
IEEE JOURNAL OCEANIC ENGINEERING, VOL. XX, NO. Y, ZZZ 2014 1

Illumination and Attenuation Correction Techniques
for Underwater Robotic Optical Imaging Platforms

Jeffrey W. Kaeli and Hanumant Singh

Abstract—We demonstrate a novel method of correcting illumi-
nation and attenuation artifacts in underwater optical imagery.
These artifacts degrade imagery and hinder both human analysis
as well as automated classification algorithms. Our approach
estimates separately the attenuation coefficient of the water
column and the beam pattern of the illumination source using
sequences of overlapping color images and acoustic ranges from
a Doppler Velocity Log (DVL). These values are then used in
the correction step to remove color and intensity artifacts with
the overarching goal of more consistent results for input into
classification algorithms.

Index Terms—color correction, computational photography,
multi-sensor fusion, underwater imaging, underwater robotics

I. INTRODUCTION

WE have better maps of the surfaces of Venus, Mars, and
our moon than we do of the seafloor beneath Earth’s

oceans [1], primarily because, in many respects, the imagery is
easier to obtain. Water is a strong attenuator of electromagnetic
radiation, so while satellites can map entire planets from space
using cameras and laser ranging, underwater vehicles must be
within tens of meters at best for optical sensors to be useful.
While mechanical waves do travel well through water, there
are practical tradeoffs between source strength, frequency,
and propagation distance. Ship-based sonars use lower fre-
quencies to reach the bottom, but these longer wavelengths
come at the price of reduced resolution. To map fine-scale
features relevant to many practical applications, both optical
and acoustic imaging platforms must operate relatively close to
the seafloor. We are particularly interested in optical imaging
because it captures the color and texture information useful
for distinguishing habitats and organisms.

An underwater photograph not only captures the scene
of interest, but is an image of the water column as well.
Attenuation of light underwater is caused by absorption, a
thermodynamic process that varies nonlinearly with wave-
length, and by scattering, a mechanical process whereby a
photon’s direction is changed [2], [3]. At increasing depths,
ambient light is attenuated to where colors can no longer be
distinguished and eventually to effective darkness. Artificial
light sources must subsequently be used to illuminate the
scene, but these sources contribute to scattering and can
introduce beam pattern artifacts in the image. In summary,
uncorrected underwater imagery is typically characterized by
non-uniform illumination, reduced contrast, and colors that are
saturated in the green and blue channels.

The authors are with the Woods Hole Oceanographic Institution, Woods
Hole, MA, 02543 e-mail: (see http://www.whoi.edu/people/jkaeli).

Fig. 1. Capturing an underwater image. Light originating from the surface
and/or an artificial source reflects off of an object (the fish) and toward the
camera along a direct path (red line) or is scattered by particles along infinite
possible paths into the camera’s field of view (blue lines).

It is often desirable for an underwater image to appear as if
it were taken in air, either for aesthetics or as a pre-processing
step for automated classification. Methods range from purely
post-processing techniques to novel hardware configurations,
and the choice depends heavily on the imaging system, the
location, and the goals of the photographer. In this paper, we
first build a model of underwater image formation, describing
how various artifacts arise. Next, we discuss a variety of
common methods used to correct for these artifacts in the
context of different modes of underwater imaging. Lastly,
we present a novel method of correction for robotic imaging
platforms that estimates environmental and system parameters
using multi-sensor fusion.

II. UNDERWATER IMAGE FORMATION

An underwater photograph not only captures the scene of
interest, but is an image of the water column as well. Figure 1
diagrams a canonical underwater imaging setup. Light rays
originating from the sun or an artificial source propagate
through the water and reach the camera lens either by a direct
path or by an indirect path through scattering. We deal with
each of these effects in turn.

A. Attenuation
The power associated with a collimated beam of light is

diminished exponentially as it passes through a medium in
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accordance with the Beer-Lambert Law

P`(�) = P0(�) e
�↵(�)` (1)

where P0 is the source power, P` is the power at a
distance ` through the medium, � is wavelength, and ↵ is the
wavelength-dependent attenuation coefficient of the medium
[2]. Attenuation is caused by absorption, a thermodynamic
process that varies with wavelength, and by scattering, a
mechanical process whereby a photon’s direction is changed.

