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7000-730 Évora, Portugal

*Correspondence: E-mail:

antoine.guisan@unil.ch

Abstract

In the last two decades, interest in species distribution models (SDMs) of plants and

animals has grown dramatically. Recent advances in SDMs allow us to potentially

forecast anthropogenic effects on patterns of biodiversity at different spatial scales.

However, some limitations still preclude the use of SDMs in many theoretical and

practical applications. Here, we provide an overview of recent advances in this field,

discuss the ecological principles and assumptions underpinning SDMs, and highlight

critical limitations and decisions inherent in the construction and evaluation of SDMs.

Particular emphasis is given to the use of SDMs for the assessment of climate change

impacts and conservation management issues. We suggest new avenues for incorporating

species migration, population dynamics, biotic interactions and community ecology into

SDMs at multiple spatial scales. Addressing all these issues requires a better integration

of SDMs with ecological theory.
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I N TRODUCT ION

The fascinating question of how plants and animals are

distributed on Earth in space and time has a long history

which has inspired many biogeographers and ecologists to

seek explanations. Most modelling approaches developed

for predicting plant or animal species distributions have

their roots in quantifying species–environment relation-

ships. Three phases seem to have marked the history of

species distribution models (SDMs) (S. Ferrier, personal

communication): (i) non-spatial statistical quantification of

species–environment relationship based on empirical data,

(ii) expert-based (non-statistical, non-empirical) spatial

modelling of species distribution, and (iii) spatially

explicit statistical and empirical modelling of species

distribution.

Earliest found examples of modelling strategies using

correlations between distributions of species and climate

seems to be those of Johnston (1924), predicting the

invasive spread of a cactus species in Australia, and Hittinka

(1963) assessing the climatic determinants of the distribution

of several European species (quoted in Pearson & Dawson

2003). Earliest developments in computer-based predictive

modelling of species distribution seem to originate in the

mid-1970s, stimulated by the numerous quantification of

species–environment available at that time (Austin 1971).

The earliest species distribution modelling attempt found so

far in the literature seems to be the niche-based spatial

predictions of crop species by Henry Nix and collaborators

in Australia (Nix et al. 1977).

These were succeeded, in the early 1980s, by the

pioneering simulations of species distribution by Ferrier

(1984). At about the same time, the publication of two

seminal books (Verner et al. 1986; Margules & Austin 1991,

resulting from a workshop in 1988) also contributed largely

to promote this new approach, resulting in a growing

number of species distributions models proposed in the

literature. These advances were largely supported by the
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parallel developments in computer and statistical sciences,

and by strong theoretical support to predictive ecology as

�more rigorously scientific, more informative and more

useful ecology� (Peters 1991).
As a result, the number of related publications increased

very significantly since the early 1990s, and the first partial

reviews, such as those published by Franklin (1995) and

Austin (1998), appeared shortly before the turn of the

century. A large symposium on modelling species occur-

rence, organized in Snowbird, Utah, in September 1999,

additionally provided a large review of the twentieth century

state-of-the-art in this field (Scott et al. 2002). A synthesis

review of this pre-2000 period can be found in Guisan &

Zimmermann 2000).

In recent years, predictive modelling of species distribu-

tion has become an increasingly important tool to address

various issues in ecology, biogeography, evolution and,

more recently, in conservation biology and climate change

research (see Table 1).

In this paper, we review the recent achievements in

developing species distribution models (SDMs) and address

some of their limitations. We devote particular attention to

the challenge of projecting the impacts of climate change on

the distribution of biodiversity, which currently yields some

of the most spectacular progress in SDM research. To set

the scene, we first define SDMs and provide an overview of

basic ecological theory and working assumptions underpin-

ning them. We then discuss some methodological issues,

decisions to be made during the process of model building

and evaluation, and the implications for conservation and

management. We then summarize important challenges that

must be addressed to overcome the limitations of SDMs.

WHAT ARE SDMS AND HOW DO THEY WORK?

Species distribution models are empirical models relating

field observations to environmental predictor variables,

based on statistically or theoretically derived response

surfaces (Guisan & Zimmermann 2000). Species data can

be simple presence, presence–absence or abundance obser-

vations based on random or stratified field sampling, or

observations obtained opportunistically, such as those in

natural history collections (Graham et al. 2004a). Environ-

mental predictors can exert direct or indirect effects on

species, arranged along a gradient from proximal to distal

predictors (Austin 2002), and are optimally chosen to reflect

the three main types of influences on the species (modified

from Guisan & Zimmermann 2000; Huston 2002; Fig. 1):

(i) limiting factors (or regulators), defined as factors controlling

species eco-physiology (e.g. temperature, water, soil com-

position); (ii) disturbances, defined as all types of perturbations

affecting environmental systems (natural or human-induced)

and (iii) resources, defined as all compounds that can be

assimilated by organisms (e.g. energy and water). These

relationships between species and their overall environment

can cause different spatial patterns to be observed at

different scales (Fig. 1), often in a hierarchical manner

(Pearson et al. 2004). For instance, a gradual distribution

observed over a large extent and at coarse resolution is likely

to be controlled by climatic regulators, whereas patchy

distribution observed over a smaller area and at fine

resolution is more likely to result from a patchy distribution

of resources, driven by micro-topographic variation or

habitat fragmentation (Fig. 1; see examples in Scott et al.

2002). The environmental data related to these three main

Table 1 Some possible uses of SDMs in ecology and conservation biology

Type of use References

Quantifying the environmental niche of species Austin et al. (1990), Vetaas (2002)

Testing biogeographical, ecological and evolutionary hypotheses Leathwick (1998), Anderson et al. (2002),

Graham et al. (2004b)

Assessing species invasion and proliferation Beerling et al. (1995), Peterson (2003)

Assessing the impact of climate, land use and other

environmental changes on species distributions

Thomas et al. (2004), Thuiller (2004)

Suggesting unsurveyed sites of high potential of occurrence for

rare species

Elith & Burgman (2002), Raxworthy et al. (2003),

Engler et al. (2004)

Supporting appropriate management plans for species recovery

and mapping suitable sites for species reintroduction

Pearce & Lindenmayer (1998)

Supporting conservation planning and reserve selection Ferrier (2002), Araújo et al. (2004)

Modelling species assemblages (biodiversity, composition) from

individual species predictions

Leathwick et al. (1996), Guisan & Theurillat (2000),

Ferrier et al. (2002)

Building bio- or ecogeographic regions No published example found

Improving the calculation of ecological distance between patches

in landscape meta-population dynamic

and gene flow models

No published example found
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types of influence on species distribution are best manipu-

lated in a geographical information system (GIS).

