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[1] We use an airborne-radar method, verified with ice-core
accumulation records, to determine the spatiotemporal
variations of snow accumulation over Thwaites Glacier,
West Antarctica between 1980 and 2009. We also present a
regional evaluation of modeled accumulation in Antarctica.
Comparisons between radar-derived measurements and
model outputs show that three global models capture the
interannual variability well (r> 0.9), but a high-resolution
regional model (RACMO2) has better absolute accuracy
and captures the observed spatial variability (r = 0.86).
Neither the measured nor modeled accumulation records
over Thwaites Glacier show any trend since 1980.
Although an increase in accumulation may potentially
accompany the observed warming in the region, the
projected trend is too small to detect over the 30
year record. Citation: Medley, B. et al. (2013), Airborne-radar
and ice-core observations of annual snow accumulation over
Thwaites Glacier, West Antarctica confirm the spatiotemporal
variability of global and regional atmospheric models, Geophys.
Res. Lett., 40, 3649–3654, doi:10.1002/grl.50706.

1. Introduction

[2] In Antarctica, where snowmelt and runoff are small,
the competing processes of mass gain through snow accumu-
lation and loss through ice discharge to the ocean control the
ice sheet’s net mass balance and thus its contribution to sea
level. Here we use accumulation interchangeably with
surface mass balance (SMB), which is defined as snowfall
minus sublimation and meltwater runoff and includes drifting
snow processes. Basin-wide accumulation is a large source of
uncertainty in regional mass loss estimates. For example,
both observation- and model-based basin-wide accumulation
climatologies [van de Berg et al., 2005; Arthern et al., 2006;
Monaghan et al., 2006] over Pine Island and Thwaites
Glaciers vary from 129 to 182 Gt yr�1, a range that is compa-
rable to the net mass loss [Rignot et al., 2008]. The mass
balance of the Amundsen Coast region is of particular
interest because recent accelerated ice discharge from Pine
Island and Thwaites Glaciers to the ocean makes the region
one of the largest Antarctic contributors to current sea-level
rise [Shepherd et al., 2012; Rignot et al., 2008].
[3] Under a warming climate, the associated increase in

atmospheric moisture content is expected to increase ice
sheet snow accumulation [Genthon et al., 2009], but
modeling studies [Monaghan et al., 2006; Lenaerts et al.,
2012] do not show this trend, despite significant warming
in West Antarctica over recent decades [Steig et al., 2009;
Orsi et al., 2012; Bromwich et al., 2013]. Although ice cores
provide long-term accumulation records, their sparse
distribution undersamples the spatial variability. In West
Antarctica, only a few high-elevation (>1200 m asl)
annually resolved ice core accumulation records exist:
several from ITASE in the early 2000s [Kaspari et al.,
2004] and three cores (PIG2010, DIV2010, and THW2010)
recovered in 2010/2011 (Figure 1). None are from low-
elevation coastal sites where accumulation is the highest.
Furthermore, substantial small-scale accumulation vari-
ability suggests that individual cores do not adequately
represent regional accumulation [Banta et al., 2008].
[4] This work uses a newly developed airborne radar

system, referred to as the “snow radar” [Panzer et al.,
2013], with bandwidth sufficient to resolve near-surface
stratigraphy continuously over hundreds of kilometers along
aircraft flight paths (Figure 2). This radar is a frequency-
modulated continuous wave system developed by the
Center for Remote Sensing of Ice Sheets (CReSIS) and
flown on NASA’s Operation IceBridge campaign
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[Leuschen, 2010; Rodriguez-Morales et al., 2013]. During
the 2009 campaign, the system operated over the 4–6
GHz frequency range (vertical resolution ~10 cm); in
2010 and 2011, it operated over the 2–6.5 GHz frequency
range (vertical resolution ~5 cm). We stacked traces to a
horizontal resolution of ~55 m. The radar documentation
and data are available at ftp://data.cresis.ku.edu/data/snow.
The radar reflection horizons (Figure 2) represent contrasts
in the material’s dielectric permittivity, attributed to iso-
chronous buried sequences of hoar layers and associated
ice crusts [Arcone et al., 2004, 2005a, 2005b; Spikes
et al., 2004]. The roughly annual occurrence of such se-
quences and the fine vertical radar resolution indicate that
these horizons can be dated. Using these data with a re-
gional firn depth-density model, we derive annual accumu-
lation records from 1980 to 2009 along each radar profile
[c.f. Kanagaratnam et al., 2004] over most of the
Thwaites basin (~182 Mkm2).