↵(�) = ↵a(�) + ↵s (2)

where ↵a(�) and ↵s are the medium absorption and scatter-
ing coefficients, respectively. Scattering underwater is largely
wavelength-independent because the scattering particle sizes
are much larger than the wavelength of light. Underwater
scenes generally appear bluish green as a direct result of water
more strongly absorbing red light than other wavelengths.
However, the attenuation properties of water vary greatly with
location, depth, dissolved substances and organic matter [3].

B. Natural Lighting

Natural illumination En from sunlight Sn attenuates ex-
ponentially with depth z and can be characterized by ¯K(�),
the average spectral diffuse attenuation coefficient for spectral
downwelling plane irradiance.

En(�, z) = Sn(�) e
�K̄(�)z (3)

While related to ↵, the diffuse attenuation coefficient repre-
sents the sum of all light arriving at a given depth that has been
attenuated along infinitely many scattered paths. It is strongly
correlated with phytoplankton chlorophyll concentrations and
is often measured in remote sensing applications [3].

C. Artificial Lighting

At a certain depth, natural light is no longer sufficient for
illumination, so artificial lights must be used. For robots that
operate untethered from ship power, such as Autonomous
Underwater Vehicles (AUVs), this limits the available energy
for lighting and thus beam pattern artifacts are common. We
can model the artificial illumination pattern Ea from a single
source as

Ea(�) = Sa(�) BP✓,�
e�↵(�)`a

`2a
cos� (4)

where Sa is the source spectrum, BP✓,� is the angularly-
dependent beam pattern of the source, `a is the path length
between the source and the scene, and � is the angle between
the source and surface normal assuming a Lambertian surface
[4]. In practice, imaging platforms may carry one or multiple
light sources, but in our model we assume a single source for
simplicity.

Fig. 2. A raw underwater image (left) has been rectified to correct for lens
distortion underwater (right).

D. Diffuse Lighting

Light that is scattered back into the camera’s line of sight
is known as backscatter, a phenomenon similar to fog in the
atmosphere [5]. If we denote F (�, z) to be the diffuse light
field at any given point, we can recover the backscatter by
integrating the attenuated field along a camera ray.

Eb(�) =

Z `s

0
F (�, z) e�↵(�)`d` (5)

Under the assumption that F (�, z) ⇡ F (�) is uniform over
the scene depth `s, then

Eb(�) = A(�)
⇣
1� e�↵(�)`s

⌘
(6)

where A(�) = F (�)
↵(�) is called the airlight. This additive light

field reduces contrast and creates an ambiguity between scene
depth and color saturation [6].

E. Camera Lens

The lens of the camera gathers light and focuses it onto the
optical sensor. Larger lenses are preferable underwater because
they are able to gather more light in an already light-limited
environment. The lens effects L can be modeled as

L =

✓
DL

2

◆2

cos

4✓L TL

✓
Zs � FL

ZsFL

◆2

(7)

where DL is the diameter of the lens, ✓L is the angle
from lens center, TL is the transmission of the lens, and Zs

and FL are the distance to the scene and the focal length,
respectively. Assuming there are no chromatic aberrations, the
lens factors are wavelength-independent. A detailed treatment
of this can be found in McGlamery and Jaffe’s underwater
imaging models [4], [7].

Subsequent computations may require that the projected
ray direction in space is known for each pixel. Because
the refractive index of water differs from that of air, the
camera lens can be calibrated to account for distortion using
the method described in [8]. An image can subsequently be
warped such that each pixel is aligned with its appropriate
location in space, as shown in Figure 2.
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Fig. 3. Backscatter is a direct result of the intersection (shown in orange) between the illumination field (yellow) and the field of view of the camera. In
ambient light (far left) and when using a coincident source and camera (second from left) the entire field of view is illuminated. Separating the source from
the camera (middle) results in a reduction of backscattering volume. Structured illumination (second from right) and range gating (far right) drastically reduce
the backscattering volume and are ideal for highly turbid environments.

