
Lecture 6

Energy Balance Models

Raymond T. Pierrehumbert

How I learned to stop worrying, and taught myself radiative transfer...

1 Simple energy balance models

The Earth and other planets in the solar system are heated by radiation from the sun. In
turn, the planets reprocess the radiation and emit energy into space, leading to a global
radiative balance which plays a key role in determining the planetary climate. As a result,
a detailed treatment of radiative transfer is a necessary ingredient in models of climate
dynamics.

For terrestrial planets (those with a solid crust), the influx of solar radiation must
balance the outflow from the surface and atmosphere. It was known to Aristotle that
the source of energy on earth is the sun, but it took 20th century quantum mechanics
(specifically Planck and his understanding of black body radiation) to understand how the
earth loses energy back to space. Based on the notion that radiation comes in discrete
bundles of energy, quanta, ∆E = hν, where h is Planck’s constant (6.6262 × 10−34Js)
and ν is the frequency of the radiation in Hertz, Planck explained the Stefan-Boltzmann
law, which states that E = σT 4, where E is the energy output of a black body, σ =
5.67×10−8Wm−2K−4 is the Stefan-Boltzmann constant and T is the absolute temperature
of the body. He expressed his result in form of the spectral energy density, Bν(T ), at
frequency ν as

Bν(T ) =
2πh

c2

ν3

exp(hν/kT ) − 1
[Jm−2], (1)

where c = 2.998 × 108ms−1 is the speed of light and k = 1.37 × 10−23JK−1 is Boltzman’s
thermodynamic constant. (Bν gives the energy emitted outward per unit area and time
over the frequency interval [ν, ν + dν]; an integration over frequency gives the black-body
radiation law.) Planck’s theory also explained Wien’s Law which states that the frequency
at which the radiation from the black body is maximal is proportional to the absolute
temperature of the body:

νmax =

(

5.879 × 1010
Hz

K

)

T (2)

The simplest radiative-convective model is zero-dimensional in space: the entire planet
is given one temperature, T . Such simple models are the first line of defense against the
onslaught of complexity present in climate problems. We consider terrestrial planets, like
the Earth and Mars, that have solid surfaces, as opposed to gaseous planets like Jupiter.
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Figure 1: Emission spectra of black bodies at selected temperatures.

Standing on the shoulders of our scientific forefathers, we write a simple energy balance
equation,

Hsun(1 − α) = σT 4 (3)

where Hsun is the radiation flux incident from the sun, averaged over time and over the
planet’s surface, α is the albedo, the fraction of the incident radiation that is reflected back
into space, and hence never absorbed, and σ is the Stefan-Boltzmann constant. Thus we
equate the net energy absorbed by the earth with the energy it loses to space as a black
body. Given that Hsun is approximately 340 W/m2, and taking α ≈ 0.3 (a crude estimate of
the combined effect of sea, land, ice, clouds and so on), we find that T = 255K, much colder
than the global average temperature we experience. Of course, we have here the grossest of
models; the earth is basically treated as a metallic sphere. The more complicated models
described next build on this model by incorporating the atmosphere. However, a key idea
is clearly expressed in this model: the incoming radiation from the sun must be balanced
by the outgoing radiation from earth.

2 Atmospheric structure

According to Wien’s Law, a black body at 6000K, the temperature of the solar surface,
emits the most radiation in the visible spectrum. We will assume that the atmosphere
absorbs none of this incident radiation. This approximation is not too bad, the atmosphere
actually absorbs less than 20% of incoming radiation. A fraction of the radiation incident
on the earth, (1-α), is absorbed on the surface, causing the surface to warm. The warmed
surface radiates energy back to space, primarily in the infra-red (IR) region of the spectrum,
in accord with Wien’s law for a black body near 300 K.