2. Methods

[5] Calculating spatiotemporal accumulation rates using
airborne radar requires three data sets: (1) a firn depth-density
profile, (2) radar-profiled isochrones, and (3) a depth-age
profile to determine isochrone ages. The water-equivalent
accumulation rate (m w.e. yr�1) between two mapped
isochrones (i.e., over a discrete time period) is

ḃ xð Þ ¼ ΔCM xð Þ= Δt�ρwð Þ (1)

where x is location along the flight path, ΔCM is the

cumulative mass per unit area (kg m�2) between two iso-
chrones that differ Δt in age, and ρw is the density of water
(1000 kg m�3). The mapped horizons are assumed to be an-
nual isochrones, and thus Δt is independent of x and equal to
1 year. Although we employ a single cumulative mass profile

Figure 1. Thirty-year average accumulation rates and select Operation IceBridge flight paths overlaid on a MODIS mosaic
[Haran et al., 2005]. The inset map outlines the study area relative to a digital elevation model of Antarctica [Bamber et al.,
2009]. The catchments are outlined in black. Elevation contours (m) are labeled accordingly. The ITASE cores collected
between 2000 and 2001 are shown as triangles and cores collected in 2010/2011 are shown as pentagons. Red circles show
the major field camps.

Figure 2. Sample snow radargram partly overlaid by man-
ual horizon picks. The vertical orange line shows the location
of the PIG2010 ice core. These data were collected on 9
November 2011 and show the consistency of horizons over
large distances. Inset shows detail in the upper ~7 m outlined
in red.
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for the entire region, ΔCM varies along the flight path
because the isochrones vary in depth.

2.1. Firn Density Profile

[6] A firn depth-density profile is needed to convert radar
measurements of two-way travel time τ to depth d and to
calculate a cumulative mass profile. Although firn densifica-
tion varies with temperature and accumulation rate, here we
use a single profile for the entire basin. We fit a steady-state
density model [Herron and Langway, 1980] to the mean of
nine firn-core density profiles from the region (Figure S1).
We use a mixture model [Looyenga, 1965] to calculate the
dielectric permittivity εd of the firn and calculate depth from
the measured two-way travel time: d = 0.5cτεd�0.5, where c
is the wave speed in a vacuum (3 × 108 m s�1). The d-τ profile
is calculated at 1 cm intervals to account for the depth varia-
tions of density and dielectric permittivity. The cumulative
mass profile is calculated by integrating the modeled
density profile.

2.2. Snow-Radar Accumulation Rate Error Estimation

[7] The radar-derived accumulation rate error estimates
account for the regional variation in the firn density profile
and the uncertainty in the horizon time interval Δt (see
Supporting Information). The error resulting from density
variation is based on the model fits to the ±1σ variation in
density profile from the mean (Figure S1). We also assume
an error in Δt of ±1 month, as the time of creation of the
isochrones likely varies. A digitization error of 1 radar
sample is included, equivalent to approximately 3 and 6 cm
for the 2010/2011 and 2009 flights, respectively. The typical
accumulation rate measurement error is less than ±10%,
except for the most recent years (i.e., layers near the surface)
when errors approach ±15% (Figure S2). Spatial averaging
minimizes the impact of these errors and reduces the annual
accumulation error to less than ±5%.

2.3. Ice Core Analysis

[8] Water isotope ratios and more than 30 elements and
chemical species were measured at high depth resolution
(~1 cm w.e.) using a continuous ice core melter system
[McConnell et al., 2002, 2007; Maselli et al., 2013]. While
nearly all ratios exhibit pronounced annual cycles in concen-
tration, here we used the summer maxima in hydrogen
peroxide concentration, water isotope ratios, and nonsea-salt
sulfur to sodium ratio to identify consistent annual layers.
Well-known volcanic horizons identified by marked in-
creases in wintertime sulfur concentration were used to
verify the annual layer counting, which indicated a dating
uncertainty of<1 year.

