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Predictions of critical habitat for five whale
species in the waters of coastal British Columbia

Edward J. Gregr and Andrew W. Trites

Abstract: Whaling records from British Columbia coastal whaling stations reliably report the positions of 9592 whales
killed between 1948 and 1967. We used this positional information and oceanographic data (bathymetry, temperature,
and salinity) to predict critical habitat off the coast of British Columbia for sperm (Physeter macrocephalus), sei
(Balaenoptera borealis), fin (Balaenoptera physalus), humpback (Megaptera novaeangliae), and blue (Balaenoptera
musculus) whales. We used generalized linear models at annual and monthly time scales to relate whale occurrence to
six predictor variables (month, depth, slope, depth class, and sea surface temperature and salinity). The models showed
critical habitat for sei, fin, and male sperm whales along the continental slope and over a large area off the northwest
coast of Vancouver Island. Habitat models for blue, humpback, and female sperm whales were relatively insensitive to
the predictor variables, owing partially to the smaller sample sizes for these groups. The habitat predictions lend sup-
port to recent hypotheses about sperm whale breeding off British Columbia and identify humpback whale habitat in
sheltered bays and straits throughout the coast. The habitat models also provide insights about the nature of the link-
ages between the environment and the distribution of whales in the North Pacific Ocean.

Résumé: Les statistiques de chasse à la baleine accumulées par les stations baleinières de la côte de la Colombie-
Britannique entre 1948 et 1967 indiquent de façon fiable les coordonnées géographiques des points de capture de 9 592
baleines. Ces données géographiques combinées à des informations océanographiques (bathymétrie, température et sali-
nité) ont servi à prédire l’habitat critique des Cachalots macrocéphales (Physeter macrocephalus), des Rorquals boréaux
(Balaenoptera borealis), des Rorquals communs (Balaenoptera physalus), des Rorquals à bosse (Megaptera no-
vaeangliae) et des Rorquals bleus (Balaenoptera musculus) au large des côtes de la Colombie-Britannique. Des modè-
les linéaires généralisés à échelles annuelles et mensuelles ont permis de mettre en correspondance la présence des
baleines et six variables prédictives (mois, profondeur, pente, classe de profondeur et température et salinité de surface
de la mer). Les modèles ont révélé l’existence d’habitats critiques pour les Cachalots macrocéphales mâles, les Ror-
quals boréaux et les Rorquals communs le long du talus continental et sur une grande surface au large de la côte nord-
ouest de l’île de Vancouver. En partie à cause d’un échantillonnage plus faible, les modèles d’habitat des Cachalots
macrocéphales femelles, des Rorquals bleus et des Rorquals à bosse restent relativement insensibles aux variables pré-
dictives. Ces prédictions sur les habitats viennent appuyer des hypothèses récentes qui veulent que les Cachalots ma-
crocéphales se reproduisent au large de la côte de la Colombie-Britannique et qui indiquent que l’habitat des Rorquals
à bosse se situe dans les baies et les détroits protégés tout le long de la côte. Ces modèles d’habitat laissent aussi en-
trevoir la nature des liens qui existent entre les conditions de l’environnement et la répartition géographique des balei-
nes dans le Pacifique nord.

[Traduit par la Rédaction] Gregr and Trites 1285

Introduction

Interest in the spatial distribution of whales in the world’s
oceans can be traced back to the Yankee sperm whaling in-
dustry and the charts of Townsend (1935) and Maury (1852).
More recent efforts to relate whale distributions to oceano-
graphic parameters can be traced to work by Uda (1954)

who identified four types of oceanic fronts that were corre-
lated with the presence of whales. This line of research cul-
minated with Nasu (1966) who detailed the oceanographic
conditions (mainly temperature and currents) that formed fa-
vourable whaling grounds in the North Pacific and described
the seasonal effects of temperature and current on the distri-
butions of blue (Balaenoptera musculus), fin (Balaenoptera
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physalus), humpback (Megaptera novaeangliae), and sei
(Balaenoptera borealis) whales. The objective of these early
studies was to improve the efficiency of the whaling fleets
by reducing the amount of time spent searching for whales.