The procedure of SDM building ideally follows six steps

(modified from Guisan & Zimmermann 2000; see Table 2):

(i) conceptualization, (ii) data preparation, (iii) model fitting,

(iv) model evaluation, (v) spatial predictions, and (vi)

assessment of model applicability.

Many important decisions are made during the initial

conceptual phase, which can be split into two subphases:

(i) theory and data: define an up-to-date conceptual model of

the system to be simulated based on sound ecological

thinking and clearly defined objectives (Austin 2002; Huston

2002), setting multiple working hypotheses (e.g. pseudo-

equilibrium; Guisan & Theurillat 2000; see next section),

assessing available and missing data and the relevance of

environmental predictors for the focal species and the given

scale (Thuiller et al. 2004a), identifying an appropriate

sampling strategy for collecting new data (Hirzel & Guisan

2002) or for complementing existing sets, and choosing the

appropriate spatio-temporal resolution and geographic

extent for the study. (ii) Modelling methods: identify the most

appropriate method(s) for modelling the response variable

(e.g. ordinal GLM for semi-quantitative species abundance;

Guisan & Harrell 2000) and identifying both the framework

(e.g. resampling techniques vs. truly independent observa-

tions) and the statistics needed for evaluating the predictive

accuracy of the model (Pearce & Ferrier 2000; Fielding

2002).

In current practice, however, few decisions are made at

the very start of a study, because of the lack of knowledge of

the target organism or of the study area and related data. For

instance, the choice of an appropriate resolution might

depend on the size of the species home range and the way

the species uses resources in the landscape. The choice of

the geographical extent might also depend on a prior

knowledge of environmental gradients in the study area (to

ensure including complete gradients; Austin 2002; Van

Horn 2002); or, for animal species, males/females, or

summer/winter habitats might need separate models (Jaberg

& Guisan 2001). Answers to these questions usually require

either the collection of preliminary field observations,

running sensitivity analyses, or conducting experiments to,

for example, quantify the fundamental range of tolerance of

an organism to predictors (e.g. Kearney & Porter 2004).

Many other features – methodological, statistical or

theoretical – need to be additionally controlled or consid-

ered at each step of SDM building (Table 2). Solid criteria

need to be used for detecting potential problems, such as

overfitting (when number of predictors ‡ number of

observations), overdispersion (i.e. greater dispersion than

expected from the probability distribution) or multicoline-

arity (i.e. high correlations between several predictors).

Careful consideration of these factors must be made to

ensure successful predictions (Table 2). For more details on

the different steps of SDM building, we refer readers to

Guisan & Zimmermann (2000).

ECOLOG I CA L THEORY AND ASSUMPT IONS

BEH IND SDMS

Species distribution models – and their output habitat

suitability maps – have been used with relatively good success

to investigate a variety of scientific issues (Table 1).

However, despite the rapid improvement of methods,

Presence/absence modelsLimiting climatic factors
(regulators: too hot, too cold, too dry, etc..)

Gradual distribution 
(mostly geographic gradients)

Abundance models
Resource factors
(nutriments, food, etc..)

Patchy distribution

Realized distribution
Bioclimatic range modulated by 

dispersal, disturbance and biotic interactions

Other species' distribution
(competitors, facilitators, 
dispersal vectors, distur-
bators, preys, predators)

Requirements

Impacts

Global
scale

Local
scale

Disturbance models

Dynamic
modelling

Density
independ-

dence

Density
depen-
dence

Bioclimatic range
Potential distribution based on the bioclimatic envelope

Dispersal/migration models
Dispersal factors
(vectors, barriers, history, etc..)

Disturbance factors
(extreme events, disturbing species, etc..)

Local 
extinctions

Figure 1 General hierarchical modelling

framework illustrating the way to integrate

disturbance, dispersal and population

dynamics within currently static species

distribution models (SDMs). See text for

explanations.
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theoretical limitations often remain. These limitations come

about when ecological theory is not fully integrated into the

modelling process (Austin 2002; Huston 2002; Wiens 2002).

While SDMs are useful tools for resolving practical

questions in applied ecology and conservation biology, they

are also extremely relevant to fundamental sciences (e.g.

biogeography and phylogeography), because of the ecolog-

ical and evolutionary theories and assumptions underpin-

ning them. Surprisingly, the ecological theory related to

SDM has been sorely neglected in the literature, resulting in

a weakening of the overall approach. Insights from

ecological theory should be used more systematically to

underpin decisions made at all stages of the model building

process (Austin 2002), for instance: for selecting the most

causal environmental predictors (Pearson et al. 2004;

Thuiller et al. 2004a); for choosing ecologically realistic

response curves for each predictor (e.g. Austin & Gaywood

1994); for determining a restricted set of competing models

in multi-model inference (e.g. Rushton et al. 2004); for

discussing the likely causes and cost of prediction errors (see

Fitting and evaluating SDMs); or for assessing the validity of

the underlying model assumptions when projections on

future climate are to be made (Araújo et al. 2005a).

ASSUMPT IONS BEH IND MODELS AND THE N I CHE

CONCEPT

Equilibrium postulate

As both species and environmental data are usually

sampled during a limited period of time or/and space,

models fitted using these can only reflect a snapshot view

of the expected relationship. A convenient working

postulate is to assume that the modelled species is in

pseudo-equilibrium with its environment (Guisan &

Theurillat 2000). Although this is a required assumption

for projecting the model in space or time, surprisingly few

critical considerations have been raised in the recent

literature on how close a given modelled system really is

to an equilibrium (but see Araújo & Pearson 2005), and

how long it would take to reach a new equilibrium, e.g.

after an environmental change (but see Davis et al. 1998).

For instance, Svenning & Skov (2004) measured low

range filling (RF) – calculated as the realized/potential

range size ratio – for many European tree species (RF

< 50% for 36/55 species), suggesting that many of these

species still appear strongly controlled by dispersal

constraints on post-glacial expansion, and thus might

not be in equilibrium with their environment throughout

their whole range. Hence, using models that fit the

observed distribution too closely might lead to under-

estimating the true potential range of the species.

However, as Svenning & Skov (2004) only used veryM
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simple bioclimatic models based on only three climatic

variables (degree-days, minimum temperature and water

balance), and ignored competition and dispersal, further

testing of their hypotheses is still formally required. The

same non-equilibrium consideration also applies to the

issue of modelling the spread of invasive species. Many

invasive species are not in equilibrium with environment

in the invaded range, and thus should preferably be

modelled using their distribution in the native range

(Peterson 2003; but see Robertson et al. 2004).