2.4. Method Validation

[9] Snow-radar horizons were dated by counting horizons
assumed to be annual. To verify this assumption, we compare
the snow-radar accumulation record with that from the nearly
colocated (~150 m separation) PIG2010 ice core (Figure S3).
The 30 year averages (±1 standard deviation) of
0.424 ± 0.065 m w.e. yr�1 from the core and 0.428 ± 0.055
m w.e. yr�1 from the radar are indistinguishable. Annual
layer thicknesses are highly correlated (r = 0.85), validating
our assumption that the radar resolves horizons with annual
resolution and indicating that the snow-radar accumulation
records are consistent with the ice core records. All

calculated correlation coefficients are statistically significant
at the 99% confidence level, accounting for autocorrelation.
Comparisons between individual ice core records and the
radar- and model-derived records are displayed in
Figures S4–S7.

3. Results

3.1. Radar-Derived Accumulation Rates

[10] Using four radar surveys collected between 2009 and
2011 over an area of ~350 km×~350 km, we generated 30
year accumulation records at 250 m intervals along track
(Figure 1). The 30 year average accumulation rates vary
spatially between 0.27 m w.e. yr�1 in the high-elevation
interior and 0.67 m w.e yr�1 near the coast. The spatial mean
is 0.457 ± 0.066 m w.e. yr�1, and elevations sampled ranged
from 950 and 1840 m asl. Strong accumulation variability is
associated with the slope-dependent effect of wind-driven
snow redistribution [Arcone et al., 2005b], which is clearly
visible in our data because the greatest accumulation variabil-
ity corresponds with strongly varying surface slopes, as
indicated by tonal variations in the basemap in Figure 1.
Missing data along the flight paths indicate the 30 year
accumulation record is incomplete (i.e., one or more of the
30 annual horizons could not be digitized). These data gaps
could introduce a magnitude bias in our regional record,
which is acceptable because we are not attempting to
determine basin-wide accumulation and instead are inter-
ested in its variability and trend.
[11] We created a regional accumulation record by spa-

tially averaging all radar-derived records (Figure 3).
Between 1980 and 2009, the average accumulation rate is
0.457 ± 0.055 m w.e. yr�1, and the record shows no signifi-
cant trend. We created two three-core accumulation rate
ensembles using our 2010/2011 ice core records and the
ITASE records [Kaspari et al., 2004] to produce independent
quasi-regional records for comparison with the snow-radar
record (Figure 3). The ensembles have slightly lower mean
accumulation rates than the snow-radar record, yet correlate
significantly (r = 0.80; Table 1). This comparison with ice
core data indicates that the snow radar provides accurate
accumulation estimates.

3.2. Atmospheric Model Validation

[12] Model-derived snow accumulation is increasingly
being used in place of observations. Our data provide an
opportunity to evaluate the skill of such models at a regional
scale and at annual resolution. We compared our data with
three global reanalysis precipitation-minus-sublimation
(P-S) products [Bromwich et al., 2011] of varying grid
resolutions (see Table 1): the European Centre for
Medium-Range Weather Forecasts “Interim” (ERA-
Interim) [Dee et al., 2011], the NASA Modern Era
Retrospective Analysis for Research and Applications
(MERRA) [Rienecker et al., 2011], and the National
Centers for Environmental Prediction Climate Forecast
System Reanalysis (CFSR) [Saha et al., 2010]. We also
used SMB from the Regional Atmospheric Climate
Model v.2.1 (RACMO2) [Lenaerts et al., 2012], which
is forced on its lateral boundary with the ERA-Interim
reanalysis. The reanalysis P-S products are nearly equiv-
alent to SMB in this region because runoff is negligible
and drifting snow processes typically amount to less than
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6% of the total, based on analysis of the RACMO2 SMB
components. We generated regional records of modeled
accumulation (equivalent to P-S) by taking the average
of grid cell records weighted by the percentage of
snow-radar records within each cell. Figure 3 shows the
regional snow radar and model-derived records as anom-
alies from their respective 1980–2009 means shown in
Table 1. The RACMO2 30 year average accumulation
rate of 0.434 ± 0.080 m w.e. yr�1 is slightly less than
the snow-radar average of 0.457 ± 0.055 m w.e. yr�1.
The global reanalyses have even lower averages between
0.346 ± 0.057 and 0.407 ± 0.060 m w.e. yr�1. The correla-
tion coefficients shown in Table 1 indicate that the global
reanalyses are highly correlated temporally (r> 0.9) and
RACMO2 is moderately correlated (r = 0.68) with the
snow-radar record. The global reanalyses are moderately
correlated spatially with correlation coefficients ranging
between 0.68 and 0.75, whereas RACMO2 is highly
correlated (r = 0.86).