Recently, geographic information systems and remote sens-
ing data have revived interest in the search for relationships
between oceanographic conditions and marine mammal distri-
butions. For example, relationships have been detected be-
tween marine mammal abundance and bathymetry (Hui 1985;
Woodley and Gaskin 1996), sea surface chlorophyll concen-
trations (Smith et al. 1986), sea surface temperature
(Woodley and Gaskin 1996), oceanographic circulations
(Waring et al. 1993; Woodley and Gaskin 1996), and prey
abundance (Woodley and Gaskin 1996; Fiedler et al. 1998).
However, less work has been done to quantify habitat char-
acteristics based on these relationships (e.g., Watts and Gas-
kin 1985; Moses and Finn 1997).

The objective of our study was to identify coastal regions
that may be regarded as critical habitat for sperm (Physeter
macrocephalus), fin, sei, blue, and humpback whales. We
considered male and female sperm whales separately be-
cause of well-documented behavioural differences between
the sexes (e.g., Best 1979). We adopted Hall et al.’s (1997)
definition of critical habitat as the measure of an area’s abil-
ity to provide the resources necessary for the persistence of a
population. Since the baleen whales are highly migratory
species, critical habitat could be expected to include feeding
areas as well as common migration routes.

Our approach was based on work by Jaquet et al. (1996)
and Moses and Finn (1997). Jaquet et al. (1996) analysed the
correlations between nineteenth century Yankee sperm whal-
ing records and satellite observations in the tropical Pacific
at spatial scales of 220–1780 km2 and found that historic
sperm whale distributions were correlated with contempo-
rary measurements of chlorophyll concentrations and that
the degree of correlation increased as the spatial scale was
increased. Moses and Finn (1997) used a logistic regression
model to examine the relationship between right whale dis-
tributions off the coast of Nova Scotia on a 64 km2 grid, us-
ing concurrent measurements of oceanography (depth and
surface temperature) and whale presence–absence.

We sought to define critical habitat for five species of
whales along the coast of British Columbia in terms of the
physical environment. We did so using general linear models
to determine whether the positions of historic whale catches
recorded in British Columbia from 1948 to 1967 (our de-
pendent variable) were related to six predictor variables:
depth, slope, depth class, temperature, salinity, and month.
Slope and depth class were derived from bathymetry, slope
was a measure of topography, and depth class divided the
study area into shelf, slope, and off-shelf regions. The mod-
els predicted the probability of occurrence of each species of
whales based on these variables. Model results, identifying
critical habitat for large whale species in British Columbia,
are discussed in terms of northeastern Pacific oceanography,
whale biology, and whale behaviour.

Methods

We used the positional data recorded between 1948 and 1967 by
British Columbia coastal whalers and a simple oceanographic

model based on depth, temperature, and salinity to create geo-
graphic probability distributions for sei, fin, humpback, blue, and
sperm whales. We divided the coastal region of British Columbia
into grid cells and used Cause&Effect software (Facet Decision
Systems, Inc. 1999a) to create a habitat model, which spatially as-
sociated the dependent and independent data for each grid cell. We
then exported data sets from the habitat model for regression anal-
ysis in S-Plus (Mathsoft 1999). We incorporated the results of the
regression back into the Cause&Effect habitat model for display.
Positional data, recorded in latitude and longitude, were converted
to a regular universal transverse mercator grid for analytical and
display purposes. Universal transverse mercator grids, which are
measured in metres, are the preferred representation for spatial
analysis because latitude and longitude measures do not reflect
consistent distance measures.

We began the analysis by exploring the relationships between
the predictor variables and the probability of whale presence. We
then postulated an a priori “biological” model using the explor-
atory results. This biological model identified the terms subse-
quently used in the stepwise regression to create the generalized
linear models. A separate regression model was generated for each
species, at annual and monthly time scales. Predictions (the proba-
bility of whales being present in any given cell) were plotted on a
spatial grid for visual interpretation and tested using cross-
validation techniques. We also tested the sensitivity of the predic-
tions to the predictor variables by comparing predictions from cold
years with those from warm years because the temperature and sa-
linity predictors (1980–1998) were not concurrent with the biologi-
cal data (1948–1967).