The atmosphere is, however, not transparent to IR radiation, and part of the outgoing
radiation is absorbed; this upsets the energy balance, thereby increasing the surface tem-
perature. How do we build such features into a radiative balance model? We start with the
empirical data. The atmospheric radiation spectrum can be observed by looking directly
upwards on a clear day with an infra-red interferometer. Spectra can also be taken from
satellites, looking down, but one must then cancel out the radiation from the earth. Such
spectra reveal a rough continuum interrupted by a immense number of molecular absorp-
tion lines. Fig. 2 shows the absorption spectrum for CO2 in the IR region. Note that the
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Figure 2: Absorption Spectrum of CO2 (www.webbook.nist.gov).

wavenumber is the inverse of the wavelength measured in cm, and hence proportional to
energy. It is through these spectral lines that certain molecules, such as CO2, affect the
atmospheric heat balance, and is how the greenhouse effect comes into play.

Now, according to quantum mechanics, molecules absorb light at discrete wavelengths.
The so-called greenhouse gases are those that absorb in the IR, where photons are of the
same energy as the translational, rotational, and bending modes of the molecules. A crude
requisite to be a greenhouse molecules is to be polar and/or to support rotational or bending
modes that create an oscillating dipole moment. Water and CFC’s fall into the former
category, while CO2 and CH4 satisfy the latter. An oscillating dipole moment is necessary
to interact with the incoming electromagnetic radiation. Nonpolar molecules like N2 and O2

are transparent in the IR, but do play an indirect role in the greenhouse effect, as indicated
below.

Under ideal conditions, the restriction of the absorption to narrow lines places severe
limitations on the greenhouse effect: the absorption lines saturate quickly, so that the
addition of more greenhouse gas does not result in a proportionate increase in absorption.
In the atmosphere, however, conditions are far from ideal, and absorption lines can be
broadened by molecular motion. As a result, the greenhouse effect is considerably extended
by mechanisms that broaden the absorption lines. These mechanisms are:

1. Collisions with other molecules, which allow the absorber to take in a photon of
smaller/larger energy, and transfer the energy difference to another molecule during
the collision. This is how the greenhouse-neutral gases like N2 and O2 come into
play. Because the collision frequency is proportional to the pressure of the gas, this
broadening depends on the atmospheric pressure.

2. Doppler shifting of the absorbing molecule. If the molecule is moving towards/away
from the source of radiation, it experiences a different frequency. Doppler broadening
is a function of temperature (as temperature dictates the speed of the gas particles);
the higher the temperature the broader the windows.

3. Ultimately, Heisenberg uncertainty puts a lower bound on the peak breadth.
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The collisional effect dominates on earth. In fact, even though Mars has a pure CO2

atmosphere, the warming effect is rather less than that of the CO2 on earth due to our
N2 and O2, even though the content of CO2 on earth is far less. Collisional broadening
decreases with air density, causing the absorption lines to narrow with height. At the top
of our atmosphere the Doppler effect starts to dominate. However, the bulk of absorption
takes place in the lower atmosphere, where the atmosphere is thickest, so that Doppler
broadening can be neglected. In any case, the importance of line spectra in determining
atmospheric absorption has the unappealing consequence that one needs a sophisticated
treatment of radiative transfer in order to construct properly a model of the climatic energy
balance.

To understand radiative transfer, we need more information about the atmosphere’s
vertical temperature structure. Roughly speaking the atmosphere is composed of the “tro-
posphere” and “stratosphere.” There is also a relatively shallow boundary layer just above
the ground, which we will ignore. Inside the troposphere, the temperature decreases with
height. The decline of temperature halts at a level referred to as the “tropopause,” where
the temperature is about 200K, and then in the stratosphere above it, the temperature
begins to increase. Some observed vertical temperature profiles for a location in the tropics
are shown in figure 3. Crudely speaking, the reason why the globally averaged temperature
is higher than the 255K expected from the simple energy balance argument above is that
the effective “photosphere” of the Earth’s emission into space is higher in the atmosphere
than ground level. The earth must emit energy as a black body at 255K to maintain ra-
diative balance with the sun. The surface, however, can be warmer as long as the radiation
it loses is trapped by the colder atmosphere, which radiates at 255K.

