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Abstract. Remotely sensed tracking data collected on animal movement is vastly un-
derutilized due to a lack of statistical tools for appropriate analysis. Features of such data
that make analysis particularly challenging include the presence of estimation errors that
are non-Gaussian and vary in time, observations that occur irregularly in time, and com-
plexity in the underlying behavioral processes. We develop a state–space framework that
simultaneously deals with these features and demonstrate our method by analyzing three
seal pathway data sets. We show how known information regarding error distributions can
be used to improve inference of the underlying process(es) and demonstrate that our frame-
work provides a powerful and flexible method for fitting different behavioral models to
tracking data.
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walks; switching models; uncertainty; WinBUGS.

INTRODUCTION

The advent of miniaturized satellite transmitters has
led to the collection of a plethora of animal movement
data. These data are complex both in their underlying
biological mechanisms and in their statistical proper-
ties. For example, given sufficient time and resolution,
any pathway will represent multiple behavioral pro-
cesses and hence estimation of movement parameters
becomes nontrivial. Do we estimate single parameters
for the whole pathway, ignoring important behavioral
variability? How do we determine where one dominant
behavior ends and another begins? Furthermore, many
remote sensing devices such as Argos satellite tags
(e.g., Austin et al. 2003) and archival tags (e.g., Teo
et al. 2004) impose complex error structures on the
data that must be dealt with appropriately so that im-
portant biological variability can be separated from ar-
tificial noise. These issues pose a serious challenge to
ecologists studying movement behavior.

Jonsen et al. (2003) proposed a state–space frame-
work for analysis of movement data using a simplistic
random walk model fitted to simulated data. State–
space models are time-series methods that allow un-
observed states and biological parameters to be esti-
mated from data observed with error. A useful feature
of these methods is that two principle sources of un-
certainty, namely estimation error arising from inac-
curate observations and process variability arising from
stochasticity in the movement process, can be account-
ed for separately. Here, we propose a more complex
state–space framework that enables one to deal with

Manuscript received 15 December 2004; revised 17 June
2005; accepted 21 June 2005. Corresponding Editor: G. M.
Henebry.

3 E-mail: jonsen@mathstat.dal.ca

biological and statistical complexities associated with
satellite tracking data. This is accomplished by for-
mulating movement models appropriate for such data
and by using robust statistical methods.

Our focus here is on remotely sensed data collected
via the Argos satellite system but the general approach
can be applied to other data types; e.g., radio, GPS, or
archival telemetry. Argos data are categorized into six
quality classes based generally on the number of up-
links from transmitter to satellite, the time between
these uplinks, and the time since a previous location
was estimated (Austin et al. 2003). The estimation er-
rors associated with these quality classes vary through
time and are strongly non-Gaussian. Furthermore, the
Argos-derived locations are observed irregularly
through time, which imposes an artificial perspective
on the movement process(es). We utilize a statistically
robust approach that accounts for these features of the
data coupled with a correlated random walk model that
is appropriate for location data and that can be gen-
eralized to handle complexity in the underlying be-
haviors (e.g., Morales et al. 2004). We illustrate our
framework by analyzing three seal data sets that differ
in biological and statistical complexity.

METHODS

Our data consist of locations observed through time.
These locations may be complex in terms of the un-
derlying biology, but the behavior that we wish to es-
timate does not derive from the locations in space, it
derives from changes in the way animals move. We
therefore need to develop a model that estimates un-
observable states from locations observed with error,
because these are the data typically available. Included
in the model are underlying biological dynamics that
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describe changes in move direction and speed, the nat-
ural descriptors of animal movement.

Transition equation

The first component of the state–space model is the
transition equation, which describes a Markov process
where unobservable states evolve over regular time in-
tervals given the previous state, process variability, and
biological parameters (see Harvey [1993] for further
details). The transition equation describes the dynamics
of the movement process being modeled. We start by
setting down a transition equation for a simple random
walk:

x 5 x 1 ht11 t t (1)

where xt is a two-dimensional vector of the unobserved
states at time t, i.e., the true locations in terms of lat-
itude and longitude, regularly spaced through time, and
ht is the process variability. Assuming zero correlation
in the process variances for the two dimensions, Eq. 1
is the simplest type of movement model for location
data.