F. Optical Sensor

Since most color contrast is lost after several attenuation
lengths, early underwater cameras only captured grayscale
images. The intensity of a single-channel monochrome image
c can be modeled as the integrated product of the sensor’s
spectral response function ⇢ with the incoming light field

c =

Z
E(�)r(�)⇢(�) d� (8)

where E is the illuminant and r is the reflectance of the
scene. Bold variables denote pixel-dependent terms in the
image. Creating a color image requires sampling over multiple
discrete spectral bands ⇤, each with spectral response function
⇢⇤. The human visual system does precisely this, using three
types of cone-shaped cells in the retina that measure short
(blue), medium (green), and long (red) wavelengths of light,
known as the tristimulus response. Modern digital cameras
have been modeled after human vision, with many employing
a clever arrangement of red, green, and blue filters known as
a Bayer pattern across the sensor pixels. This multiplexing
of spatial information with spectral information must be dealt
with in post-processing through demosaicking [9], [10].

A color image can be similarly modeled as

c⇤ =

Z
E(�)r(�)⇢⇤(�) d� ⇡ E⇤r⇤. (9)

The illuminant and reflectance can be aproximated in terms
of the camera’s red, green, and blue channels ⇤ = {R,G,B}
with the understanding that they actually represent a spectrum
[11]. By adjusting the relative gains of each channel, known
as von Kries-Ives adaptation, one can transform any sensor’s
response into a common color space through simple linear
algebra.

G. Imaging Model

Putting the pieces together, we arrive at a model with both
multiplicative terms from the direct path and additive terms
from the indirect scattered light field.

c⇤ = G


(En,⇤ +Ea,⇤) r⇤

e�↵⇤`s

`2s
+Eb,⇤)

�
L (10)

G is an arbitrary camera gain. We ignore forward scattering
from our model because its contributions are insignificant for
standard camera geometries [12].

III. REVIEW OF CORRECTION TECHNIQUES

Removing the effects of the water column from underwater
images is a challenging problem, and there is no single
approach that will outperform all others in all cases. The
choice of method depends heavily on the imaging system used,
the goals of the photographer, and the location where they are
shooting.

Imaging systems can range from a diver snapping tens of
pictures with a handheld camera to robotic platforms capturing
tens of thousands of images. Where divers often rely on natural
light, robotic imaging platforms such as AUVs often dive
deeper and carry artificial lighting. AUVs generally image
the seafloor indiscriminately looking straight down from a
predefined altitude, while divers are specifically advised to
avoid taking downward photographs and get as close as
possible [13]. One individual may find enhanced colors to be
more beautiful, while a scientist’s research demands accurate
representation of those colors. Similarly, a human annotating
a dataset might benefit from variable knobs that can enhance
different parts of the images, while a computer annotating a
dataset demands consistency between corrected frames.

Lighting and camera geometry also play huge roles in the
subsequent quality of underwater imagery. Figure 3 shows
the effect that camera - light separation has on the ad-
ditive backscatter component. Images captured over many
attenuation lengths, such as a horizontally facing camera
pointed towards the horizon, suffer more from backscatter
than downward looking imagery captured from 1-2 attenuation
lengths away. In many situations, the additive backscatter
component can be ignored completely, while in highly turbid
environments, more exotic lighting methods may be required.
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Fig. 4. Example methods of correcting illumination and attenuation artifacts in the underwater image from Figure 2. Adaptive histogram equalization (top left)
and homomorphic filtering (top middle) attempt to remove the non-uniform illumination pattern, but do not correct for attenuation. White balancing (top right)
attempts to correct for attenuation, but does not remove the non-uniform illumination artifacts. Applying white balancing to adaptive histogram equalization
(bottom left) and homomorphic filtering (bottom middle) corrects for both illumination and attenuation but can distort colors and leave haloing artifacts around
sharp gradients. Frame averaging (bottom right) also corrects for both illumination and attenuation. The bottom row represents several state-of-the-art methods
currently used to batch-process large volumes of downward-looking underwater transect imagery captured from robotic platforms.