But why does temperature decline with height? The simplest argument, ignoring details
such as the effect of water vapour, leads to what is called the “dry adiabat:” As a parcel of air
rises off the ground, it expands as the pressure decreases. The gas does work as it expands,
loses energy, and hence cools. We invoke the ideal gas approximation, which is quite accurate
for the earth’s atmosphere. On Venus, or in the protoclimate of Mars, however, increased
pressures cause significant deviations from the ideal gas law. The potential temperature θ,
a measure of the entropy of a gas, is defined by

θ = T

(

p

p∗

)

−R/Cp

, (4)

where p is the pressure, p∗ some reference pressure (say 1 atmosphere), R the ideal gas
constant, and Cp, the heat capacity of the gas at constant pressure. Quantum theory tells
us that R/Cp is approximately 2/7 for a diatomic gas, and this approximation works well
for our atmosphere.

If we assume constant entropy (constant θ), a “dry” atmosphere’s temperature should
be a function of pressure according to

T = θ

(

p

p∗

)R/Cp

. (5)

Constant entropy is a good assumption, as the timescale on which fluid motions mix up the
atmosphere, homogenizing scalar invariants such as entropy, is shorter than the timescale
on which radiation warms the atmosphere.
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Figure 3: Air temperatures as function of altitude.

Equation (5) is the dry adiabat. The temperature of our atmosphere, however, does
not fall as quickly as this relation predicts. The error stems from the fact that we have
neglected the effect of water vapor, which can have a significant effect as a result of the
release of latent heat. As the temperature cools with height, H2O evaporated on the surface
condenses, heating up the air and reducing the temperature gradient. Just 1 kg of water
vapor releases 2.5 megaJoules when it condenses in the upper atmosphere. The moist
adiabat is calculated by assuming that the air remains saturated with water vapour all the
way up, that is, that there is no entrainment of dry air and thus the relative humidity is held
constant at 100% once condensation starts. This gives a remarkably good fit for air in the
tropics. This is shown in Fig. 3. Note we are only fitting the temperature in the troposphere.
In the stratosphere absorption of solar radiation dominates, and the temperature deviates
strongly from the moist adiabat.

The fit is quite remarkable in light of the fact that, outside the inter-tropical convergence
zone (ITCZ) near the equator, the air in the tropics above the surface boundary layer is quite
dry. The relative humidity is just 5-10%, “as dry as a desert.” (See Fig. 4.) The Hadley
circulation in the tropics explains why this dry air fits the moist adiabat, but we leave this
until lecture 7. The mid latitudes do not follow the moist adiabat, but the temperature still
falls with height up until the stratosphere.
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Figure 4: Relative humidity as a function of altitude.

3 The OLR curve

We now have the machinery needed to explain the greenhouse effect, which is most suc-
cinctly described in terms of the “OLR curve” – the dependence of the Outgoing Long-wave
Radiation on surface temperature. This curve is also the key ingredient in a variety of toy
climate models that will be described later.

In most places in the world the surface temperature is approxmately the same as the
surface air temperature. Exceptions are deserts, where the surface can be 10 to 15 degrees
warmer,and ice where the surface can be tens of degrees colder than the overlying air a few
meters up. In simple models it is usually acceptable to equate surface temperature with
surface air temperature.

Given the surface temperature, the thermal structure of the atmosphere above roughly
follows the moist adiabat up to the tropopause. The stratosphere is ignored, as its overall
effect is unimportant. The crucial step in constructing the climatic energy balance is then to
determine the radiative transfer through the troposphere of the infra-red radiation leaving
the surface. That transfer ultimately determines the total outgoing long-wave radiation
(OLR), which must balance the incident solar energy flux. All told, this amounts to a
complicated radiative transfer computation that approximates the collective effect of all
the absorption and emission lines of every important molecule in the atmosphere. The
computation involves thousands of lines of coding and a multitude of clever approximations
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to meet the computational efficiency requirements dictated by climate modeling.
The result of the calculations is the total OLR emitted by the earth as a function of the

surface temperature; sample computations of this function are shown in figure 5. The key to
understanding global warming is predicting how the addition of CO2 and other greenhouse
gases change the OLR, which in turn force a change in surface temperature in order to bring
the outgoing energy into balance with the solar heating. The trickiest part is predicting
how the relative humidity, RH, changes as the temperature increases. Unlike CO2, the
concentration of water vapor is highly dependent on temperature. Manabe proposed that
the relative humidity remains constant as the temperature increases. This assumption is
widely employed in conceptual climate models, but has never really been justified on the
basis of first-principals physical arguments.

