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Summary

1. Biogeographical models of species’ distributions are essential tools for assessing
impacts of changing environmental conditions on natural communities and ecosystems.
Practitioners need more reliable predictions to integrate into conservation planning
(e.g. reserve design and management).

2. Most models still largely ignore or inappropriately take into account important
features of species’ distributions, such as spatial autocorrelation, dispersal and
migration, biotic and environmental interactions. Whether distributions of natural
communities or ecosystems are better modelled by assembling individual species’
predictions in a bottom-up approach or modelled as collective entities is another important
issue. An international workshop was organized to address these issues.

3. We discuss more specifically six issues in a methodological framework for generalized
regression: (1) links with ecological theory; (i1) optimal use of existing data and
artificially generated data; (iii) incorporating spatial context; (iv) integrating ecological
and environmental interactions; (v) assessing prediction errors and uncertainties; and
(vi) predicting distributions of communities or collective properties of biodiversity.

4. Synthesis and applications. Better predictions of the effects of impacts on biological
communities and ecosystems can emerge only from more robust species’ distribution
models and better documentation of the uncertainty associated with these models. An
improved understanding of causes of species’ distributions, especially at their range
limits, as well as of ecological assembly rules and ecosystem functioning, is necessary
if further progress is to be made. A better collaborative effort between theoretical and
functional ecologists, ecological modellers and statisticians is required to reach these goals.
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In 2001, participants in a workshop on predicting
geographical distributions of organisms (Guisan 2002;
Lehmann, Overton & Austin 2002) concluded that
more robust biogeographical models are essential for
environmental management and for assessing impacts
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of changing environmental conditions, including cli-
mate change, on natural communities and ecosystems.
Most models used at that time still largely ignored, or
inappropriately took into account, important features
of species’ distributions, such as spatial autocorrela-
tion, dispersal, migration and biotic and environmen-
tal interactions. Whether distributions of natural
communities or ecosystems were better modelled by
assembling individual species’ predictions in a bottom-
up approach or modelled as collective entities was
another important issue identified. Where are we now
with these issues? How much remains to be done?
Recent papers dealing with these issues have tended to
focus on a single issue at a time, for example spatial
autocorrelation or species’ interactions, but not both.
Despite the proliferation of studies modelling species’
distributions, most models published in recent years
still suffer from the same set of limitations identified
in 2001.

Discussion at a follow-up workshop in 2004 focused
particularly on: (i) strengthening the link between
ecological theory and modelling tools; (ii) taking better
advantage of existing data, including occurrence data
from herbaria and museums, and artificially generated
data; (iii) giving more consideration to spatial context in
modelling; (iv) recognizing and integrating ecological
and environmental interactions; (v) assessing errors
and uncertainties associated with predictions; and
(vi) extending species-level modelling approaches
to predict distributions of higher-level entities (e.g.
communities, ecosystems) or collective properties of
biodiversity (e.g. species richness, beta diversity).

We discuss these issues primarily within the context
of ‘generalized regression’ modelling methods. This
broad family of methods is by far the most widely
applied approach to species modelling and includes
generalized linear models (GLM), generalized additive
models (GAM), vector GLM and GAM (VGLM/
VGAM), multiple additive regression splines (MARS)
and generalized linear and additive mixed models
(GLMM/GAMM). Concentrating on this one family
of models helped to focus discussion at the workshop
on the six major issues outlined above, rather than on
detailed comparisons between individual modelling
techniques. Other methods, such as classification and
regression trees (CART), were considered only when
they provided complementary solutions to regression
methods.

Strengthening the link between ecological theory
and modelling tools

One of the first steps in building predictive distribution
modelsis to assume a conceptual model of the expected
species—environment relationships, before then fitting
parameters to this model using existing biological data
and environmental variables. Strengthening the link
between ecological theory and statistical models is
thus an important step for improving biogeographical

