiative cooling of the
troposphere by long wave radiation (which is assumed to be proportional to the thickness
of the layer, with a relaxation time τ) and the incoming source of heat Q(y) (a known
function). Integrating over the whole extension of the Hadley cell, we obtain

∫ ymax

−ymax

∂y(V h)dy = 0 =

∫ ymax

−ymax

(

−
h

τ
+ Q

)

dy, (9)

on using the boundary conditions V (ymax) = V (−ymax) = 0. This constraint determines
the size of the cell (ymax) or, equivalently, the layer depth (i.e. temperature) at the equator,
heq: we substitute our solution for h(y) into the integral to find

τ

∫ ymax

−ymax

Q(y)dy = ymaxhmid +
3

40
βy5

max +
1

6
βUeqy

3
max (10)

(an implicit equation for ymax).
Although this simple model can produce a reasonable latitudinal temperature profile, it

has evident limitations, particularly as it does not give the location of the ITCZ. For that,
the problem must be closed by coupling the heating distribution Q to the flow and surface
characteristics.

A diffusive energy balance model

As a second example of a one-dimensional model, we extend our discussion of the ice-
albedo feedback, and consider the effect of the latitudinal structure of the ice cover and the
meridional transport of heat, assumed to be given by a simple down-gradient diffusion. We
adopt a local coordinate system on the earth surface, and define y = sin(ϕ), where ϕ is the
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latitude. In this coordinate system, the steady, zonally symmetrical heat equation is

d

dy

[

(1 − y2)D
dT

dy

]

= OLR(T ) − L�[1 − α(y)]F (y), (11)

where D is the diffusivity, and the two terms on the right-hand side represent, respectively,
the loss of energy through outgoing long wave radiation and the solar forcing. The forcing
depends on the solar constant L� = 1370Wm−2, the albedo, α(y), and the flux factor,
F (y). As a further simplification we use the linearized version of the OLR in the form,

OLR(T ) = B(T − T ∗) = BT ′, (12)

where T ′ = T −T ∗ is the deviation from the reference mean temperature, T ∗. The response
of the system to a perturbation from the equilibrium state is thus given by

d

dy

[

(1 − y2)
dT ′

dy

]

=
B

D
T ′

−
L0

D
(1 − α)F. (13)

As boundary conditions, we take Ty = 0 at the equator, y = 0, which enforces symmetry
between the two hemispheres, and insist that T be regular at the pole, y = 1.

We may exploit Green’s function to write the solution to this equation in the form,

T (y) = −
L0

D

∫ 1

0
G(y, y′)[1 − α(y′)]F (y′)dy′, (14)

where the Green function involves the Legendre functions Pν(y) and Qν(y) with ν2 + ν +
B/D = 0. However, for practical purposes, it is also straightforward to solve the differential
equation numerically.

A complication in this equation is that the albedo is not simply a function of latitude,
but also should depend on temperature. Nevertheless, for some simple models, we may still
find the solution in the following way: consider the simple model for the albedo in which

α =

{

αo y < yi

αi y ≥ yi
, (15)

where αi is the (constant) albedo of ice, αo characterizes the albedo of unfrozen land and
sea, and yi is the latitudinal position of the edge of the ice cover (the ice margin). Then,

Ti = T (yi) = −
L0

D

∫ yi

0
G(y, y′)(1 − αo)F (y′)dy′ −

L0

D

∫ 1

yi

G(y, y′)(1 − αi)F (y′)dy′. (16)

For consistency, Ti should be the temperature at which the ice cover first forms (273 degrees
Kelvin), and so (16) determines yi implicitly. From a practical perspective, we solve either
(16) or the differential equation for given yi, determine Ti, and then adjust yi in order to
bring Ti to the required value (such as by Newton iteration). Some sample computations
are shown in figure 9. At yi = 0, we find snowball Earth solutions (worlds with complete
ice cover) provided Ti < 273. There are also solutions for ice-free worlds with yi = 1 if
Ti > 273. In between, and depending on the diffusivity, there are solutions for partially
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Figure 9: Ice margin position against temperature.

ice-covered worlds (0 < yi < 1 and Ti = 273), of which one is prone to the large ice-sheet
instability, and the other is a stable solution with a polar ice-cap.

Note that a natural lengthscale for the temperature variation is
√

D/B. In the limit
that this scale is large, the temperature field has weak variations and we recover the zero-
dimensional model described in lecture 6. Also, we need not strictly use the linearization of
the OLR curve; in some problems (like greenhouse runaway), it is necessary to incorporate
a nonlinear OLR curve. The numerical solution of the differential equation is no harder and
proceeds in the same fashion.

Finally, we might also reinstate the time rate of change of T into the heat equation (a
term like M∂T/∂t, where M is the “thermal mass”), in which case we could further explore
the temporal rearrangements of temperature and ice cover with latitude during climate
changes. This is the basis of the celebrated Sellers model (and the related Budyko model),
often used by climate dynamicists.

Notes by Lianke te Raa and Chiara Toniolo
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