Niche concept

A striking characteristic of SDMs is their reliance on the

niche concept (Guisan & Zimmermann 2000). Leibold

(1995) opposes two concepts of the niche as either driven (i)

by the environmental requirements of species as defined by

Grinell or Hutchinson, or (ii) by the impact that the species

can have on its environment as defined by Elton, Mac

Arthur or Levins. Hence, the former is more embedded

within an autecological and physiological approach to the

niche (environmental niche, see e.g. Austin 1992), whereas the

latter is related more to trophic levels and food web theory

(trophic niche as termed by Elton; see Austin et al. 1990;

Silvertown 2004). As they seem to apply to different spatial

scales – respectively from global to local (see Fig. 1) – only

the requirement concept and environmental niche are

usually considered in SDMs. Within these, Pulliam (2000)

further distinguishes between Grinell’s view of species

occupying all of their suitable habitats – the fundamental

niche – and Hutchinson’s view of species being excluded

from a part of their fundamental niche by biotic interac-

tions, resulting in the realized niche that is actually observed in

nature (Silvertown 2004).

The most frequent simplification found in the SDM

literature is to state that, because of the observed distributions

being already constrained by biotic interactions and limiting

resources, SDMs are de facto quantifyingHutchinson’s realized

niche of species. It is also said that only mechanistic models,

based on measured physiological or behavioural parameters

(e.g. Kearney & Porter 2004), or SDMs based on ex situ data

(e.g. a plant grown in botanical gardens outside its natural

range; Vetaas 2002), can approach the fundamental niche.

However, the realized niche in SDMs is usually assumed

without having sound ecological evidence that this is truly the

case for the modelled species.

Another simplification is to substitute one of the classical

concepts of the niche by an additional one, the potential niche.

The potential niche was originally defined as that part of the

fundamental niche available to species, as constrained by the

realized environment (Ackerly 2003). It considers that not all

possible combinations of some given environmental varia-

bles exist in the study area, or possibly even on Earth (e.g.

Austin et al. 1990), and thus differ from Hutchinson’s

realized niche.

A useful framework for clarification was recently pro-

posed by Pulliam (2000), who proposed four theoretical

views of the relationship between niche and distribution:

(a) the Grinellian niche, where a species occurs wherever the

environmental conditions are suitable (i.e. fundamental

niche, with a population growth rate ‡ 1); (b) the realized

niche of Hutchinson, where a species is excluded from part

of its fundamental niche by a competitor or a predator,

(c) the source-sink dynamics, where a species commonly occurs

in a sink habitat where its population growth rate is < 1, and

thus where it would disappear without constant immigration

from source habitats, and (d) the dispersal limitation situation,

where a species is frequently absent from suitable habitats

because of recurring extinction events and limited dispersal

ability preventing full recolonization (e.g. Svenning & Skov

2004). Traditionally, plant ecologists have relied on niche

concepts (a) and (b), whereas zoologists have been keener to

additionally consider scenarios (c) and (d).

Any theoretical situation should be considered a priori for

each species, unless experimental/field evidence clearly

supports one over the other. Furthermore, each of these can

only be considered within the realized environment, and

thus it must be accepted that, for some species, their entire

fundamental niche might never be captured from empirical

data.

It is important to recall here that the niche should be

defined from empirical observations of individuals that

reproduce successfully, and thus support a positive growth

rate for the entire population. In the case of SDMs, most are

based on simple presence–absence observations, or some-

times on abundance values. We are well aware from early

biogeographical studies on plants that, beyond certain

species-specific climatic thresholds, most observed individ-

uals no longer exhibit sexual reproduction. It is therefore

preferable that observations of these individuals should not

be used to fit SDMs, but in practice it can be difficult to

measure sexual reproduction parameters from a single field

visit.

These recent reconsiderations of the niche concept in

relation to species distribution have inspired contempor-

ary modellers to include other important parameters, such

as dispersal (Carey 1996; Iverson et al. 1999; Dullinger

et al. 2004) and population dynamics (Peng 2000), to

explain and predict observed biogeographical patterns

(Fig. 1). Unless these parameters are taken into account,

SDMs are explicitly based either on the assumption of the

fundamental Grinellian niche or of the realized Hutchin-

sonian niche. As recently suggested by Vetaas (2002),

based on data on Rhododendron species within their range

and in ex-situ situations (botanical gardens worldwide),

competitively dominant species might be expected to
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suffer few biotic constraints – and thus rely more on the

Grinellian niche assumption – whereas subordinate

species might be expected to undergo strong competition

limitations – and thus rely more on the Hutchinsonian

niche assumption.

COMPET I T ION AND OTHER B IOT I C I NT ERACT IONS

Competition is an important theoretical mechanism that is

absent from most examples of SDM research. One classical

theory originally derived from Darwin, and later by

MacArthur, predicts that, along a key environmental

gradient, species appear to find one direction to be

physically stressful and the other to be biologically stressful

(Brown et al. 1996). The idea of fundamental response

curves being constrained by competition is not new (Austin

et al. 1990), but the unilaterality of biotic vs. abiotic

pressures along an environmental gradient remains to be

tested, and has been only rarely discussed in the literature

(e.g. Guisan et al. 1998). This theory has recently been

upheld with the comparison of the realized and fundamental

niches of four Rhododendron species (Vetaas 2002; see

previous discussion) and deserves further investigation.

Recent analyses showed that the inclusion of additional

predictor variables representing the presence–absence of

known competitors can significantly increase the predictive

power of models (Leathwick & Austin 2001; Anderson

et al. 2002). Such findings suggest that even at relatively

coarse resolution and regional extent, the presence or

absence of a given competitor might influence the

distribution of another species, but they do not provide

a formal proof that the observed competition effect really

occurs in nature. Including other species as predictors

might simply provide information about physical condi-

tions that are not accounted for by those environmental

descriptors included in the model. Results from competi-

tion experiments might help here, but such attempts have

only too rarely been performed outside a laboratory

(Silvertown 2004). Simulations might provide additional

support. Other biotic interactions should also be consid-

ered, such as facilitation, pollination, herbivory, predation,

parasitism or symbiosis.

WHAT I S THE APPROPR IA T E SPAT IA L SCALE ?

A central and recurrent problem in SDM building is

identifying the appropriate scale for modelling (Wiens 2002).