models (Austin 2002) and for making more effective
use of these models in tackling conservation issues
(Rushton, Ormerod & Kerby 2004). Some exploratory
tools commonly used in ecology are based on ecolog-
ically unrealistic working assumptions. For instance,
canonical correspondence analysis (CCA) relies on reg-
ular species packing and equal optima and amplitude
of species. An alternative method, canonical Gaussian
ordination (CGO; Yee 2004a), has been developed
recently that has less constraints and thus is more likely
to reflect ecological reality. It is similar to CCA but
based on GLM rather than least squares, so that it can
accommodate non-normally distributed errors (e.g.
Poisson or binomial) and allows irregularly spaced
species’ optima along environmental gradients and
unequal amplitude across species (Yee 2004a). Another
promising exploratory tool to build conceptual models
is structural equation modelling (SEM; Grace &
Pugesek 1997), a modern version of path modelling
that allows investigation of partial correlations
between variables and the identification of more proxi-
mal (i.e. causal) relationships, thereby distinguishing
between direct and indirect predictors. The output
from SEM might thus be used to make better informed
selection of predictors as input to predictive models,
before applying an optimized selection procedure (e.g.
shrinkage rules). Alternatively, multimodel inference
can be applied to a set of competing models reflecting
different biological hypotheses (Johnson & Omland
2004).

As another example, advances have been made in
identification of ecologically meaningful species’
response curves along environmental gradients (Austin
2002), suggesting that unimodal-skewed responses are
common in ecology and can be adequately reproduced
by semi-parametric methods such as GAM and their
extensions (e.g. VGAM, Yee & Wild 1996; GAMM,
Wood 2004). However, these unimodal responses are
expected to hold only for regulator variables, such
as temperature. As suggested by Liebig’s law of the
minimum, they can be further modulated by a species’
response to resource variables, such as soil nutrients
and light, which vary in space and time (e.g. being
depleted locally by another species), resulting ‘in a
continual shifting of limitation from one factor to
another’ (Huston 2002). Thus, the true response curve
of a species, measured in terms of probability of pres-
ence, abundance or fitness, to a given regulator or
resource variable can be quantified only when all other
factors occur at non-limiting levels, an unlikely situation
with observations from the natural world, thus requiring
the use of non-standard statistical methods (Huston
2002). The most promising non-standard method is
quantile regression, where the lower- and upper-bound
of data (e.g. 5 and 95 percentiles) are modelled rather
than the mean. This method can be used to model any
quantile, meaning that the full distribution of data
points is modelled, whereas more standard regression
methods only model one property of this distribution.
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Statistical solutions for computing quantile regression
are now available in standard software (e.g. Splus and
R), as in Yee’s VGAM package (Yee 2004b). Recent
examples of the application of this approach to
modelling species’ responses to environmental variables
are Knight & Ackerly (2002), relating species” DNA
content to temperature, and Schroder, Anderson &
Kiehl (2005), relating fen species to flooding and other
variables.

Taking better advantage of existing data and
artificially generated data

A wide array of data on species’ distributions is now
available to the scientific community, from local to glo-
bal scales. Important sources include the many natural
history collections (NHC) stored in museums, herbaria
and national biological data banks world-wide
(Graham et al. 2004). However, these are usually
spatially and temporally heterogeneous samples without
any absence information available and containing
unknown levels of bias and error. A challenge is thus to
take maximum advantage of these data by developing
appropriate methods that accommodate their special
characteristics. For instance, while several methods
are now available to fit models using such ‘occurrence’
(i.e. presence-only) data, for example bioclimatic
envelopes, ecological niche factor analysis and standard
methods employing pseudo-absences (Pearce & Boyce
2006), problems remain in the evaluation of predictions
from these models. Evaluating habitat suitability
predictions with presence-only data is not possible
using standard agreement measures [e.g. kappa or the
area under the curve (AUC) of a ROC plot] and this is
therefore an issue in need of further investigation.
Improvements to existing presence-only evaluation
techniques (e.g. the area-adjusted frequency index;
Boyce et al. 2002; Pearce & Boyce 2006) are currently
being investigated and new developments should soon
be made available, for example with the BIOMAPPER
software (Hirzel et al. 2002; Hirzel et al. in press).
Another important issue is the use of artificial data
to answer specific questions, be they statistical,
methodological or ecological. The basic principle here
is to build a response variable and a set of predictor
variables in such a way that the underlying relationships
(truth) are known. Predictions from models fitted to
training data generated from these known relation-
ships (e.g. using probability sampling, with or without
added noise) can then be evaluated against the truth.
Early developments were made by Minchin with his
comPas software in the late 1980s (Minchin 1987),
allowing a set of artificial environmental gradients to
be generated together with a set of virtual species with
defined ecological response curves for each of these
gradients. Austin et al. (in press) have used COMPAS
to explore the relative performance of GLM and GAM
regressions where ‘truth’ is known. Using simple theo-
retical models of species’ responses to environmental

variables by analysts unaware of truth, they demon-
strate that the different methods achieve similar
success. They concluded that ecological insight into
the nature of environmental variables and statistical
skill are more important than the precise method
used.