A correlated random walk (CRW) model is a more
natural way to think about animal movement because
it describes many of the processes that we know to
occur and is the basis for more complex behavior (e.g.,
Turchin 1998, Morales et al. 2004). The CRW for lo-
cation data is based on the first difference of the lo-
cations. In other words, the random walk occurs on the
differences in consecutive locations, i.e., the move-
ments, and not on the locations themselves (as is the
case in Eq. 1). We begin by writing

d ; Td 1 N (0, S) (2)t t21 2

where dt21 is the difference between the locations xt21

and xt22, and dt is the difference between the locations
xt and xt21. As noted earlier, xt is a coordinate vector,
and hence dt is also a vector. T is a transition matrix
that describes the rotational component of the corre-
lated random walk:

cos u 2sin u
T(u) 5 (3)1 2sin u cos u

where u is the mean turning angle. N2 is a bivariate
Gaussian distribution with mean 0 and the following
covariance matrix:

2s rs slon lon lon
S 5 (4)

21 2rs s slon lon lat

where is the process variance in longitude, is2 2s slon lat

the process variance in latitude, and r is the correlation
coefficient. Eq. 2 describes a random walk that is au-
tocorrelated in both direction and speed. In order to
allow for lesser degrees of autocorrelation we add the
term g, with g 5 0 yielding a simple random walk and
0 , g , 1 yielding a random walk with correlation in
both direction and move speed. We refer to the model

as a first-difference CRW (DCRW). The transition
equation for this model is specified as

d ; gTd 1 N (0, S). (5)t t21 2

Complex behavior: switching models

The transition equation (Eq. 5) assumes that the
movement pathway can be fully described by a single
first difference CRW. However, it is easy to imagine
pathways forming as the sum of several distinct be-
haviors. In order to capture this additional complexity,
we can formulate an alternative to Eq. 5 where move-
ment parameters are estimated for each distinct behav-
ior. Suppose that we have two behaviors, where a1

represents the probability of being in behavioral mode
1 at time t given the same behavioral mode at time t
2 1, and a2 represents the probability of being in be-
havioral mode 1 at time t given behavioral mode 2 at
time t 2 1. This formulation provides the basis of a
switching model (DCRWS) where the movement pa-
rameters are then indexed by behavioral mode (Morales
et al. 2004). Effectively, we have a transition equation
for each behavioral mode. This approach can allow for
further complexity simply by expanding the number of
possible behavioral modes.

Measurement equation

The second component of the state–space formula-
tion relates the unobserved states predicted by the tran-
sition equation to the observed data; consequently, it
is termed the measurement equation. An implicit as-
sumption here is that the observations are made over
regular time intervals that correspond to the time step
modeled in the transition equation (Harvey 1993).
However, Argos data are observed irregularly through
time, thus some sort of a priori data regularization to
obtain equal time intervals is usually performed. This
can be problematic when none or very few observations
occur within a specified interval as one may not have
enough information to properly estimate a location.
Here we propose an alternative to a priori data regu-
larization by allowing the irregularly observed data to
be modeled directly within the state–space framework.

We let i be an index for locations (if any are ob-
served) between time t and t 1 1; i.e., i 5 (0, 1, 2,
. . . , nt). We make the simplifying assumption that an-
imals travel in a straight line between xt21 and xt. This
poses no difficulty for state transitions with reasonably
short time steps, relative to the resolution of the data,
and allows us to interpolate a best estimate for each of
the irregularly observed locations, yt,i:

y 5 (1 2 j )x 1 j x 1 «t,i i t21 i t t (6)