Figure 5: OLR as a function of surface temperature.

Fig. 5 shows the OLR as a function of surface temperature, for calculations based on
different compositions of greenhouse gases and relative humidity. Recall that the OLR
must be 340W/m2 to maintain radiative balance with the sun. To find the steady state
surface temperature from the diagram, we draw a horizontal line at 340W/m2, and read
off the surface temperature from where it intersects the OLR curve. The curves that do
not reach 340W/m2 have no steady state and reveal a runaway greenhouse effect. Given
an initially cool surface temperature, the OLR is below the incoming flux value, so the
planet warms. The OLR thereby increases, and provided the OLR continues to increase
with surface temperature, an equilibrium arrangement will eventually be struck. However,
for the curves that flatten out, the OLR can never reach the input, so a runaway greenhouse
ensues, at least if the physical input to the computation remains the same.
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The specific mechanism for the runaway can be attributed largely to the effect of water
vapour. Water vapour is a powerful greenhouse gas, there is plenty of it on earth, and the
saturation pressure of water in air increases exponentially with temperature. The positive
feedback of the runaway follows the route:

higher temperature ⇒ more water vapor ⇒ more global warming ⇒ higher temperature

Once the feedback starts, the temperature keeps increasing without bound, and the OLR
can never rise high enough to balance the incoming radiation. In such a situation, the
energy continues to build up, leading to the melting of the ice caps, the evaporation of
the oceans, and the eventual dissociation of H2O. At this juncture, the hydrogen would
escape into space, leaving an atmosphere much like that of Venus. Fortunately, the earth’s
atmosphere is much drier than that necessary for this doomsday scenario, at least for now.

4 A simple model of the greenhouse effect

According to the preceding arguments, the following phenomena are crucial to greenhouse
effect on earth:

1. Decreasing atmospheric temperature with altitude.

2. Decreasing atmospheric pressure with altitude. This affects both the amount of green-
house gasses and the peak broadening, and has its basis in the hydrostatic balance of
the atmosphere, dp/dz ≈ −ρg < 0.

3. Presence of greenhouse gases in atmosphere, where the greenhouse gases are defined
as the components of the atmosphere having absorption bands in the infra-red.

In this section, we build a simple model that illustrates the construction of the OLR,
together with an implicit greenhouse effect.

The model consists of a plane-parallel atmosphere in which the pressure, p(z), and tem-
perature, T (z), fall with height, z, from their values at ground level, p0 and T0 respectively.
Since we are interested in only demonstrating how the ingredients add together to keep the
earth surface warm, we will make some pretty crude idealizations. For one, the temperature
and pressure fields will be specified by the piece-wise linear functions:

T (z) = T0

(

1 −
z

H

)

ϑ(H − z) p(z) = p0

(

1 −
z

H

)

ϑ(H − z), (6)

where ϑ(x) is the step function; see figure 6.
The atmosphere is assumed to consist mainly of an inert gas except for small fraction of

a greenhouse gas with a single absorption line at the frequency corresponding to maximum
emission for a black body at temperature T0 (see Wien’s law in ( 2)).

ν∗ =

(

5.879 × 1010
Hz

K

)

T0. (7)

The line is, however, broadened to a degree determined by the pressure. Let the width of
the line be given by

∆ν(z) = 2δν∗p(z). (8)
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Figure 6: Temperature and pressure of a piece-wise linear toy model.

Thus the absorption depends on both frequency and height. We choose the simple model
absorption coefficient shown in figure 7, in which constant absorption occurs within the
broadened spectral line:

εν(z) = ε0 if ν∗ − δν∗p(z) < ν < ν∗ + δν∗p(z) (9)

= 0 otherwise. (10)

Figure 7: Model absorption coefficient for greenhouse gas.

The transfer of radiation is described by the intensity, Iν(z), the upward energy flux
density in the frequency interval [ν, ν +dν], by a simple energy balance between layers, this
satisfies

dIν

dz
=

εν(z)

2
Bν (T (z)) − εν(z)Iν(z). (11)

That is, the change of intensity equals emission minus absorption, with the boundary con-
dition,

Iν(0) = Bν(T0), (12)
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which assures that the intensity at the base of the atmosphere is given by the emission from
the ground.