Scale is usually best expressed independently as resolution

(grain size) and extent of the study area, because modelling a

large area does not necessarily imply considering a coarse

resolution. No question in spatial ecology can be answered

without referring explicitly to these components at which

data are measured or analysed (Wiens 2002).

A first possible mismatch can occur between the

�resolution� at which species data were sampled (e.g. plot

size in field surveys, grid size in atlas surveys) and the one at

which environmental predictors are available. Optimally,

both should be the same, but such coherence is not always

possible. For instance, the minimum resolution for GIS

data might be too large to realistically allow an exhaustive

field sampling of biological features to be conducted in the

field, and thus smaller sampling units may need to be

defined within larger modelling units or at the intersection

of grids. Furthermore, many environmental data are indeed

provided in a grid lattice format – i.e. regular point data –

rather than a true raster format, which complicates the

story, somewhat. This is for instance the case of many

digital elevation models (DEM) and derived data (e.g.

topographic and interpolated climatic maps). Indeed,

designing field sampling in order to match raster units will

work well in the case of true rasters (e.g. satellite images and

derived products, such as CORINE landcover), whereas

placing sampling plots at intersections of a grid may prove

more appropriate in the case of lattice grids. The problem

then is to combine these different types of data in a single

model. Aggregating these to a coarser resolution can

sometimes provide a simple yet efficient solution, as for

instance allowing passing from locally valid point data (e.g.

forest/non-forest information at a series of points) to some

estimate of frequency in a cell (e.g. quantitative estimate of

forest cover within a cell).

Similar problems arise when SDMs are used to make

projections of species future distribution. Until recently,

General Circulation Models (GCM) were the only source of

data to make such projections. However, GCM typically

involve much coarser scales (generally several orders of

magnitude coarser) than those of the species and environ-

mental data used to calibrate the SDM. Statistically

downscaled GCM data can in part address this issue

however, these products are still typically too coarse for

local assessment or where spatial heterogeneity is high, for

example in mountainous areas. The development of

Regional Climate Models and fine scale GCM will also help

in addressing this issue. These future climate surfaces are

also limited by the resolution of the surfaces representing

current climate as these current surfaces are perturbed with

anomalies calculated from the GCM data (Hewitson 2003).

Despite the availability of relatively fine-scaled climate

data sets [e.g. worldclim at 0.5 min (see http://

biogeo.berkeley.edu/worldclim/worldclim.htm)] these pro-

ducts are limited by the frequency of climate station data

and the interpolation techniques used to create continuous

climate surfaces.

Understanding the theory and processes driving the

observed distribution patterns is also essential to avoid a

mismatch between the scale used for modelling and the one
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at which key processes occur. Patterns observed on one

scale may not be apparent on another scale. Van Horn

(2002) illustrates how an overly constrained extent can lead

to an incorrect interpretation if only part of an important

environmental gradient is sampled, e.g. when using political

instead of natural boundaries (e.g. including a whole species

range). For instance, the resulting response curves of a

species might appear truncated – possibly expressing a

negative (e.g. on the colder part of the temperature

gradient), a positive (e.g. on the warmer part of the

temperature gradient) or nearly no relationship (e.g. on the

intermediate part of the temperature gradient) – when the

full response should be unimodal. In such case, the use of

different geographical extents might thus provide contra-

dictory answers to the same ecological question (see also

Thuiller et al. 2003).

A similar reasoning holds for resolution. For instance,

interspecific competition can only be detected at a resolu-

tion where organisms interact and compete for the same

resources (Huston 2002; see Fig. 1). The same environ-

mental parameter sampled at different resolutions can thus

have very different meanings for a species. This is in part

because of the various aggregation properties and the

possible problem of �released matching� between various

attributes within a cell at coarser resolution, when no more

spatial matching is ensured between the predictors and the

species occurrence. For some species, like sessile organisms,

it will not be sufficient that a combination of suitable

conditions occur within the same cell (as e.g. obtained by

aggregating data), but these must additionally overlay at least

at one specific location within the cell. In turn, for other

species, like mobile animals, spatial matching of resources

within the cell may not be necessary.

Hence, the selection of resolution and extent is a critical

step in SDM building, and an inappropriate selection can

yield misleading results. This issue is directly related to the

transmutation problem, or �how to use ecogeographic

predictors measured on one scale on another scale?� (Wiens

2002). Their integration into a multiscale hierarchical

modelling framework (e.g. Pearson et al. 2004) may provide

the solution required to solve this spatial scaling paradigm

(Wiens 2002), for instance, by associating scale domains to

those environmental predictors identified as having domin-

ant control over species distributions (Mackey & Linden-

mayer 2001; see Fig. 1).

Pearson et al. (2002, 2004) developed an interesting

approach to evaluate the impact of climate change on plant

species in UK. As the modelled species were not endemic to

UK, they first developed SDMs over Europe at a rather

coarse resolution (50 km grid) to ensure capturing the full

climatic range of the selected species. They then projected

the species distributions in UK on a 1 km grid using

previously fitted models and additionally incorporating land

cover data information. They showed that the incorporation

of land cover at the finer resolution improved the predictive

accuracy of models, compared with what had been shown at

the coarser European resolution (Thuiller et al. 2004a). Such

hierarchical approach could benefit from a Bayesian

implementation, as carried out, for example, by Gelfand

et al. (2005). Although these latter authors mainly used it for

combining SDMs with prior information on sampling

intensity, the same approach could be extended to combine

environmental information from different spatial scales. The

additional advantage here would be the possibility to

integrate current modelling approaches (as GLM or GAM)

and uncertainty analyses into a more general, hierarchical

framework (Gelfand et al. 2005).

The choice of scale is also closely related to the type of

species considered (e.g. its detectability and prevalence

in the landscape). Here, we distinguish two main

situations.

Models for highly mobile organisms

Here, various types of habitats might need to be included in

each cell, to fulfil the different requirements of the species

(e.g. for foraging, reproducing or nesting; Mackey &

Lindenmayer 2001). This might either require the use of

(i) larger modelling cells accounting for larger portions of

the landscape (to ensure that all habitat types can be

included; e.g. Jaberg & Guisan 2001); (ii) focal predictors

that summarize information on the neighbouring landscape

within the focal cell; or (iii) fitting a separate model for each

type of habitat use or for various types of individuals (young

vs. adult, male vs. female). Due to this neighbourhood

influence, release matching is thus not expected to be an

important issue here, but valid absences are hard to obtain

for these species (Boyce et al. 2002). The latter is a serious

concern, requiring in most cases specific presence-only

models to be fitted, or generating pseudo-absences (see e.g.