where ji is the proportion of the regular time interval
between xt21 and xt at which the ith observation is made
(0 , ji , 1) and «t is a random variable representing
the estimation error. Note that the ji’s can be calculated
from the data if the time of day is recorded with each
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FIG. 1. (A) Plot of hooded seal track data, with observed
locations as open circles and state estimates from the DCRWS
(first-difference correlated random walk switching) model as
red and blue filled circles. Red circles are state estimates
associated with migrating behavior, and blue circles are state
estimates associated with foraging behavior. The black line
is the straight-line path between observations and the gray
line is the straight-line path between state estimates. (B) Plot
of hooded seal track data, with observed locations as open
circles and interpolated locations as red diamonds. Inset pan-
els show details of the foraging bout highlighted in the main
panels. The black line is the straight-line path between ob-
servations and the gray line is the straight-line path between
interpolated locations. Note the three extreme observations
indicated by the large circles. The track (in both panels) orig-
inated off Maine, USA (bottom left), and terminated south
of Greenland (top right).

observed location. This formulation allows for the pos-
sibility of having multiple measurement equations for
each transition equation. Note that for regular intervals
where no observations exist, we set i 5 1 and ji 5 0.5.

A particular challenge for analyzing many kinds of
movement data is the need to deal with extreme ob-
servations in an objective fashion (e.g., Fig. 1A). In
current analyses of movement data, extreme observa-
tions are typically removed a priori, for example, by
filtering on a maximum rate of travel (e.g., McConnell
et al. 1992, Austin et al. 2003). This may be reasonable
for very large deviations. The problem, however, is
what to do with less obvious deviations; how do we
determine if they are erroneous? One approach to deal-
ing with these deviations has been to throw out all the
poor-quality data (classes B, A, and 0), but, for diving
animals, this represents approximately 90% of the data
(e.g., Vincent et al. 2002). Even more sophisticated
filtering approaches result in data loss (Austin et al.
2003). These data can be tremendously expensive to
collect, so utilizing state–space filtering methods are
clearly advantageous because they do not remove
‘‘noisy’’ data, they account for the noise in the data.

We choose to use independent t distributions to mod-
el both the latitude and longitude components of es-
timation error in Eq. 6. That is, for estimation errors
in latitude of quality class q (q 5 1, . . . , 6) we let
«t,lat,q ; t(0, tlat,q, nlat,q), where tlat,q is the scale parameter
and nlat,q is the df (and similarly for the longitude es-
timation error). The t distribution is robust in the sense
that it has the effect of making extreme values less
unlikely under the model, thereby minimizing their in-
fluence on parameter estimation. Note that the Gaussian
distribution is a special case of the t distribution as n
→ `. At this point, our robust state–space model for
irregularly observed data is fully described by Eqs. 5
and 6.

Rather than estimate the parameters of each t dis-
tribution directly within the state–space model, we ob-
tain independent estimates a priori by making use of
published data derived from Argos-tagged gray seals,
Halichoerus grypus (Fabricius 1791), that were caged
at a known location (Vincent et al. 2002). A total of
425 locations for four caged seals were observed, four
of which were extreme observations (i.e., .100 km
from the true location; three in quality class 0 and one
in quality class 2). See Vincent et al. (2002) for a com-
plete description of the data. For the sets of maximum
likelihood estimates (six quality classes in two direc-
tions), we produced plots of the likelihood surface with
95% confidence regions (see Appendix A, Fig. A1).
The 95% confidence regions suggest that only the best
location quality class, 3, is approximately Gaussian in
both directions, all others are better modeled by a t
distribution. Resulting point estimates (see Appendix
A, Table A1) are subsequently treated as known pa-
rameters used within the state–space model. Given that
not all Argos tags function equally (M. C. James, per-
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FIG. 2. (A) Plot of gray seal 617 track data, with state
estimates from the DCRW model overlaid in red. (B) Plot of
gray seal 2986 track data, with state estimates from the
DCRWS model overlaid in red and blue. Red circles are state
estimates associated with migrating behavior, and blue circles
are state estimates associated with foraging behavior. Both
seals’ tracks originated and terminated at Sable Island, Nova
Scotia, Canada.

sonal communication) and we only have independent
data for one tag type (Vincent et al. 2002), we also
include an additional scale parameter that we estimate
directly within the model. This parameter serves to
inflate or deflate (uniformly) the standard errors of the
t distributions as determined by the data.

