

Types of statistical models

- There are many, and constantly changing / growing
- Correlation/Regression techniques GLMs, GAMs (Austin 2002), Mixed models (Wood 2006), regression trees & random forests (Breiman 2001)
- Ordination -Multivariate dimensional scaling, e.g. CCAs (Guisan et al. 1999),
- Maximum Entropy models species distributions "closest to uniform" (Phillips et al. 2006)
- Recent reviews of modeling approaches (Redfern et al. 2006, Elith et al. 2006, Dormann et al. 2007, Aarts et al. 2008)

Generalized Linear Models

- GLMs are an extension of linear models, $y \sim f(x_1, x_2, ..., x_n)$ +ε using MLE and a link function
 - For data with many zeroes (e.g. count data), Poisson -
 - For binomially distributed data (e.g. presence / absence) - logit link function
 - Relies upon a linear relationship between predictor(s) and response variables.

Generalized Additive Models

- GAMs can use a combination of parametric and nonparametric functions $(y \sim A + f(x_1) + f(x_2) \dots + f(x_n) + \varepsilon)$
- Local smoothing functions (LOESS) and regression splines are two techniques to model fine scale changes
- GAMs can easily be overstate.g. high df per spline), so they require an extra degree of quality control
- Significance can be inflated (lower p-values) by large

& autocorredation SST log10(Chlorophyll) Segurado et al. 2006)

• Why do we care?

Spatial autocorrelation

• Model assumption is independence of data points

Spatial autocorrelation may bias model results (see

Spatial autocorrelation • Ways to test for it • Geary's C (o to 2) • Moran's I (-1 to 1) • Many methods to model it (Dorman et al. 2007) • Autocovariate regression & spatial eigenvectors • Generalized least squares (GLS), GLMMs; GEBES 2000 • Partial Mantel's tests (Legendre and Legendre 1998)

Useful software packages

- MATLAB / IDL multipurpose scientific programming language; <u>PERL</u>
- WinBugs toolset for bayesian analysis
- EcoPath / EcoSim Mass balance models
- R / S+ / SAS statistical programming language
- Python scripting language used by Arc
- ArcGIS Desktop Geographic Information System
 - Model builder
 - · Hawth's tools, Biomapper, MGET toolbox

What is MGET? http://code.env.duke.edu/projects/mget • A collection of geoprocessing tools for marine ecology • Oceanographic data management and analysis • Habitat modeling, connectivity modeling, statistics • Highly modular; designed to be used in many scenarios • Emphasis on batch processing and interoperability • Free, open source software • Written in Python, R, MATLAB, C#, and C++ • Minimum requirements: Win XP, Python 2.4 • ArcGIS 9.1 or later currently needed for many tools • ArcGIS and Windows are only non-free requirements

For more information Download MGET: http://code.env.duke.edu/projects/mget Email us: jason.roberts@duke.edu, bbest@duke.edu, elliott.hazen@duke.edu Intro to habitat modeling: Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186. Thanks for attending!

Autoregressive / Mixed models

- Autoregressive models incorporate a spatial covariance matrix (Vc) in the error term.
- Mixed models (GLMMs and GAMMs)
 - Can model random effects (e.g. tag deployment) and spatial autocorrelations in within-group errors for sequential data points.
 - Example (Hazen et al. 2009): Humpback whale surface feeding ~f(environmental data, prey metrics) + random(whale) + ARı correlation structure.

Data types

- Sightings presence / absence, density
 - Binary response, zero inflated, many techniques
- Acoustic hydrophones presence only
 - To be discussed later
- Tag data / focal follows behavioral state/event
 - State models, movement models
- Vessels of opportunity effort?
 - Presence only models

Predictor variables

- Location bathymetry, distance from feature
- In situ oceanography / mooring / remotely sensed data
- Prey data trawls, stomach contents, fisheries acoustics

Correlative methods

- Linear vs. Additive models
 - Advantages to each
 - Assumptions pseudo-absences,
 - Generalization poisson distributed data (ZIP)

Introductions to the Software

- RTFM
- ArcGIS
 - Good, commercial help (+ video)
 - Training.ESRI.com
- Python
 - DiveIntoPython.org free book
- R
 - A Beginner's Guide to R free Springer book

Our Biases

- Disciplinary
 - Space (and Time)
 - Environment + Prey
 - Prediction
- Toolset
 - ArcGIS
 - Python
 - R