The dependent variables consisted of the position, species, and
date of capture for whales killed between 1948 and 1967 as part of
the British Columbia coastal whaling industry. Sex was included
for sperm whales only. Coastal whaling during this period was
conducted solely from Coal Harbour on the west coast of Vancou-
ver Island (Fig. 1). The whaling data used in the regression analy-
sis were restricted to an area within 150 nautical miles (nmi)
(275 km) of the mouth of Quatsino Sound (n = 8164 whales). This
is where whales were often left for pickup by shore vessels.
Whales killed within the 150-nmi radius represented about 85% of
the georeferenced whale kills. Choosing this restricted area in-
creases the likelihood that the whalers searched with equal effort
throughout the study area and is well within the range of the whal-
ing vessels (approximately 200 nmi) (Pike and MacAskie 1969).
Regions within the 150-nmi search area that had no recorded kills
were assumed to be empty of whales. Thus, we assumed that the
spatial patterns of whales killed within the study area were primarily
a function of whale distributions and less a function of concentrated
whaling effort. Shortcomings of this assumption and the conse-
quences of nonrandom sampling are considered in the Discussion.

Independent variables
We used three continuous and three categorical predictor vari-

ables. The continuous variables included a 5-minute grid of bathy-
metry (PICES 1997) and long-term point data on surface
temperature and salinity. The categorical variables consisted of
month, slope, and depth class.

To maximize the spatial resolution and minimize interannual
variability, the most recent 18 years (1980–1998) of conductivity
(salinity), temperature, and depth point data were obtained from
the Department of Fisheries and Oceans. We reduced this large,
multidimensional data set (latitude, longitude, year, day, time,
depth, temperature, and salinity) to mean monthly surface tempera-
ture and salinity values. For each depth profile, we used only the
mean of the values in the top 1.5 m of the water column.

In addition to these three continuous predictors, we included the
categorical variables month, slope, and depth class. We included
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month to capture the significant species-specific monthly changes
in the mean distance from shore (Gregr et al. 2000). This monthly
effect (at least partially due to annual migration behaviour), com-
bined with significant monthly changes in the temperature data
(Fig. 2), shows the need to include month as a factor in the analy-
sis. We only used the months April–September when the majority
of whaling occurred (Gregr et al. 2000).

Slope was included to provide a measure of undersea topogra-
phy, since topographic upwelling may play a role in biological pro-
ductivity (Mann and Lazier 1996). This categorical predictor was
defined to have slope classes from 0 (flat) to 6 (steepest). Although
derived from the bathymetry, the slope at a particular location is in-
dependent of its depth. However, the two are strongly correlated in
the area of the shelf break where there is a dramatic transition from
on-shelf to deep waters.

We created the categorical predictor depth class to normalize the
distribution of the depth variable, which was clearly bimodal
(Fig. 3). While generalized linear models do not require the nor-
mally distributed independent variables, this does tend to yield a
better fit (Tabachnik and Fidell 1996). We therefore divided the
study area into three depth classes: shelf (£200 m), slope (between
200 and 1800 m), and deep water (>1800 m). In addition to creat-
ing a more normal distribution of depths at each depth class

(Fig. 3), this allowed us to capture the interaction between depth
class and salinity (Fig. 2).

The study area was divided into grid cells, which thereby be-
came the observational units in the study. We assigned annual and
monthly temperature and salinity values independently to the grid
cells by interpolation using triangular irregular networks (TINs)
(Fig. 4). Interpolation was done equally in all directions. We did
not correct for any potential spatial autocorrelation. For the annual
and monthly models, we generated mean annual and monthly tem-
perature and salinity TIN surfaces. All years were treated equally
when generating the mean values, and no attempt was made to cor-
rect for the annual variance.

The bathymetric grid of point data was also mapped to the study
grid using a TIN surface. The slope and depth class predictors
were calculated for each grid cell after the depth was assigned.
Depth class was simply a function of the depth at each cell, while
slope was calculated for each cell based on the difference between the
elevations of its neighbours (Facet Decision Systems, Inc. 1999b).