Brotons et al. 2004; Graham et al. 2004a).

Models for sessile or very locally mobile organisms

Finer resolution usually provides better predictions for fixed

or very locally mobile organisms. Local predictors are thus

more meaningful and focal predictors are likely to have

lower predictive power unless an ecological rationale can be

provided (exceptions are slope, topographical position or

flow accumulation for plant that are all derived from focal

analyses). Hence, precise spatial matching is important here.

Contrary to mobile organisms, valid absences can be more

realistically obtained here, at least for non-cryptic species

without large interannual fluctuations in their occurrence,

thus allowing presence–absence models to be fitted

(Brotons et al. 2004).

1000 A. Guisan and W. Thuiller

�2005 Blackwell Publishing Ltd/CNRS



F I T T I NG AND EVALUAT ING SDMS

The last 5 years have seen an explosion of papers on

methodological aspects of SDMs, allowing some consider-

able progress to be made, but also concealing some of their

recurrent weaknesses within the mass of new information.

An impressive diversity of modelling tools has become

available for modelling species distribution (Table 3),

depending on the type of response variables and predictors

at hand. The choice of the right statistical method in a

specific modelling context is now supported by many

published comparisons (e.g. Elith 2000; Moisen & Frescino

2002; Segurado & Araújo 2004). In the following

paragraphs, we detail only a few issues that currently seem

most important; nevertheless, a careful examination of all

aspects is necessary when fitting a new model (Table 2).

Model selection and predictor interactions

Model selection is the process of selecting themost influential

predictors in the model (Johnson & Omland 2004). For

instance, serious shortcomings have been identified in the

popular stepwise selection procedures in regressions (see

Guisan et al. 2002) and new approaches have recently been

proposed, such asmulti-model inference, boosting andmodel

averaging (Wintle et al. 2003), shrinkage methods (i.e. forcing

nonsignificant coefficients to take value close or equal to zero)

or hierarchical partitioning (i.e. averaging the influence of a

predictor over the subset of models in which it was selected)

coupled with a randomization procedure (Mac Nally 2002).

Other modelling approaches such as regression and classifi-

cation trees (CART), artificial neural networks (ANN),

genetic algorithms (GA) or Bayesian analyses (BA) have their

own background selection criteria, based on the explained

deviance of a multinomial model for CART, or based on

multiple simulations to optimize selection for ANN, GA and

BA. Harmful multicolinearity can also affect model selection

and thus needs careful consideration. It can be fixed by either

combining predictors into a few orthogonal axes under

debatable linear correlation assumption (Rushton et al. 2004)

or removing one predictor when two of them are too highly

correlated.

In addition, interactions between predictor variables have

too often been omitted from SDMs (Austin 2002), although

frequently improving the fit when included (Guisan et al.

1999; Thuiller et al. 2003). Apart from the fact that interac-

tions among predictor variables are difficult to interpret, a

practical reason why they are seldom included is that they

greatly increase the number of parameters in the model,

because each interaction term requires its own parameter.

From a validation and estimation perspective, the number of

potential parameters to be estimated for interactive effects

increases exponentially with the number of predictor variables

in the model (Rushton et al. 2004). Nevertheless, combina-

Table 3 Published predictive SDM packages, reference paper, related modelling methods, and www link (when available)

Tool Reference Methods implemented URL

BIOCLIM Busby (1991) CE http://www.arcscripts.esri.com

ANUCLIM See BIOCLIM CE http://www.cres.anu.edu.au/outputs/anuclim.php

BAYES Aspinall (1992) BA ArcView extension available at the discretion

of the author

BIOMAPPER Hirzel et al. (2002) ENFA http://www.unil.ch/biomapper

BIOMOD Thuiller (2003) GLM, GAM, CART, ANN At the discretion of the author

DIVA Hijmans et al. (2001) CE http://www.diva-gis.org

DOMAIN Carpenter et al. (1993) CE http://www.cifor.cgiar.org/docs/_ref/

research_tools/domain/index.htm

ECOSPAT Unpublished data GLM, GAM http://www.ecospat.unil.ch; at the discretion

of the author

GARP Stockwell & Peters (1999) GA (incl. CE, GLM, ANN) http://www.lifemapper.org/desktopgarp

GDM Ferrier et al. (2002) GDM At the discretion of the author

GRASP Lehmann et al. (2002) GLM, GAM http://www.cscf.ch/grasp

MAXENT Phillips et al. (2005) ME At the discretion of the author

SPECIES Pearson et al. (2002) ANN At the discretion of the author

Coupled with cellular automata

Disperse Carey (1996) CE At the discretion of the author

Shift Iverson et al. (1999) CART At the discretion of the author

ANN, artificial neural networks; BA, Bayesian approach; CE, climatic envelop; CART, classification and regression trees; ENFA, ecological

niche factor analysis; GA, genetic algorithm; GAM, generalized additive models; GDM, generalized dissimilarity modelling; GLM, generalized

linear models; ME, maximum entropy.
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tions of different modelling approaches can be used to

identify significant interactions, as implemented in general-

ized boosting models (Friedman et al. 2000).

Dealing with spatial dependence

Independence of observations is a fundamental prerequisite

for applying most statistical methods. Yet, spatial depend-

ence of true biological origin (dispersal, demography or

behaviour) is certainly observed in ecological data. Solutions

to this problem include: (i) correcting the number of degrees

of freedom used in model inference tests; (ii) adding a

spatial autocorrelation (SAC) term to the linear predictor

until no more spatial structure can be detected in the

residuals (Lichstein et al. 2002); or (iii) (re)sampling plots at

sufficient spatial distance to avoid autocorrelation (Guisan

& Theurillat 2000). Adding a SAC term is certainly the most

appealing solution to many ecologists, as being likely to

incorporate useful additional ecological information in the

model. However, spatial patterns observed in the residuals

could as well result from failure to include an important

autocorrelated predictor in the model (Lichstein et al. 2002)

just as much as from a real biological process. As a result,

models that incorporate a SAC term reflecting environmen-

tal rather than biological spatial structure will hardly be

applicable to other situations in space and/or time, because

the spatial arrangement of environmental gradients might

differ between ranges (e.g. current and future).