Data analysis

To illustrate the utility of our state–space framework,
we consider three movement pathways, each posing
distinct challenges for analysis. The first data set is of
a juvenile male hooded seal, Cystophora cristata (Erx-
leben 1777), (Fig. 1A) where a location was observed
almost every day but at varying times of day. With the
exception of three extreme values (Fig. 1, large circles),
estimation error appears small but there appears to be
more than one underlying behavioral process (e.g., for-
aging and migrating). The data are available online.4

The second and third data sets are of adult gray seals
tagged off of Sable Island (seals 617 and 2986 from
Austin et al. 2003; Fig. 2A is female 617, Fig. 2B is
male 2986). Transmitters on these individuals were set
to record locations every second day on which multiple
locations were observed over varying time intervals.
The male gray seal data set represents a case of nu-
merous dubious observations, some clearly extreme
and others less so (Fig. 2A, open circles). The female
data set represents a combination of both complex be-
havior and numerous extreme observations (Fig. 2B).

We utilize the freely available software packages,
WinBUGS and R, to fit the DCRW and DCRWS state–
space models to the data (software available online).5,6

WinBUGS enables Bayesian analysis of statistical
models via Markov Chain Monte Carlo estimation
methods. Nonlinear and/or non-Gaussian state–space
models utilize Bayes’ rule as an updating algorithm
(Jonsen et al. 2003), consequently WinBUGS is suit-
able for fitting state–space models. Because our anal-
ysis is Bayesian in nature, we specify priors for all
unknown parameters. We use vague priors throughout,
specifically, uniform priors for u and a, a Wishart prior
for S, and a Beta prior for g. We note here that the
current functionality of WinBUGS requires n $ 2 and
as a consequence all estimates of n , 2 were con-
strained to be 2. This constraint will have little effect
because, in the relevant cases, a t distribution with n
5 2 is still a marked improvement over the Gaussian
distribution. WinBUGS code for both models including
details of these priors are included in the Supplement.
Upon fitting the state–space models, we obtain param-
eter estimates, estimates of the unobserved states, and
interpolated estimates of the observed locations. For
ease of presentation, we display interpolated location

4 ^http://whale.wheelock.edu/whalenet-stuff/StopHoods04/&
5 ^ht tp : / /www.mrs-bsu .cam.ac .uk /bugs /winbugs /

contents.shtml&
6 ^http://www.R-project.org&

estimates for the hooded seal example only (Fig. 1B).
Using the hooded seal data set, we also present a com-
parison of movement parameters derived from the state
estimates with those obtained from the original data
after regularization (Appendix B).

RESULTS

Both models deal similarly with the extreme obser-
vations highlighted in Figs. 1A and 2 by producing
reasonable state estimates. The three extreme obser-
vations highlighted in Fig. 1A are clearly downweight-
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TABLE 1. Posterior medians and 95% credible limits for parameters estimated from the
DCRWS (first difference correlated random walk switching) model.

Parameter

Data set

Hooded seal

0.025 0.5 0.975

Gray seal 617

0.025 0.5 0.975

Gray seal 2986

0.025 0.5 0.975

u1 20.07 0.04 0.16 23.11 21.81 3.13 20.33 20.07 0.19
u2 23.13 22.70 3.13 23.11 21.76 3.12 23.10 1.92 3.09
g1 0.71 0.83 0.94 0.06 0.52 0.98 0.50 0.76 0.99
g2 0.07 0.62 0.94 0.01 0.34 0.97 0.01 0.15 0.52
a1 0.45 0.85 0.96 0.05 0.43 0.91 0.04 0.23 0.56
a2 0.03 0.09 0.20 0.07 0.59 0.96 0.80 0.93 0.98
slon 0.09 0.13 0.20 0.34 0.49 0.71 0.19 0.26 0.35
slat 0.04 0.06 0.09 0.07 0.09 0.14 0.11 0.15 0.20