coMpAS simulates virtual species in a virtual landscape,
but intermediate solutions have become popular more
recently, such as simulating virtual species in a real
landscape (Hirzel, Helfer & Metral 2001; Moisen &
Frescino 2002). However, an acute problem is to know
just how realistic such virtual species and landscape
are, and therefore the extent to which this approach
can help answer specific questions related to species
distribution modelling. This is likely to depend on the
specific objective of the analysis. One approach is to
start from a perfect model, where truth is entirely
known, and to degrade the data progressively by
adding noise (residuals) or spatial autocorrelation, to
see how it affects the model and its properties. Further
clarity of thinking is still needed in this field.

Giving more consideration to spatial context in our
models

Even though current models of species’ distributions
are often said to be ‘spatial’, in most cases they are only
partially spatial. The species—environment relationship
is often fitted without explicit consideration of the
neighbouring spatial context, for example without
taking spatial autocorrelation or dispersal into account.
These models are therefore ‘spatially invariant (or
neutral)’, in that permuting the points and their asso-
ciated species and environmental data in geographical
space, by permuting the <x;y> coordinates, would not
alter the fitted species—environment relationship. In the
‘overlay mode’ employed here, geographical position is
used simply as a means of attaching environmental
attributes through GIS overlay, thereby locating each
survey location in environmental space defined by the
Hutchinsonian multidimensional niche (Hutchinson
1975). Predictions generated by models fitted within
environmental space are then projected back onto the
geographical space. Spatially invariant models do not
address a number of important spatial factors, for example
whether a species is more likely to occur at a location
that is surrounded by other occurrences of the species,
or whether a species might be prevented from migrating
to alocation because of geographical or environmental
barriers (e.g. landscape fragmentation) or because of
insufficient speed of migration (Pulliam 2000).

How can such spatial factors be more effectively
addressed in species modelling? We propose a mul-
tiscale hierarchical framework, based on pioneering
work by Legendre (1993), that takes spatial patterns
and processes into account. First, the framework starts
from the neutral spatially invariant model. Secondly,
strong geographical gradients at large extent and
coarse grain are removed, for example through
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incorporating trend surface analysis in the model. Thirdly,
possible interactions between the strictly environmental
(neutral) and geographical components are con-
sidered. Finally, the local neighbouring context around
each site (i.e. smaller extent and fine grain) is taken
into account, for example through fitting a spatial
autoregressive model (Segurado, Aratjo & Kunin
2006). More direct methods for fitting spatial autore-
gressive models in GLM or GAM now exist, such as
GLMM and GAMM (Wood 2004); the application of
these to species modelling was discussed during the
workshop. Consideration of these different spatial
levels will allow further investigation of the respective
role of large-scale migration vs. local dispersal processes
(Ronce 2001), which might then be implemented in
more dynamic models of species dispersal and migra-
tion (using, for example, cellular automaton; Carey
1996). From a different perspective, spatial structures
in the data can also generate bias in predictive models
by inflating the significance level, and various solutions
have been proposed to overcome the problem (Segurado
et al. 2006).

Recognizing and integrating ecological and
environmental interactions

Most models consider species’ distributions as being
shaped purely by environmental constraints, ignoring
ecological interactions. Two types of ecological inter-
action are of interest here: (i) biotic interactions, in
which the distribution of one species is influenced by
the distribution of other species; and (ii) predictor
interactions, in which the effect of one environmental
predictor on a species varies according to the levels
of other predictors. Biotic interactions can be within
the same group (e.g. competition, facilitation and para-
sitism in plants) or between groups, as best exemplified
by relationships in food webs (herbivory, predation and
symbiosis). Such interactions can be addressed by
adding one or more biotic predictors to the model
formula alongside the environmental predictors
(Leathwick & Austin 2001). A major issue is therefore
identifying which biotic predictors to include in
models, and at which spatial and temporal scales (e.g.
competitive interactions may act at a more local scale
than other types of interaction; Huston 2002). While a
basic approach to selecting biotic predictors is to rely
on ecological theory (e.g. assembly rules or food webs),
many modellers may wish to adopt an automated
procedure. Again, SEM can provide good support
here, by elucidating positive or negative correlations
between species. When many species need to be mod-
elled jointly, and each of them can potentially act as a
predictor of the others, a system of simultaneous par-
allel regressions is required, using VGAM or the SME
approach (a challenge already addressed by Guisan &
Zimmerman 2000).