[13] The agreement between the models and the snow
radar indicates that the models reasonably capture the
magnitude and variability of accumulation in this sector of
West Antarctica, but with notable deficiencies. RACMO2
adequately reproduces the mean annual accumulation, while
the global reanalyses are biased low. The interannual
accumulation variability is accurately reproduced by the
reanalysis products, while RACMO2 exhibits exaggerated
variability; its standard deviation is nearly 50% greater than
that from the snow-radar observations.

3.3. Elevation-Dependent Accumulation Gradients

[14] To investigate spatial accumulation distributions
further, we compared the relationship between elevation
and accumulation for each data set (Figure 4). All models
underestimate accumulation at the highest elevations:
modeled accumulation declines more rapidly with elevation
than is observed. Although the models show a slight
overestimation of accumulation below 1000 m, the radar

Table 1. Time Series Statistics and Spatial and Temporal Correlation Coefficients (r)

Snow Radar RACMO2c ERA-Intc CFSRc MERRAc 2010 Cores ITASE Coresd

Time Series Statisticsa μ ± σ (m w.e. yr�1) 0.457 ± 0.055 0.434 ± 0.080 0.382 ± 0.056 0.407 ± 0.060 0.346 ± 0.057 0.377 ± 0.049 0.401 ± 0.053
m (% per decade) �0.3 ± 5.4 % +1.1 ± 8.2 % �1.5 ± 6.5 % +0.5 ± 6.6 % +2.1 ± 7.3 % �0.1 ± 5.7 % �1.2 ± 9.5 %

Correlation Matrixb Snow Radar -- 0.86 0.68 0.75 0.75
RACMO2c 0.68 -- 0.78 0.86 0.86
ERA-Intc 0.93 0.69 -- 0.91 0.78
CFSRc 0.91 0.64 0.94 -- 0.85

MERRAc 0.92 0.69 0.91 0.93 --
2010 Cores 0.80 0.64 0.79 0.81 0.77 --

ITASE Coresd 0.80 0.64 0.69 0.73 0.72 0.66 --

aThe mean (μ), standard deviation(σ), and trend slope (m) with 95% confidence intervals during 1980–2009.
bUpper right italicized (lower left bolded) corner contains the spatial (temporal) correlation coefficients. All r are statistically significant at the 99%

confidence level.
cModel grid resolution approximated over Thwaites Glacier: 27 km (RACMO2), ~80 km (ERA-Int), ~38 km (CFSR), ~55 × 20 km (MERRA).
dITASE Cores 01–1, 01–2, and 01–3; Statistics calculated over the period of record (1980–2001).
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Figure 3. Comparison of the accumulation rate anomalies derived from the snow radar (orange circles), the 2010/2011
(green ×) and ITASE (blue-green +) core ensembles, RACMO2 (red squares), and three global reanalyses (blue triangles).
The snow-radar record is the spatial average of all complete records shown in Figure 1 and includes 1-σ error bars. The
2010 core ensemble is the average of the PIG2010, DIV2010, and THW2010 cores, which have age uncertainties of<1 year.
The ITASE ensemble is the average of the ITASE 01–1, 01–2, and 01–3 core records, which have age uncertainties of ≤1 year.
All anomalies were estimated by subtracting the long-term (1980–2009) mean, which are listed in Table 1.
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sampling at these elevations is not sufficient to confidently
interpret the differences. To quantify discrepancies, eleva-
tion-dependent accumulation gradients are approximated by
a linear fit to the data in Figure 4 and are listed in the inset
table. We find RACMO2 captures much of the spatial
variability in accumulation because of its finer spatial
resolution but does not perform as well above 1400 m in this
region as at lower elevations. The global models adequately
capture the regional-scale variability in accumulation, even
with their coarser spatial resolution, but the steep accumula-
tion gradients below 1400 m indicate that not nearly enough
accumulation is reaching moderate to high elevations.