Notes: Column heads indicate quantiles: 0.5 (median) and 0.025, 0.975 (95% credible limits).
Subscripts 1 and 2 index the migrating and foraging behavioral modes, respectively. Process
variability was assumed to be constant between the behavioral modes but differed between
latitude and longitude. Mean turning angle (u) is measured in radians; slon and slat represent
process variance measured in units of degrees longitude and latitude, respectively; g determines
the degree of correlation in both move speed and direction; and a1 is the probability of being
in behavioral mode 1 at time t, given the same behavioral mode at time t 2 1; a2 is the
probability of being in behaviorial mode 1 at time t, given behaviorial mode 2 at time
t 2 1.

ed and more subtle filtering is also evident wherever
the interpolated locations are displaced from the ob-
served locations (Fig. 1B). Much more dramatic fil-
tering is evident for the gray seal data (Fig. 2), where
a substantial portion of the observations are clearly
erroneous.

Comparisons of DCRWS estimates for the two be-
havioral modes (Table 1) suggest the DCRWS model
is a better fit to both the hooded seal and gray seal
2986 data but not to gray seal 617. The 95% credible
limits of 1 and 2 for gray seal 2986 show minimalĝ ĝ
overlap and those for 1 and 2 suggest substantiallyû û
different concentrations about the median (Table 1).
Similarly, for the hooded seal data, the ’s indicateû
forward movement with only small turns when mi-
grating and frequent course reversals when foraging
(Table 1). Although the 95% limits of the ’s for theĝ
hooded seal do overlap substantially, the pattern does
suggest more persistent movements when migrating
than when foraging. There appears to be insufficient
data on foraging movements to reliably estimate g2 for
the hooded seal. For gray seal 617, both the ’s andĝ

’s overlap substantially, suggesting that the DCRWû
model is a better fit to these data (Table 1). The presence
of distinctly different behaviors is quite apparent in
Figs. 1 and 2B, but much less so in Fig. 2A.

The process variance estimates indicate that there is
considerably more variation in east–west movements
than in north–south movements; compare slon vs. slat

estimates (Table 1). For the hooded seal, this is sub-
stantiated by the fact that there are relatively uniform
step lengths as the seal traveled north (approximately
508 and 608 N) and more variable step lengths as it
traveled east (approximately 708 to 508 W) and foraged
along the Greenland coast (608 N; Fig. 1B). The dif-

ferences are even more dramatic for gray seal 617 (Ta-
ble 1), although they are difficult to visualize (Fig. 2A).

For both the hooded seal and gray seal 2986, move-
ment is highly persistent in direction and speed while
migrating (compare g’s, Table 1) and course reversals
and changes in speed are more prevalent while foraging
(compare u’s and g’s, Table 1). Estimates of the switch-
ing rates between behaviors reveal a high probability
of remaining in either the migrating or foraging mode
(a1 and 1 2 a2, respectively, Table 1) for the hooded
seal. For gray seal 2986, there is an intermediate prob-
ability of remaining in the migrating mode (a1, Table
1) and a high probability of remaining in the foraging
mode (1 2 a2, Table 1).

DISCUSSION

The general framework developed here emphasizes
the flexibility and power of a state–space approach.
Although we have illustrated our approach using Argos
satellite data, the methods are applicable for any re-
motely sensed movement data, including those ob-
tained via GPS, radio, and archival tags. Indeed, issues
of robustness and/or irregularly sampled data are com-
mon (although not equivalent) among these data types
and must be dealt with in an objective, statistically
sound manner. We suggest that, wherever possible, re-
searchers conduct and include in their publications the
results of experiments that quantify estimation errors
for their tracking devices under conditions typically
encountered in the field.