We examined the grid cells for colinearity between the assigned
values using the tolerance statistic 1 –Rx

2 , whereRx
2 is the variance

in each independent variablex explained by the other independent
variables. A low tolerance is an indication of colinearity, with a
tolerance below 0.20 considered cause for concern (Menard 1995).
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The tolerances for the independent variables in our study ranged
from 0.47 to 0.97, indicating that the amount of colinearity was not
significant at the spatial and temporal scales that we used. While

some correlation between temperature and salinity might be
expected, it may exist at a spatial scale (either finer or coarser) dif-
ferent from the one that we considered. Finally, to realistically
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bound the study area to reasonable oceanographic conditions, grid
cells with depths of 10 m or less or with salinities less than 30 ppt
were excluded.

Scale selection
Underlying all of the work on habitat characterization are two

key assumptions. First, whales are generally found where their
food is abundant, and second, these food sources are somehow re-
lated to oceanographic conditions. The relationship of common ba-
leen whale prey species (zooplankton) to oceanographic conditions
can take two forms: conditions can be ideal for primary production
or oceanographic conditions can work to concentrate prey species
in specific areas. In the first case, there is likely to be a temporal
lag while the zooplankton blooms develop. For baleen whales feed-
ing on zooplankton, which are trophically close to primary produc-
tion (trophic levels 2.0–2.3 versus 1.0; Trites et al. 1999), this lag
may be on the order of several weeks. However the lag may be
considerably greater for sperm whales where the primary prey
items (cephalopods, trophic level 3.7; Trites et al. 1999) are re-
moved from primary production by approximately 4 months
(Vinogradov 1981). These temporal lags typically result in corre-
sponding spatial lags due to oceanic transport.

If the relationship between animal distributions and oceano-
graphic predictors is more a function of prey concentration or
aggregation caused by small-scale eddies or gyres, very little tem-
poral and no spatial lag would be expected. Similarly, if certain
bathymetric features (i.e., areas of high relief) caused prey species
to aggregate, these lags would also be absent.

Thus, the time periods and spatial scales over which data are
pooled may affect our ability to detect possible relationships
between species abundance and any independent predictor vari-
ables, with different relationships or processes potentially being
captured at different scales. The consequence of this fundamental
scale problem was emphasized by Wiens (1989) who pointed out
that just because we can provide clever explanations of the patterns
that we observe, it does not necessarily follow that the patterns are
anything more than artifacts of scale.

The effect of spatial scale was well treated by Jaquet et al.
(1996) who demonstrated how multiscale analysis can help eluci-
date the effective scale of a relationship between a dependent vari-
able and a single predictor. However, our objective was to evaluate
the degree to which physical oceanography could be used to de-
scribe habitat for five different whale species. So rather than focus
on a single predictor over multiple scales, we chose to examine the
relationship between the catch distributions and a multivariate
oceanographic model at two time scales. Using annual and
monthly time scales allowed us to investigate the scale problem
along an alternative axis (temporal versus spatial) and to assess the
temporal variability in the habitat predictions. While multispatial
scale analyses are the logical next step to explore the relationships
proposed in our study, they are beyond the scope of this paper.

In selecting our spatial scale, we chose to use the finest possible
resolution because fine-scale studies may be more informative than
generalizations about the biological processes underlying the pat-
terns (Wiens 1989). We selected a spatial resolution of 10 × 10 km
based on an examination of the catch data, which showed that
whalers tended to round their location to the nearest 5 minutes of
both latitude and longitude (Gregr 2000). We therefore assumed
this to be the precision of the positional data. Five minutes corre-
sponds to approximately 10 km in these latitudes.

Regression modeling methods
Generalized linear models apply linear regression techniques to

nonlinear data with heterogeneous variances (Chambers and Hastie
1993). Poisson and logistic regression are two types of generalized
linear models that are used to model counts and binomial values

(i.e., presence–absence), respectively. To capture the number of
whales in the grid cells, we used Poisson rather than a logistic re-
gression. Using a simple transform, we then converted the pre-
dicted number of whales (generated by the Poisson model) into
probabilities. We mapped these probabilities onto the study area to
generate the habitat predictions. An overview of these generalized
linear modeling methods is contained in Gregr (2000). The trans-
formation of counts into probabilities is described in the Appendix.