4. Discussion

[15] The snow-radar record, ice core ensembles, and atmo-
spheric models do not show any significant trend in accumu-
lation over Thwaites basin between 1980 and 2009 indicating
that the recent increase in ice discharge from the region has
not been simultaneously compensated by a comparable
increase in accumulation. The trends in accumulation range
between �1.5 and +2.1% per decade and are all statistically
insignificant (Table 1). The MERRA trend of +2.1% per
decade is likely inflated due to data-assimilation artifacts
[Bromwich et al., 2011]. The lack of a significant trend does
not necessarily rule out a relationship between rising temper-
atures in West Antarctica and changing snow accumulation,
considering the length and interannual variance of the
accumulation record. A recent model simulation of
Antarctic precipitation predicts a ~2% per decade increase
over the 21st century [Genthon et al., 2009]. The 2-σ
sampling error associated with the short (n = 30) snow-radar
record with high annual variability (σ= 12.0%) is ±4.4%

(2σn�0.5), indicating that a 2% per decade increase would
not be detectable and cannot be ruled out. However, trend
magnitudes greater than 5% per decade can be ruled out,
which, when compared to the ~11% per decade increase in
Thwaites ice discharge [Rignot, 2008], confirms that the
accumulation trend is not keeping pace with changes in
ice dynamics.
[16] Our results indicate that the snow radar provides a

reliable annual signal over the Thwaites basin and provides
high-quality accumulation rate measurements independent
of ice core glaciochemical analysis. The high correlations
between the radar- and core-derived annual accumulation
records confirm our interpretation of a snow-radar annual
signal, highlighting the potential of radar profiling for mass
balance studies. Qualitative analysis of the radar data
suggests that the snow radar is most suitable where average
accumulation rates are between 0.3 and 0.6 m w.e. yr�1.
Outside these bounds, layers can still be resolved but not
annually (based on data from systems operated in 2009–
2011), making this method useful for estimating accumula-
tion where independent age-depth information is available.
The snow-radar method also serves as a much-needed means
to improve model mass balance assessments through
validation of and discrimination among the results from
different models.
[17] These radar-derived accumulation rates provide the

data necessary to evaluate the temporal variability of
modeled accumulation rates at a regional scale. Our results
show that models of accumulation are reasonable substitu-
tions in areas lacking measurements. Although the global
models underestimate the magnitude of accumulation by as
much as 24%, these models capture the interannual accumu-
lation variability with high fidelity. The finer-resolution
regional model underestimates the mean accumulation by
only 5% and more accurately captures the spatial accumula-
tion variability and elevation-dependent gradient. The
differences between the global and regional models are likely
related to differences in observational constraints. The
reanalyses are constrained with global observations,
including observations within Antarctica, which help capture
temporal variability in accumulation. By contrast, RACMO2
is forced by the observation-driven ERA-Interim reanalysis
product far from the continent and is thus not as well
constrained by observations fromAntarctica, yielding greater
uncertainty in temporal variation. Additional snow-radar
observations in Greenland and Antarctica through ongoing
IceBridge campaigns will provide the constraints necessary
for further refinement and improvement to these atmospheric
models.

5. Conclusion

[18] Comparisons of new radar-derived observations of ice
sheet accumulation, ice core records, and model data demon-
strate that: (1) ultra-wideband microwave radars provide
accurate and independent estimates of accumulation; and
(2) both global and regional models reasonably account for
the variability, while the global models underestimate
the magnitude of accumulation in this sector of West
Antarctica. We find that Thwaites Glacier has not experi-
enced a statistically significant change in accumulation over
the past three decades. Therefore, the recent increase in ice

1000 1100 1200 1300 1400 1500 1600 1700 1800

0.2

0.3

0.4

0.5

0.6

Figure 4. Snow-radar (orange circle), RACMO2 (red
square), and reanalysis (blue triangles) accumulation rates
averaged over 50 m elevation bins. Inset table contains the
accumulation gradients (linear) above and below 1400 m
for each data set. Accumulation rates generally decrease with
increasing elevation for all data sets. RACMO2 is the most
capable of reproducing the small-scale features found in the
snow-radar profile. The three global reanalyses all underesti-
mate accumulation, with potential exceptions at the lowest
elevations where there is insufficient sampling.
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discharge from the glacier has not been balanced by a simul-
taneous increase in accumulation.
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