Our state–space framework has several useful fea-
tures. First, when ancillary data are available, the state-
space framework can explicitly model the known error
distribution(s) of the locations via the measurement
equation. Here, we chose to deal with errors in Argos
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locations by estimating parameters of the error distri-
butions from an independently collected data set and
subsequently holding these parameters fixed in the
state–space model. We find that the t distribution is
more appropriate than the Gaussian for modeling these
errors. In a Bayesian context, even when quantitative
information regarding error distributions do not exist,
e.g., radio telemetry data, prior distribution(s) can be
constructed to reflect qualitative knowledge of condi-
tions that may affect estimation errors. Second, infor-
mation regarding an animal’s position is not lost when
it is obscured by substantial estimation error. Ad-hoc
filters necessarily remove such locations potentially
leading to substantial information loss (see Austin et
al. 2003, for an evaluation of some ad-hoc filters). In
addition, ad-hoc filters do not deal with estimation error
present in locations that pass the filter, whereas all lo-
cations are filtered in the state–space framework and
this leads to more reliable parameter estimation. Third,
credible limits can be obtained for each state estimate,
thereby providing an explicit quantification of uncer-
tainty. This is particularly useful when overlays of fil-
tered pathways on spatial environmental data are de-
sired (e.g., Luschi et al. 2003). Finally, our framework
is the basis for detailed analyses such as inferring
switches between behavioral states (Morales et al.
2004) and more general estimation of behavioral pa-
rameters (Jonsen et al. 2003).

When dealing with location data, we believe that
specifying a random walk on the differences between
locations is a more sensible approach for modeling an-
imal movement from location data than simply a ran-
dom walk on the locations themselves. This makes in-
tuitive sense because the differences in location rep-
resent much of the behavior in which ecologists are
interested, i.e., speed of travel and direction. We show,
via the switching (DCRWS) model, that the first dif-
ference CRW model can be generalized to deal with
more complex types of movement. Switching models
are perhaps most useful for quantifying movements
over long time periods or in heterogeneous environ-
ments where the data likely represent a complex com-
posite of two or more distinct behaviors (Morales et
al. 2004). In most cases, visualization of the movement
pathways may be adequate to confirm the presence of
multiple behaviors but estimation provides not only
movement parameters for each of the behavioral com-
ponents but also an objective method for apportioning
the data among these components. When desired, this
approach will obviously facilitate more detailed anal-
yses on the individual behavioral components.

Unlike Morales et al. (2004), who also fit switching
models to movement data (by first calculating turning
angles and movement speeds), we do not assume that
estimation error is negligible. We have shown here that
accounting for estimation error requires robust, flexible
methods that can be achieved in a state-space frame-
work. In order to take the approach of Morales et al.

(2004), who calculated turning angles and movement
speeds from GPS location data, one would necessarily
need to first decompose the errors in location before
one could directly model turning angles and movement
speeds. Using our state–space framework, such a de-
composition is unnecessary because we can derive
turning angle and movement rate distributions directly
from the state estimates.

CONCLUSION

Our proposed state–space framework represents a
significant improvement, in terms of removing noisy
data, over current traditional, non-likelihood-based
methods. However, the true value of the state–space
approach lies in its ability to directly model movement
behavior in a flexible and reliable manner with robust
methods for dealing with the error structure of the data.
Future work will need to focus on (1) improving our
knowledge of Argos error distributions; (2) incorpo-
rating biological and environmental constraints on
movements directly into the DCRW models; and (3)
modeling the effect of internal states and environmental
covariates on movement behavior. Ultimately, we wish
to utilize our framework to link movement data to quan-
titative models of animal movement behavior, such as
home range and territorial dynamics, foraging behavior,
and migration (e.g., Grünbaum 1998, Clark and Mangel
2000, Morales et al. 2004).
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APPENDIX A

Likelihood surface plots and ML point estimates of Argos error distribution parameters are available in ESA’s Electronic
Data Archive: Ecological Archives E086-156-A1.

APPENDIX B

A description of the data regularization procedure and a comparison of movement parameters are available in ESA’s
Electronic Data Archive: Ecological Archives E086-156-A2.

SUPPLEMENT

The code and sample data for state-space analysis of Argos movement data are available in ESA’s Electronic Data Archive:
Ecological Archives E086-156-S1.