A. Shallow, Naturally Lit Imagery
Images captured in shallow water under natural illumination

often contain a strong additive component. Assuming a pinhole
camera model, image formation can be elegantly written as a
matteing problem

c⇤ = J⇤ t+ (1� t )A⇤ (11)

where J⇤ =

En,⇤

`2s
r⇤ and t = e�↵⇤`s is the “transmission”

through the water. Dehazing algorithms [6], [14] are able to
both estimate the color of the airlight and provide a metric
for range which are used to remove the effects of the airlight.
Since the scattering leads to depolarization of incident light,
other methods employ polarizing filters to remove airlight
effects [15]. However, these methods do not attempt to correct
for any attenuation effects.

B. Enhancing Contrast
Several methods simply aim at enhancing the contrast that

is lost through attenuation and scattering. Adaptive histogram
equalization performs spatially varying histogram equaliza-
tion over image subregions to compensate for non-uniform
illumination patterns in grayscale imagery [12]. Homomor-
phic methods work in the logarithmic domain, where multi-
plicative terms become linear. Examples of both are shown
in Figure 4. Assuming that the illumination field I⇤ =

(En,⇤ +Ea,⇤)
e�↵⇤`s

`2s
contains lower spatial frequencies than

the reflectance image, and ignoring (or previously having
corrected for) any additive components,

log c⇤ = log I⇤ + log r⇤, (12)

the illumination component can be estimated though low-
pass filtering [16] or surface fitting [17] and removed to
recover the reflectance image. These methods work well for
grayscale imagery, can be applied to single images, and do
not require any a priori knowledge of the imaging setup.
However, they can sometimes induce haloing around sharp
intensity changes, and processing color channels separately
can lead to misrepresentations of actual colors. Other contrast
enhancement methods model the point spread function of the
scattering medium and recover reflectance using the inverse
transform [18].

C. High-Turbidity Environments
Some underwater environments have such high turbidity or

require an altitude of so many attenuation lengths that the sig-
nal is completely lost in the backscatter. Several more “exotic”
methods utilizing unique hardware solutions are diagrammed
in Figure 3. Light striping [19]–[22] and range gating [23]
are both means of shrinking or eliminating, respectively, the
volume of backscattering particles. Confocal imaging tech-
niques have also been applied to see through foreground haze
occlusions [24].

D. Restoring Color
The effects of attenuation can be modeled as a spatially

varying linear transformation of the color coordinates
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c⇤ = I⇤r⇤ (13)

where I⇤ is the same illumination component defined in
Equation 12. The reflectance image can be recovered simply
by multiplying by the inverse of the illumination component.
Assuming that the illumination and attenuation I⇤ ⇡ I⇤
are uniform across the scene, this reduces to a simple white
balance via the von Kries-Ives adaptation [11]. The white
point can be set as the image mean under the grey world
assumption, a manually selected white patch, or as the color
of one of the brightest points in the image [25], [26]. This
method achieves good results for some underwater images,
but performs poorly for scenes with high structure. Results can
also be negatively affected when the grey world assumption
is violated, for instance a large colored object which shifts
the mean color of the image. Figure 4 shows the effects of
white balancing both on a raw image and on contrast enhanced
imagery. Recent work in spatially varying white balance [27]
deals with correcting for multiple illumination sources and
may have applications to underwater images as well.

More computationally involved methods include fusion-
based approaches that combine the “best” result of multiple
methods for color correction and contrast enhancement [28].
Markov Random Fields have been used with statistical priors
learnt from training images to restore color [29]. A novel
hardware solution to restoring color employs colored strobes
to replace the wavelengths lost via attenuation [30].