Probably even more appealing to ecologists is thus the

alternative to combine dispersal and population dynamic

models (Huston 2002) with SDMs (Carey 1996; Iverson

et al. 1999). Indeed, promoting both autoregressive (geosta-

tistics) and spatially explicit population/dispersal models

within the same approach is redundant. The former already

provides an empirical solution to the latter, although putting

less emphasis on process to the benefit of more easily

performed broad-scale predictions. The final decision on

which approach to use depends strongly upon the study

objectives and the time and spatial frames for predictions.

From the standpoint of variance partitioning of species

distributions into environmental and pure spatial effects (see

Lichstein et al. 2002 and references therein), there might still

be advantages to using descriptive spatial statistics, partic-

ularly in the absence of knowledge about which processes

lead to species aggregation.

Robust predictions and evaluation

SDMs are useful if they are robust. Addressing ecological

questions with a model that is statistically significant but

only explains a low proportion of variance might lead to

weak, possibly erroneous, conclusions (Mac Nally 2002).

Similar problems may well arise in the opposite case, when a

model is overfitted. Indeed, there is no absolute measure of

robustness and the latter should always be discussed in

relation to the primary, intended use of the model (Fielding

2002; Araújo et al. 2005a). For instance, a model based on

climatic predictors may hypothetically have a low goodness-

of-fit (e.g. R2 ¼ 0.2), yet could potentially explains all the

climate-related variance for the target species. Such a model

may be sufficient to assess overall impact of climate change

on the worldwide distribution of the species, but be

insufficient to answer specific conservation management

questions at a local scale. Other predictors, such as the

distribution of resources, or other factors not related to

climate may prove essential to illustrate the distribution

correctly.

Techniques for statistically evaluating models and their

predictions have improved in many ways (Fielding 2002;

Pearce et al. 2002). A wide range of metrics are increasingly

used to compare predictions with observations, whether

based on a totally independent test data set, or on resampled

observations within the training set, as in the case of cross-

validation or bootstrapping. Some metrics might not be

appropriate for all situations. For example, in evaluating

presence–absence model classification accuracy, threshold

dependent statistics are known to be sensitive to the level of

prevalence (proportion of presences) in the training and test

data set (e.g. Manel et al. 2001). Moreover, multiple

assessments based on several measures should be preferred

over reporting of a single measure (Fielding 2002). Small

sample size has also been shown to be a significant source of

instability and errors in models. Collecting new data is costly

and needs to be optimized (Hirzel & Guisan 2002). Some

work has attempted to identify the minimum sample

requirements for deriving robust predictions at minimal

costs, and have shown that different modelling methods

might require different minimum sampling size (Stockwell &

Peterson 2002; Kadmon et al. 2003). Prediction errors may

also not be evenly distributed across the landscape,

eventually requiring improved models through spatial

weighting solutions (Fielding 2002).

In presence–absence models, two kinds of prediction

errors are possible. Commission errors arise from predicting

a species where it does not occur, while omission errors

stem from failing to predict a species where it does occur.

Whereas one part of the overall error (omission and

commission) rate results from environmental errors (a failure

to include relevant environmental predictors in the model)

and algorithmic errors, another corresponds to biological

errors (e.g. equilibrium theory, inefficient sampling). Accu-

racy measures used to assess the quality and predictive

ability of a model typically consider environmental and

algorithmic errors only. Two major questions arise when

considering biological errors (Pulliam 2000; Huston 2002):

(i) why and how often are species observed in unsuitable
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habitats?, and (ii) why and how often are species absent

from suitable habitats? Reasons are numerous and should be

considered in a species-specific context. Part of what is

considered a mistake by standard evaluation procedures

might actually be adequately explained by ecological theory

and historical events, had the temporal and stochastic

dimensions of population dynamics been taken into

account. In cases where conservation issues are concerned –

say the design of a reserve for preserving an endangered

species – distinguishing what are truly suitable from

unsuitable habitats will be of prime importance (Pulliam

2000). Sink habitats, where the species does occur but would

not persist without at least one close source population,

should not be included in a reserve design unless the source

populations are also included. Pulliam (2000) provides

evidence of plants occurring in sink habitats where net

reproduction is negative and populations are only main-

tained through positive net gain from source habitats. The

case of metapopulation dynamics, involving stochastic

extinction and recolonization, potentially poses a greater

problem for modelling species distributions because habitats

are often assumed to be of similar quality and occupancy

dynamics are stochastic not deterministic. Thus, unless

historical events can be traced down through time to explain

certain stochastic extinctions, these situations may constitute

important sources of commission errors.

Accuracy assessments should thus have a close connec-

tion to the intended use of the model and the species

biology (Fielding 2002). Different costs may be related to

prediction errors in terms of their impact on the evaluation

measure used for further interpretation. For instance, in the

case of invasive species with expanding distributions

(Peterson 2003), only omission errors are considered serious

flaws, as commission errors inherently arise from the species

not yet having colonized all suitable locations. For some

species, dispersal-limitations may also lead to commission

errors. In contrast, omission errors can be expected in

locations characterized by source-sink dynamics.

APP L I CAB I L I T Y OF SDMS

The SDMs can be used to tackle many issues in conserva-

tion biology and applied ecology (Table 1). Here, we only

discuss two related issues that are currently much debated in

the literature: climate change projections and conservation

planning. The former can also have strong implications for

the latter.

Projecting SDMs into future climates

Since the development of finer scale climate change

scenarios in the past decade, numerous SDM studies have

extrapolated the likely impacts of global change on species

distribution (e.g. Bakkenes et al. 2002; Peterson et al. 2002;

Midgley et al. 2003) and community assemblages (Leathwick

et al. 1996; Guisan & Theurillat 2000). The application of

SDMs to climate change analyses was highlighted by a

recent, massive study assessing global species extinction risk

(Thomas et al. 2004). Results from this analysis reveal the

potentially substantial impact of climate change on species

extinctions, according to a range of future scenarios.

Nevertheless, SDMs have some limitations in this

context. First, because SDMs of many species are likely to

be based on the realized rather than the fundamental species

niche, projections into future climate, where biotic interac-

tions may have changed (e.g. because of different migration

rates), are likely to generate mistakes (Davis et al. 1998). The

degree of prediction errors should be related in some way to

a species capacity to occupy its full fundamental niche in the

current and future climate. For most species, it is unknown

how much its fundamental niche is represented by its

realized niche, although we expect it should relate to its

competitive and dispersal abilities. In principle, the same

limitation exists when projecting SDMs to other areas with

different floras or faunas, testing the transferability of

models in space may already provide a useful assessment on

the validity of these future projections.