Outside the greenhouse window on the ground, [ν∗ − ∆ν(0), ν∗ + ∆ν(0)], the radiation
is never affected by the greenhouse gas:

dIν

dz
= 0 for |ν − ν∗| > ∆ν, (13)

and so Iν(H) = Bν(T0).
If the frequency lies inside the ground-level greenhouse window, radiation can be ab-

sorbed at certain heights. The decline in pressure with height narrows the window of
absorbtion. For radiation of frequency ν we denote the height Hν to be the point at which
absorbtion of this frequency ceases. For our simplified model,

Hν =

[

1 −
|ν − ν∗|

δν∗p0

]

H. (14)

The governing equations for radiation flux then become

dIν

dz
= −ε0Iν +

hε0

c2

ν3

exp[hν/kT (z)] − 1
, for 0 < z < Hν

dIν

dz
= 0 for Hν < z < H, (15)

with Iν(z) continuous at z = Hν . Since T (z) is an decreasing function of temperature, and
exp[hν/kT (z)] > exp[hν/kT (0)] ≈ 16 � 1, we may simplify still further:

dIν

dz
= −ε0Iν +

hε0

c2
ν3 exp

(

−
χν

1 − z/H

)

for 0 < z < Hν

dIν

dz
= 0 for Hν < z < H, (16)

where

χν =
hν

kT0

. (17)

The radiation leaving the atmosphere, Iν(H) = Iν(Hν), and is therefore given by the
integral,

Iν(H) = e−ε0Hν Bν(T0) +
ε0hν3

c2

∫ Hν

0

exp

(

z − ε0Hν −
Hχν

H − z

)

dz). (18)

The first term in this expression is the residual attenuated radiation from the earth’s surface;
the second term is the net radiation from the atmosphere, also suitably attenuated. Fig. 8
shows a representative spectrum as given by ( 18).

The expression (18) can be integrated over all frequencies to yield an OLR curve as a
function of surface temperature; see figure 9. It can be seen that the OLR for the greenhouse
system is always below the OLR curve for the black body, and so the surface temperature
is always higher. The parameter values used are merely representative, and chosen chiefly
to bring out the difference between the black-body law and our toy model. Real models
of greenhouse effect incorporate absorption spectrum of all the greenhouse gases present in
the atmosphere and use realistic stratifications for the temperature and pressure.
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Figure 8: Intensity at the top of the atmosphere for the toy model.
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Figure 9: OLR curve for the toy model.

5 Radiative balance models

In general, the OLR curve as a function of surface temperature is the main ingredient in
a radiative balance model. To compute this curve we follow the recipe outlined above,
which requires as input the structure and composition of the atmosphere. With the balance
of incoming and outgoing radiation, we then may infer surface temperatures. Often the
procedure can be simplified by tabulating the OLR curve and fitting both its shape, the
dependence on surface temperature, together with the dependence upon other significant
variables, such as CO2 concentration. One can then make relatively fast global warming
calculations with the OLR curve and build conceptual climate models.

For example, consider CO2 on earth. Once all the calculations are done, it turns out
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Figure 10: Effect of carbon dioxide concentration on OLR.

that the OLR response to CO2 is roughly logarithmic, as shown in Fig. 10. Hence,

OLR(T, ln CO2) ≈ OLR(T, ln CO2∗) + D(T ) ln

(

CO2

CO2∗

)

, (19)

where CO2∗ is some reference value and the linear coefficient D(T ) may be a function of
T . Here we see how important it is that absorption is limited to narrow bands – without
saturation, the absorption would grow linearly with concentration, generating a much more
pronounced sensitivity of the OLR to CO2. The OLR exhibits the same kind of logarithmic
dependence on concentration for most greenhouse gases.

From figure 10, we see that doubling the CO2 concentration lowers the OLR by 4
W/m2, assuming that the total water vapour content stays constant. In order to balance
the incoming solar radiation, the surface temperature must then increase in order to raise
the OLR. Based on the black-body curve, this amounts to an increase of about half a degree
in surface temperature. If, however, the relative humidity (RH) remains the constant, more
water vapour will enter the atmosphere, and the rise in temperature becomes as large as 2
◦ C.