E. Beyond a Single Image

Additional information beyond that contained in a single
image can be useful for correcting a series of underwater
images. The simplest method is to compute the average across
many image frames

1

K

KX

k

c⇤,k ⇡ I⇤
1

K

KX

k

r⇤,k = I⇤¯r⇤ (14)

under the assumption that the illumination component does
not vary between images. This assumption is valid for many
types of robotic surveys where a constant altitude is main-
tained over a relatively uniform seafloor [31], [32]. Correction
is then akin to that of a spatially varying white balance where
the white point of each pixel is the mean over the dataset. An
example is shown in Figure 4.

Robotic platforms often carry additional sensors other than a
single camera and light source. An acoustic altimeter can pro-
vide information to perform range-dependent frame averaging
useful for towed systems where a constant altitude is difficult
to maintain [33]. However, this approach fails when the bottom
is not flat relative to the imaging platform. Multiple acoustic
ranges, such as those obtained from a Doppler Velocity Log
(DVL), can be used under the assumption that the bottom
is locally planar [34]. Stereo camera pairs [35] or a sheet
laser in the camera’s field of view [36] can similarly provide
bathymetry information for modeling attenuation path lengths.

Fig. 5. Diagram of a typical underwater robotic imaging platform setup. The
camera and light are separated to reduce backscatter, and a DVL (in green)
mounted near the camera is used to estimate a bottom plane (in grey).

IV. CORRECTION FOR ROBOTIC IMAGING PLATFORMS

In addition to cameras and artificial light sources, robotic
imaging platforms generally carry a suite of navigational
sensors as well. One such sensor in widespread use is the
Dopper Velocity Log (DVL) which measures both range and
relative velocity to the seafloor using 4 acoustic beams [37].
Figure 5 diagrams a common configuration for many robotic
imaging platforms. The camera and light source are separated
to reduce backscatter, and the DVL is mounted adjacent
to the camera so its beams encompass the field of view.
Unlike many correction methods for single images that rely
on assumptions such as low frequency illumination patterns,
we exploit multiple images and additional sensor information
to estimate the unknown parameters of the imaging model and
use this to obtain more consistent image correction.

A. Assumptions
We first assume that our images are captured deep enough

so that natural light is negligible relative to artificial lighting.
We also assume there is a single strobe, and its spectrum
S⇤ ⇡ {1, 1, 1} is approximately white. This is an acceptable
assumption because, while deviations in the strobe spectrum
will induce a hue shift in the corrected reflectance image, this
shift will be constant over all images in a dataset. Thus, even
a strongly colored strobe would have no effect on automated
classification results assuming the training and testing were
both performed with corrected imagery.

Next, we assume that we can ignore the additive effects
of scattered diffuse lighting. This is a valid assumption for
images captured in relatively clear water within a few meters
of the seafloor, as demonstrated in Figure 6. The log of each
color channel mean for 3000 images has been plotted as a
function of vehicle altitude over the course of a mission.
At high altitudes, diffuse light from the scattered illumina-
tion field dominates, asymptotically approaching the airlight
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Fig. 6. Log color channel means (colored respectively) as a function of
altitude for over 3000 images captured along a transect. Note the linearity
within the first few meters, suggesting that additive effects can be ignored
within this regime. Diffuse lighting dominates at higher altitudes, asymptot-
ically approaching the airlight color. The falloff at very low altitudes is due
to the strobe beam leaving the camera’s field of view.

color. Within the first few meters, however, the relationship
is roughly linear, indicating the relative absence of additive
scattering effects.

Neglecting additive components allows us to work in the
logarithmic domain, where our image formation model be-
comes a linear combination of terms. Approximating the
seafloor as a locally planar surface, we can neglect the
Lambertian term cos� as it will vary little over the image.
The gain G and lens L terms are constant between images and
effect only the brightness but not the color. Omitting them as
well, our model reduces to

log c⇤ = log r⇤+logBP ✓,��↵⇤(`a+`s)�2log `a `s. (15)

From this we can clearly see three processes corrupting
our underwater image. Firstly, the beam pattern of the strobe
creates a non-uniform intensity pattern across the image as a
function of beam angles ✓ and �. Second is attenuation, which
is wavelength-dependent and directly proportional to the total
path length ` = `a + `s. Lastly, there is spherical spreading,
which in practice we have found to be less significant than
the exponential attenuation, supported by [38], and henceforth
omit from our calculations.