An alternative approach would be to base predictive

models on fundamental (i.e. physiological) responses

obtained from field or laboratory experiments, and constrain

these by general rules of biotic interactions, dispersal

behaviour and populations dynamics, in order to obtain

more realistic predictions of species distribution under

changing environments. This fundamental-constrained

approach is supported – but also complicated – by the fact

that most species seem to be generalists rather than

specialists (Huntley et al. 1997), and thus most species are

involved in generalist interactions with a large number of

other species in any given ecosystem. In addition, and as a

direct consequence of the individualistic behaviour of

species, the effects of interacting species in one locality

are supplanted by the effects of other species as an

assemblage changes across the focal species geographical

range (Huntley et al. 2004). Furthermore, a legitimate

question is whether such fundamental knowledge will ever

be available for many species in the wild. Thus, other

alternatives should also be explored and the robustness of

current SDMs should be properly assessed, whenever

possible, to provide as realistic estimates of climate change

impact as possible.

Second, in most projections, species dispersal is

inappropriately taken into consideration, relying either

on a �no dispersal�, an �unlimited dispersal� scenarios, or
both (e.g. Thomas et al. 2004; Thuiller 2004). With �no
dispersal�, a species can only loose habitat as climate

changes, whereas in the �unlimited dispersal�, all habitats
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that become suitable can be colonized, two rather unlikely

extreme situations. As migration capabilities of organisms

depend on both dispersal characteristics and fecundity,

they must be accounted for each species individually

when deriving projections. The simplest approach is to

attribute an estimate of migration rate per unit of time

according to the dispersal agent of the selected species.

For instance, Williams et al. (in press) for the Cape

Proteaceas assumed a dispersal to be a maximum of

1 min per decade for ant- and rodent-dispersed Protea

species. They also assumed a dispersal maximum of three

cells per decade for wind-dispersed species based on

empirical measurements. Dispersal events were assumed

to occur on average every decade, anticipating decadal

fires that provide the only dispersal opportunities to fire-

adapted species. Such an approach is easily implemented

within SDMs and could be used to assess risk in global

change analyses. A second, and much more complicated,

approach couples a landscape model simulating habitat

fragmentation and dispersal events with SDMs (e.g. Carey

1996). Schwartz et al. (2001) and Iverson et al. (2004)

developed such an approach merging SDM (regression

tree analysis, RTA) with SHIFT, a cellular automaton.

The RTA was used to devise prediction rules from

current species–environment relationships, which were

then used to replicate the current distribution and predict

the potential future distributions. RTA predictions repre-

sent the potential �environmental envelope� shift required
by species, while the migration SHIFT model predicts the

more realistic shifts based on colonization probabilities

from varying species abundances within a fragmented

landscape.

Third, uncertainty provided by the combination of

different analyses, spatial resolutions, scales, modelling

techniques and evaluation methods was greater than the

variability of using different climate change scenarios

(Thuiller 2004). Such a challenge demonstrates that

different analyses using different models and resolutions

are not comparable, because the way in which models are

constructed varies and this strongly influences the model

outputs (Thuiller et al. 2004c). Overpredictions or

overparameterization greatly affect models and could

explain why two SDMs calibrated on the same species

could produce different projections in the future (Thuiller

2004). Better understanding of the behaviour of models

and better evaluations of their predictive power are both

necessary to facilitate such projections (Boone & Krohn

2002). Recent developments, combining different algo-

rithms within a common framework and exploring the

central tendency (consensus) of model projections, may

lead to improve agreement between projected and

observed shifts (Thuiller 2004; Araújo et al. 2005b;

Gelfand et al. 2005).

Finally, although major issues remain concerning the

application of SDMs to climate change research, they

currently represent one of the only tools for assessing the

impacts of forecasted climate change on a wide range of

species, independent of the trophic level considered

(Huntley et al. 2004). Mechanistic models (Chuine et al.

2000), while very appealing at the species level, are often too

data-hungry to be of general use in nature management and

biodiversity assessment.

SDMs in conservation planning

A major role of conservation planning is to design reserve

networks that protects biodiversity in situ. Research within

the field of conservation planning has focused on the

development of theories and tools to design reserve

networks that protect biodiversity in an efficient and

representative manner (Williams & Araujo 2000; Araujo

et al. 2002; Ferrier 2002; Cabeza et al. 2004). Predicted

species distribution data from SDMs are commonly used for

conservation planning because the alternatives (e.g. survey

data) are often incomplete or biased spatially (Austin 1998;

Andelman & Willig 2002). However, there may be

considerable uncertainty associated with the use of predicted

species distribution data, particularly given the variety of

approaches available to generate predictions for use in

conservation planning (Wilson et al. 2005). These approa-

ches range from using the probabilistic data directly to using

a threshold – identified a priori or a posteriori – to convert the

probabilistic data into presence–absence data. Wilson et al.

(2005) recently assessed the sensitivity of conservation

planning outcomes to different uses of predicted species

distribution data and showed that the resulting reserve

networks differed, and had different expected species

representation. They concluded that efforts should be

directed towards producing the most reliable predictions

for use in conservation planning, and to find the reserve

network that is most robust to the uncertainty in the

predictions.

The need to rely on robust predictions from SDMs in

conservation planning is emphasized when SDMs and

reserve selection algorithms are used together to investigate

the pertinence of reserve networks under future global

climate change. For instance, Araújo et al. (2004) assessed

the ability of existing reserve-selection methods to secure

species in a climate-change context using modelled species

distribution from SDMs. They concluded that opportunities

exist to minimize species extinctions within reserves, but

that new approaches are needed to account for impacts of

climate change on species; particularly for those projected to

have temporally non-overlapping distributions. Such

achievement was recently carried out in the Cape Floristic

Region, where SDMs coupled with very simple dispersal
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model and reserve-selection methods were used to identify

minimum-dispersal corridors allowing species migration

across reserve networks under climate change and land

transformation scenarios (Williams et al. in press).

The SDM-based approaches to conservation assessment

should also be compared with recently proposed alternative,

like generalized dissimilarity modelling (GDM; Ferrier et al.

2004), which focus on emergent properties of biodiversity

(richness and compositional turnover) rather than distribu-

tion of individual species. The latter is for instance

suggested to be better suited to lesser known, yet highly

diverse, biological groups (Ferrier et al. 2004).