Although, the effect of CO2 on the OLR is significant, the effects of water vapour and
clouds are even greater (figure 11). For example, doubling the RH from 10 to 20% causes a
10 W/m2 shift in the OLR, equivalent to nearly tripling the CO2 in the atmosphere. Clouds,
on the other hand, constitute a very delicate climate variable. By adding the condensed
substance, in this case water, the opportunities for molecular collisions are vastly increased,
thereby leading to a significant broadening of the absorption lines. In this regard, clouds
act like greenhouse gases and one expects a cloudy climate to have a lower OLR. The height
and water mass of a cloud largely determine its radiative effect, because its temperature is
given by the moist adiabat. Idealized computations suggest that the greenhouse warming
effect of clouds is minimal at the surface, but at 10 km, they can lower the OLR by 150
W/m2.

Clouds, however, also reflect the incoming short-wave radiation back into space, thereby
increasing the albedo of the planet. Calculating cloud albedo is nontrivial exercise. For

83



Figure 11: Relative effect of carbon dioxide, water vapor and clouds on OLR.

instance. the albedo dependends strongly on the size of the water droplets composing the
cloud, so there is no simple correlation with the total mass of water. The average size of a
cloud droplet is 10 micrometers. Changing from 8 to 12 micrometers, however, can result
in albedo changes that are equivalent to a 20% reduction of the OLR.

Overall, clouds near the surface have a net cooling effect, while high clouds can be
warming. Experimental evidence suggests that the net effect of clouds in the tropics is near
zero, with a 100 W/m2 jump in the OLR caused by increased absorption almost completely
compensated by cloud albedo. In the extratropics (30◦ latitude and up) the net result is
cooling, effectively lowering the OLR by approximately 15 W/m2.

That the net effect of clouds must be computed from the close subtraction of two rela-
tively large quantities makes the problem prone to severe error. The matter is complicated
still further by the fact that cloud formation is also not particularly well understood: Nucle-
ation sites are needed to begin condensation, creating a dependence on the concentration of
airborne particles, such as dust and sulfate aerosols. (The dependence on sulfate aerosols is
revealed in the higher rate of cloud cover over ship tracks, where aerosol pollutants are in-
troduced to the atmosphere!) In the absence of nucleation centers, water vapor can become
supersaturated in the atmosphere without forming any clouds. Suffice to say that clouds
are the main uncertainty in climate modelling, from the toy system to the GCM. We need
a theory of clouds if we are to make more progress in answering climate questions.

In summary, as the intensity of the OLR must balance incoming solar radiation, at least
in the steady state climate, any change in the environment that lowers or raises the OLR
will eventually manifest itself as a change in the surface temperature. The relationship
between OLR and surface temperature is roughly linear over small variations, as shown in
Fig. 12. All one needs therefore do is to calculate the linear coefficients and incorporate
this into a model, as we do next.
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Figure 12: Dependence of OLR on Temperature

6 Ice albedo feedback

We are now ready to construct toy models; we illustrate with a simple model of the ice-albedo
feedback effect. The albedo is quite complicated: Deserts have large albedos compared to
forests and oceans, and fresh ice and snow is more reflective than older ice, on which dust and
other debris may have collected. The average albedo of land and sea ice αice = 0.7, whilst the
average ice-free land/sea albedo α0 = 0.1. We consider just the average albedo of the entire
surface of the Earth, α(T ), as a function of the average surface temperature, T . The reflected
light lies in the visible and so escapes immediately into space; the absorbed radiation is
converted into the infra-red and percolates up through the atmosphere eventually providing
the OLR. Thus the energy balance is

S0 = α(T )S0 + OLR, or S(T ) ≡ So[1 − α(T )] = OLR, (20)

where S0 is the annual average incident radiation.
Let T0 be the annual mean temperature necessary to sustain permafrost over the whole

earth. Such a “snowball earth” may have existed in the neoprotozoic – about 600 million
years ago (see lecture 10). We set T1 to be the average temperature of a completely ice-
free earth, as it was during the Eocene, about 55 million years ago, when lemurs roamed
Spitzbergen and Crocodiles cavorted in the Hudson bay (as also discussed in lecture 10).
We then make up a “plausible” function f(T ) to connect α(T ) between its values for the