At the moment, the entire right hand side of Equation 15
consists of unknowns. However, using the 4 range values from
the DVL, and with a priori knowledge of offsets between
sensors, we can fit a least squares local plane to the seafloor
and compute the values of `, ✓, and � for each pixel in the
image. Although the vast majority of DVL pings result in 4
usable ranges, sometimes there are unreturned pings. In the
case of three pings, a least squares fit reduces to the exact
solution. For one or two returns, the bottom is simply assumed
to be flat, although these cases are rare.

B. Attenuation Coefficient Estimation
For the moment, let us assume that the beam pattern

BP ✓,� ⇡ 1 is uniform across the image. For each pixel in

Fig. 7. A pair of overlapping images with matched keypoints.

each color channel, we have one equation but 2 unknowns: the
attenuation coefficient ↵⇤ and the reflectance value r⇤ that we
are trying to recover. However, if that same point is imaged
from another pose with a different path length, an equation is
added and the system can be constrained. For the purposes of
navigation and creating photomosaics, finding shared features
between overlapping images is a common problem. Keypoints
can be reliably detected and uniquely described using methods
such as Harris corners and Zernike moments [32] or SIFT
features [39]. An example of two overlapping images with
matched keypoints is shown in Figure 7.

For each pair of matched keypoints, the average local color
value is computed using a Gaussian with standard deviation
proportional to the scale of the keypoint. Assuming that the
corrected values of both colors should be the same, we can
explicitly solve for the attenuation coefficients

↵⇤ =

log c⇤,1 � log c⇤,2

`2 � `1
. (16)

The mean values of ↵⇤ were calculated for each of 100
images. Values less than 0.1 were considered unrealistic and
omitted. This accounted for 20% of the images. The results
are plotted at the top of Figure 8.

This method is feasible for as few as two images assuming
that there is overlap between them and enough structure
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Fig. 8. Estimated ↵⇤, color coded respectively, for uncorrected images (top)
and beam pattern corrected images (bottom). Values less than 0.1 have been
ignored. Dotted lines are mean values. Note how well the triplets correlate
with each other, suggesting that the variation in the estimate originates from
brightness variations between images.

present to ensure reliable keypoint detection, which is usually
not an issue for AUV missions. For towed systems, however,
altitude and speed are more difficult to control, so we pro-
pose a second simpler method for estimating the attenuation
coefficients. Figure 6 plotted the log color channel means
over a range of altitudes. For altitudes between 1-5 meters,
the relationship is roughly linear, which we used to justify
ignoring any additive scattering in our model. Assuming that
the average path length ¯` ⇡ 2a is approximately twice the
altitude, then the attenuation coefficients can also be estimated
as half the slope of this plot.

C. Beam Pattern Estimation
While the strobe’s beam pattern induces non-uniform illu-

mination patterns across images, this beam pattern will remain
constant within the angular space of the strobe. Assuming
a planar bottom, each image represents a slice through that
space, and we are able to parameterize each pixel in terms
of the beam angles ✓ and �. If we consider only the pixels
p 2 [✓i,�j ] that fall within an angular bin, the average
intensity value corrected for attenuation will be a relative
estimate of the beam pattern in that direction.

logBP (✓i,�j) =

X

⇤

1

|p|
X

p

log c⇤ + ↵⇤` (17)

Assuming that there is no spatial bias in image intensity
(for instance the left half of the images always contain sand
and the right half of the images only contain rocks) then the
reflectance term only contributes a uniform gain. This gain is
removed when the beam pattern is normalized over angular
space. The resulting beam pattern is shown in Figure 9.

We also recompute the attenuation coefficients using color
values for the beam pattern corrected imagery. The results
are shown in the bottom of Figure 8. The triplets correlate
quite well with each other, suggesting that variation in the
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Fig. 9. Estimated beam pattern of the strobe in angular space. Warmer hues
indicate higher intensities, while the dark blue border is outside the camera
field of view. Axes units are in degrees, with (0,0) corresponding to the
nadir of the strobe. The strobe was mounted facing forward with a downward
angle of approximately 70 degrees from horizontal. The camera was mounted
forward and starboard of the strobe. Note how the beam pattern is readily
visible in figure 10.

estimates arises from intensity variation between images and
not necessarily within images.