NEW CHAL L ENGES FOR SDM RESEARCH

Although many recent applications of SDMs relate to

climate change and conservation assessments, their use in

theoretical ecology and evolution is resurfacing. Many of the

prevailing challenges facing SDM research involve the

inclusion of ecologically relevant parameters and an

improved assessment of errors and uncertainties to yield

more robust predictions. We discuss some additional

challenges below.

Migration process

Including migration processes more systematically into

SDMs would provide interesting tools to address ecological

questions such as rarity phenomena (do rare species have

lower dispersal or colonization capabilities than common

species?) or, in a context of climate change, to provide more

realistic projections of future species distributions (will

species be able to migrate fast enough to track changes?).

Although such analyses require species-specific data on

dispersal, they are particularly promising in a context of

global climate change (see also Collingham & Huntley 2000;

Collingham et al. 2000). Two important aspects that should

not be neglected in future dispersal SDMs are the possibility

to model stochastic long-distance dispersal events and the

effect of barriers to dispersal.

More dynamics

The SDMs are not often explicitly related to population

dynamics theory and models, although existing studies show

thatmuch can be gained by linking these disciplines (Dullinger

et al. 2004). SDMs can be improved by incorporating theoretical

information from population dynamics, but can also lend

support to population studies. In the first case, knowledge of a

species population dynamics may help determine the maxi-

mum amount of deviance that can possibly be explained by

the SDMof a given species (e.g. 50%), for instance because of

year-to-year stochastic fluctuations and dispersal limitations

in a source-sink system (i.e. a proportion of commission or

omission �errors� can have biological causes). In the second

case, SDMs could provide great support to metapopulation

studies. For instance, in a simplified patch-matrix landscape,

spatially explicit metapopulation models require: (i) a better

definition of patches (i.e. criteria that make them suitable) and

their location in the landscape (Ferrier et al. 2002); and (ii) a

more realistic estimation of ecological distances between

patches, for improving the estimation of dispersal success

(Ferrier et al. 2002).

Incorporating biotic interactions

There is an ongoing debate concerning the inclusion of

interspecific interactions into SDMs, particularly in a global

change and conservation contexts (Davis et al. 1998;

Pearson & Dawson 2003). Recent SDM studies indirectly

support the role of competition in shaping species

distributions on the landscape scale (Leathwick & Austin

2001; Anderson et al. 2002). However, it is unclear whether

the use of the occurrence of a species in the model of

another species truly reflects a biotic interaction, or simply

reflects the absence of an important environmental predic-

tor in the model. Furthermore, even if species interactions

exist, is it critical that they be included in SDMs? This point

is at the heart of controversies involving null models in

community ecology, and also raises the issue of whether, for

example, a neutral model considering individuals with

equivalent ecological requirements and no competition is

sufficient to describe species patterns (Bell 2001; Hubbell

2001). The latter also relates to the question of scale,

because some processes might apply at coarser resolutions

but not at finer ones.

Nevertheless, it would be interesting to test relationships

across various scales. At broad extent and coarse resolution,

we expect competition or facilitation should have a lesser

effect on species distribution than at more local extent and

finer resolution (Huston 2002; Pearson & Dawson 2003),

although local abundance may still be strongly affected at

larger scale. Finally, one should be aware that interactions

other than competition and facilitation – usually the only

ones explicitly mentioned in most SDM studies – also play

an important role in driving species distributions (e.g.

predators for prey, herbivores for plants, pathogens,

parasites, mutualists).

Modelling functional groups and communities

Going one step further, spatial predictions for individual

species could theoretically be analysed at higher levels of

ecological complexity, for instance: (i) whether some

functional groups of species can be better modelled than

others (Boone & Krohn 2002; Huntley et al. 2004), and the
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likely ecological reasons for such patterns; and (ii) for

reconstructing species assemblages and biological commu-

nities in a bottom-up approach (Leathwick et al. 1996;

Guisan & Theurillat 2000; Ferrier et al. 2002).

For instance, Segurado & Araújo (2004) found a

significant interaction between species group (defined by

prevalence, occupancy, extent of occurrence, niche position

and breadth) and model performance. Other research,

assessing the relationship between species niche properties

(niche position, niche breadth and range size) and

bioclimatic gradients, found that stress-tolerant species do

not occupy broad environmental ranges, and that functional

attributes of species vary with species niche position (e.g.

leaf characteristics, phenology or dispersal mode; Thuiller

et al. 2004b).

Still very few studies have attempted to reconstruct

community assemblages from individual species predictions.

New alternative approaches attempt now to build species

assemblages in a single process, such as classification trees

fitted to multiple species (De’Ath 2002), or GDM (Ferrier

et al. 2004). A major challenge here will be to incorporate

assembly rules (e.g. Keddy 1992) in these reconstructions,

particularly when attempting to predict future assemblages.

CONCLUS ION

While tremendous progress has been made on many aspects

related to the building and evaluation of SDM, future efforts

should now focus on the development of standardized,

robust, modelling frameworks. Important concepts requi-

ring deeper examination include: (i) exploring other views of

the relationship between niche concepts and species

distribution, such as source-sink dynamics and dispersal

limitation; (ii) assessing how close the modelled species are

to equilibrium; and (iii) exploring the degree to which

competition can explain the limits of species range along

environmental gradients. Although requiring more data on

species biology, these findings will also provide a better

framework for evaluating models, e.g. by identifying

biological causes of errors in predictions. Possible meth-

odological improvements include: (iv) assessing how differ-

ent scales may be considered in SDMs, depending upon

species behaviour, dispersal ability, extent of the study area,

and the very nature of the data; and (v) developing enhanced

frameworks for assessing errors and uncertainties in SDMs.

Integration of these elements may be facilitated within a

Bayesian hierarchical framework.

One challenging use of SDMs is for forecasting the likely

impact of global change on species distribution. Here,

competition and scale are critical parameters. Future changes

in biotic interactions may undermine the validity of projec-

tions based on the realized niche, while input climate change

scenarios are still too coarse in spatial scale to provide

accurate patterns of distributional changes at the local scale.

Incorporating additional information on species dispersal and

population dynamics will be required for assessing whether

species will be able to track habitat shifts at a sufficient pace.

Two other related challenges facing SDMs are their use in the

design and evaluation of reserve networks and the recon-

struction of current and future patterns of communities from

individual species predictions and assembly rules.

To conclude, SDMs should thus become: (i) better rooted

in ecological theory, (ii) more dynamic and (iii) multispecific.

To achieve this, we urge spatial modellers, biogeographers,

community ecologists, population biologists and ecophysi-

ologists to work in more concerted ways.
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