85



permafrost and temperate earths:

α(T ) = αice, T < T0, (21)

= f(T ), T0 < T < T1 (22)

= α0, T > T0 (23)

The interpolating function f(T ) should have the features that it decrease sharply for T
just above T0, but more slowly for T near T1. This is because near T0, the albedo declines
when the equatorial region becomes ice free; this region has both the largest area, per degree
latitude, and experiences the strongest, annual average incident radiation. But approaching
T1, a slowly increasing albedo reflects the shrinking polar ice caps that have least area and
weakest annual radiation.

Figure 13: Top panel: absorbed solar radiation and the OLR. Lower panel: Bifurcation
diagram.

In figure 13 we plot the OLR curve, which we approximate to be a straight line, and the
net absorbed solar radiation So(T ). In this particular example, To = 240K, T1 = 300K,
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and the greenhouse gas content gives an OLR intersecting the net incoming radiation curve
at three points. This reveals three possible steady states. At the far left, we have a stable
snowball earth, while at the far right we have the ice-free eocene climate. If we shift the OLR
over to the left by, for example, decreasing the CO2, the warmer steady state becomes a
world like today, with a small polar ice cap. In the middle we have steady state characterized
by large ice sheets; this state is an unstable equilibrium, as indicated as follows.

Away from the steady states the earth is not in balance with the incoming radiation.
If we let M be the “thermal mass” of the earth, a fuzzy constant meant to characterize
earth’s heat capacity and the energy needed to melt ice sheets, and so on, then

M
dT

dt
= −(A + BT ) + S0[1 − α(T )], (24)

where the first term is the linearization of the OLR curve, and the latter is the net incident
radiation. If the planet were placed immediately to the right of the middle steady state,
which would correspond to adding a small warm anomaly, dT/dt becomes positive, pushing
the earth toward the warmer state. Conversely, if the planet were pushed leftward by a
small cold deviation, the climate becomes pushed all the way to a snow ball. This is the
mechanism of the large ice-sheet instability.

If we allow the incident solar flux to vary in some way, we can find transitions between
the other two, stable equilibria; this is the content of the bifurcation diagram in Fig. 13.
On the x−axis we plot the solar radiation constant, S0, and on the y−axis, the global mean
surface temperature, T . The curve plots all possible equilibria. The upper curve above 270
K represents the stable warm climate equilibrium. The curve below it, stopping at 240 K,
shows the unstable, partial ice cover equilibria. Below 240 K, we have the snowball earth.
We see that if the output of the sun falls below 340 W/m2, the earth can fall from a stable
warm climate into a snowball. Similarly, at 520 W/m2, a stable snowball climate evaporates
into a simmering tropical earth.

Figure 13 plots the equilibria against the incoming flux and so models the effect of
secular variations in the solar constant, which could be brought about by, for example, the
evolution of the sun. One could rather vary the greenhouse gas content of the atmosphere,
instead of the solar flux, and obtain a similar bifurcation diagram. As increasing the CO2 is
approximately equivalent to raising the sun’s radiation, the x−axis could equally well read
ln CO2.

Finally, we close this lecture with a few remarks on some of the missing pieces in the
climate puzzle. We have already mentioned that clouds are one of the main unknown
ingredients to models. But we have also neglected vegetation, which can have a significant
effect on, amongst other properties, the surface albedo. Unlike tundra, trees can offset the
reflective effect of snow cover. Also, the thermal stratification of the atmosphere, a crucial
part of the recipe for constructing the OLR, has been tacitly assumed to be given by the
moist adiabat. This is certainly true for the tropics, but is not an accurate approximation for
the mid-latitude atmosphere. Here, a significant role is played by fluid motion in determining
the mean stratification (in particular, transport by turbulent eddies may play a key role),
and there could be some, as yet unexplored, interesting interactions between the mid-
latitude greenhouse effect and the atmospheric fluid dynamics.

Notes by Ed Gerber and Shreyas Mandre
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