D. Image Correction
Each captured image can be corrected by multiplication with

the inverse of the beam pattern and attenuation terms. Figure
10 shows different stages of correction performed on the
upper left raw underwater image. The upper right image has
been corrected for attenuation alone, and while its colors look
more realistic there are strong illumination artifacts present.
The lower left image has been corrected for beam pattern
alone, and thus maintains a bluish hue from attenuation. The
bottom right image has been corrected for both illumination
and attenuation.

The artifacts of attenuation and illumination are sometimes
hidden when photomosaics are created and images blurred
together. Figure 11 shows photomosaics of the same area
before and after correction. While much of the along-track
variation in illumination has been blurred away, there is still a
definitive difference in brightness in the across-track direction.
This can create difficulties when attempting to mosaic adjacent
track lines together.

Several more pairs of raw and corrected images are shown
in Figures 12 and 13 and have been published in [40]. These
images were captured at various benthic locations between
the Marguerite Bay slope off the western Antarctic Peninsula
and the Amundsen Sea polynia. While the same beam pattern
estimates are used for all images, the value of the attenua-
tion coefficients varied enough between locations that using
mismatched coefficients produced unrealistic looking results.
While correlating attenuation with parameters such as salinity
or biological activity is beyond the scope of this thesis, it
presents interesting topics for future research into measuring
environmental variables using imagery.
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Fig. 10. Sample underwater image (upper left) corrected for attenuation alone (top right), beam pattern alone (bottom left), and both beam pattern and
attenuation using the method presented in this paper.

V. CONCLUSIONS AND FUTURE WORK

We have presented a detailed model of image formation
underwater, discussed a diverse assortment of methods used
to obtain and correct high-quality underwater images, and
presented our own method for correcting underwater images
captured from a broad family of robotic platforms. For this
method, we use additional sensor information commonly avail-
able on underwater vehicles to constrain a strong physical
model. Because an underwater image captures both water
column and illumination processes in addition to the scene
of interest, we are able to isolate and estimate the attenuation
coefficient of the water as well as the beam pattern of the
illumination source from the images themselves. Our goal was
never to develop a unifying method of correction, but rather to
emphasize a unified understanding in how correction methods
should be applied in different imaging situations.

Because robotic platforms generate datasets that are often
too large for exhaustive human analysis, the emphasis on
their correction should involve batch methods that provide
consistent, if not perfectly accurate, representations of color
and texture. Available information from other onboard sensors

can and should be utilized to improve results. For instance,
[33] uses a towed camera system’s sonar altimeter for range-
dependent frame averaging, while [35] uses stereo camera
pairs to estimate photon path lengths at the individual pixel
scale. While an unfortunate side effect of such a mentality
is that correction techniques can become somewhat platform-
specific, it is not surprising that more realistic correction is
obtained when all available information is taken into account.

Furthermore, we re-emphasize that a corrected image along-
side a raw image contains information regarding the water
column properties, the bottom topography, and the illumi-
nation source. Given this residual, any correction scheme
will naturally provide insight to some projection of these
values in parameter space. In the absence of ground truthing,
which is often unrealistic to obtain during real-world mission
scenarios, one possible metric is to compare methods based
on their residual, or what they estimate the artifacts to be,
for which approach most closely approximates the physical
imaging situation. While this metric is somewhat contrived, it
is apparent that the approach which best estimates this residual
will also provide superior results.

Jeff Kaeli
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Fig. 11. Raw (left) and corrected (right) photomosaics from a sequence of 10 images. Note how the non-uniform illumination pattern is blurred between
frames in the left image.
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Fig. 12. Example raw (top) and corrected (bottom) images using the method presented in this paper.
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Fig. 13. Example raw (top) and corrected (bottom) images using the method presented in this paper.
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