Most generalized regression approaches can incor-
porate pairwise (or higher-order) interactions between

environmental/biotic predictors. However, an obvious
problem is that the number of possible combinations of
predictors increases rapidly with increasing numbers of
predictors and quickly becomes unmanageable using
classical selection approaches, for example stepwise
selection. Thus automatic methods, identifying signi-
ficant interaction terms, are highly desirable. An elegant
solution, first proposed by Hastie (Hastie, Tibshirani
& Friedman 2001) and recently implemented in the
GRASP modelling package (Lehmann, Overton &
Leathwick 2002), is to fit a weighted classification tree
(CART) to the residuals of a GLM or GAM model, using
the same predictor variables (biotic and/or abiotic),
then define a factor variable from the terminal nodes
and refit the GLM or GAM model with that factor
additionally included. Each class of the factor then rep-
resents a set of rules that can be interpreted by looking
at the path(s) leading to that particular class in the tree.

Assessing errors and uncertainties associated with
predictions

A key issue for environmental managers wanting to use
predictions from these models is reliability. What is the
error and uncertainty associated with a model and its
spatial prediction, for example in the form of a habitat
suitability map? How does the level of uncertainty vary
across a study area? Uncertainty is a difficult issue, pri-
marily because there are many different types of error and
associated uncertainty. These can be: (i) measurement
error, for instance caused by low detectability, which
itself can be a function of environmental predictors;
(ii) systematic error, as, for instance, caused by an
accidental shift of an environmental grid in the GIS;
(iii) model error, as, for instance, resulting from the
choice of an inappropriate probability distribution in a
GLM or GAM; or (iv) natural variation and subjective
judgement (Elith, Burgman & Regan 2002; Barry &
Elith 2006). Errors also propagate throughout the
modelling process and intermingle into an overall
compound error. This overall error is the one assessed
in most studies, when final predictions are compared
with independent observations, or semi-independent
observations in the case of resampling schemes such
as bootstrapping and cross-validation. However, par-
titioning out the different error components might
provide more useful information for further improving
models. Such partitioning could help in deciding where
to direct the greatest energy to reduce overall error, for
example in improving the accuracy of predictors or
improving the measurement of the biological response.
Developing an integrated framework for assessing
uncertainty, and tracing error propagation throughout
the modelling process, is another research direction
worthy of more attention. Pending the results of such
research, the best practice in the interim is to provide at
least a proper, spatially explicit assessment of model
predictions, for instance by considering confidence
intervals around predictions and drawing maps of 95%
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confidence limits or standard error across the study
area (Aspinall 1992). This can provide the support
required to interpret prediction maps and reduces the
risk of these maps being misused, for example by
practitioners, or in further analyses or meta-analyses
combining these predictions to reveal, or test, collective
properties of communities or ecosystems (e.g. diversity,
community structure and ecosystem function).

Modelling higher-level entities or collective
properties of biodiversity

Three possible strategies exist for modelling higher-
level entities such as assemblages, communities and
ecosystems, or collective properties of biodiversity
such as species richness and beta diversity (Ferrier &
Guisan 2006), all of which rely potentially on regression
techniques: (i) assemble first, predict later; (ii) predict
first, assemble later; (iii) assemble and predict simul-
taneously. In the first strategy, assemblages or com-
munities are derived directly from a biological survey
data set using classical reduction techniques (classi-
fication or ordination) commonly applied in community
ecology and phytosociology. The distribution of each
entity (e.g. community) derived in this first stage is then
modelled as a function of environmental predictors.
This approach therefore assumes that the composition
of species’ assemblages is stable over time and geo-
graphical space. The second strategy starts by pre-
dicting the distribution of large numbers of individual
species and then subjects this ‘stack’ of predicted
distributions to classification or ordination, thereby
building communities in a bottom-up manner. The
third strategy employs environmental constraints
directly in the classification or ordination of biological
survey data, and thus it encompass all constrained
(canonical) ordination and classification techniques,
like CCA and CGO, and constrained classification via
recursive partitioning (Ferrier et al. 2002).

The second strategy, assembling communities from
individual species’ predictions, is the newest of the
three and represents a growing field of interest in eco-
logy (Ferrier & Guisan 2006). Previous applications
of this approach have raised many questions, especially
in relation to predicting responses to environmental
change such as global warming. A first, basic question
with this approach is how to assemble species to predict
diversity and community composition. Should we
develop more realistic assembly rules or constraints
that limit how assemblages are selected from a larger
species pool, based on functional traits and competitive
hierarchies, and use them to simulate communities?
Another, more fundamental, question is how far can
species models based on the realized niche (but see
Pulliam 2000 for other possible cases) succeed in
predicting future changes in community composition,
knowing that the physiology of species, and inter-
actions between species, which currently define realized
niches might themselves change in response to a

changing environment (Ackerly 2003). These questions
are still open and deserve more investigation.

Furthermore, all previously discussed limitations
and possible improvements of species distribution
models need to be taken into consideration when inter-
preting predicted assemblages. For instance, how do all
of the uncertainties associated with individual species
distribution models combine into an overall level of
uncertainty for each derived assemblage? Does con-
sideration of a large number of species in a single
process result in a ‘bootstrap effect’ that might reduce
the overall amount of uncertainty in predicted patterns
of community distribution?

All three strategies described above can also be used
to model collective properties of biodiversity such as
species richness and beta diversity or compositional
turnover. One example is general dissimilarity mod-
elling (GDM), a new non-linear extension of matrix
regression, that models turnover in community com-
position between sites as a direct function of separation
in both environmental and geographical space (Ferrier
et al. 2004; Ferrier & Guisan 2006).

New statistical tools available to ecologists

Several new packages dedicated to GLM and GAM
modelling have recently been made available to ecolo-
gists. The GRASP package, developed for Splus by
A. Lehmann and colleagues (Lehmann, Overton &
Leathwick 2002) and for R by F. Fivaz (www.cscf.ch/
grasp), includes many new developments and provides
a significant support to ecologists for building spatial
predictions in a generalized regression framework. The
BIOMOD package (Thuiller 2003) is another such
ecological GLM/GAM tool for R and Splus that
additionally allows fitting CART (classification and
resgression trees), ANN (artificial neural network), BRT
(boosted regression trees) and a few additional techniques.
BRT, in particular, was shown recently to be among the
most powerful techniques (Elith ez al in press). Two
new libraries now allow building GAM models in R
(http://cran.r-project.org; last visited 16 March 2006),
an improved one by S. Wood (2004, MGCYV; the
originalin R) and a new one by T. Hastie (2005, GAM).
MGCV additionally allows fitting GLMM and
GAMM (e.g. to fit autocorrelative models). Another R
library — VGAM - allows fitting VGLM and VGAM
(Yee & Wild 1996), and also offers an other means of
performing quantile regressions, CGO (Yee 2004b) and
other advanced modelling methods (e.g. fitting several
species models at once). New powerful predictive methods
other than generalized regressions include MAXENT
(Maximum Entropy; Phillips et al. 2005) or SVM
(Support Vector Machines; Drake et al. 2006).

Conclusions

There remains great scope for further improvements to
biogeographical modelling of species’ distributions, a
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task facilitated by new statistical tools recently made
available to ecologists (see Guisan & Thuiller 2005). The
challenges involved in making better predictions of
species’ distributions are both applied and theoret-
ical. Practitioners need reliable predictions of species’
distributions to evaluate properly the impact of climate
and land-use changes on the distribution, composition,
structure and functioning of community and ecosys-
tems. These applications are required to assess, for
example, the value of current reserve networks and the
ability of ecosystems to provide human societies with
expected goods and services, both now and in the future.
From a theoretical point of view, better predictions of
biological communities and ecosystems can emerge
only from (i) more robust species’ distribution models
and better documentation of the uncertainty associated
with these models; and (ii) an improved understanding
of causes of species’ distributions, especially at their range
limits, as well as of ecological assembly rules and
ecosystem functioning. A better collaborative effort
between theoretical and functional ecologists, ecological
modellers and statisticians is required to achieve these
goals.
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