Model building
For each of the five species, we began with an exploratory anal-

ysis of how each of the continuous variables independently af-
fected the presence of whales. We fit lowess (locally weighted
scatterplot smoothing) curves to scatterplots showing the presence
or absence of whales versus the independent variables. We exam-
ined the mean effects as well as the effects for each month and for
each depth class. We used the results of this analysis to hypothe-
size a relationship between the presence–absence of whales and the
independent variables based on biological significance. We used
this a priori biological model to define the upper limit on the com-
plexity of the regression models.

To generate the predictive models for each species, we used for-
ward stepwise selection (Chambers and Hastie 1993). This tech-
nique repeatedly adds terms to the model from a pool of potential
independent variables. The terms are added in order of the amount
of variance that they explain. Thus, the most significant variables
enter the model first. The pool of variables available for selection
was defined by the biological model. We found that this approach
consistently produced simpler models than stepwise backward
elimination, which repeatedly removes terms from an overspecified
model until the remaining terms are all statistically significant.

We applied forward stepwise selection to all the data within the
150-nmi search radius for each species to select the model terms.
We determined the model coefficients using these same data. We
then produced the habitat maps for the entire British Columbia
coast from the annual and monthly probability predictions.

Model testing
We tested the predictive power of the models using cross-

validation and classification tables. Cross-validation requires divid-
ing the data into a fitting set and a testing set. The fitting set is
used to fit the model (i.e., to generate equation coefficients). The
fitted model is then tested against the testing data set. For each spe-
cies, we used half of the grid cells within the 150-nmi search area
for fitting and the other half for testing. Since the predictions gen-
erated by our models were probabilities, we used classification ta-
bles to evaluate the model fit.

Classification tables provide a measure of the efficiency of a
predictive model. This predictive efficiency represents, in percent,
how successfully a model predicts presence and absence. The ta-
bles compare the observed presence–absence in the testing data
with predicted model values. In order to evaluate the predictive ef-
ficiency of our models, we needed to define a cutoff value that
would convert probability into a presence–absence result. We set
this cutoff value individually for each model such that the fitted
model produced the same number of presence cells as found in the
fitting data set.

To assess the effects of using mean surface temperature and
salinity values from a 19-year period (1980–1998) that was not
concurrent with the 20 years of whaling data (1948–1967), we con-
ducted a simple analysis of the sensitivity of the predictions to the
oceanographic model. We compared predictions obtained from
warm years with predictions from the remaining years. Ware
(1995) analysed the patterns in climate records from the northeast
Pacific and related the warmest years in British Columbia (based
on air temperature anomalies) to the El Niño – Southern Oscilla-
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tion (ENSO) events. Four of the warmest years since 1895 were
associated with strong or moderate ENSO events (1983, 1987,
1992, and 1994) (Ware 1995). We chose these four years as repre-
sentative of an extreme in temperature and used them to divide the
temperature and salinity predictor data into “hot” and “other”
years. We then generated two sets of model coefficients and com-
pared the predictions quantitatively using a paired samplet test and
qualitatively by comparing actual habitat predictions.

Results

The total number of each species killed, the number within
the search area, the number of grid cells at the annual and
monthly scales, and the mean probabilities of finding a
whale (Pr(Wh)) in a grid cell are shown in Table 1. The ef-
fect of creating the observational units (grid cells) at annual
and monthly time scales from whale locations can be seen
by comparing the respective mean Pr(Wh) values.

Biological model
The preliminary analysis of whale presence–absence as a

function of each of the independent variables showed two
types of general trends: (i) linear trends that were either in-
creasing or decreasing and (ii ) trends that peaked at particu-
lar values (Gregr 2000). We examined the first-order (mean
annual) effects of all six predictors on presence–absence as
well as the interactions between each of the continuous vari-
ables for each level of month and depth class because of the
apparent interactions between the continuous predictors and
these two categorical variables (Fig. 2). This analysis con-
firmed the interactions between depth class and salinity and
between temperature and month.

All species were most commonly found at particular
depths and salinities. The response to temperature was linear
for all species except humpback whales. Significant differ-
ences observed in the mean response of male and female
sperm whales to temperature and salinity supported treating
the sexes of this species independently.

Based on this exploratory analysis, we constructed a bio-
logical model that encompassed all of the observed effects.
We defined the logit (linear component) of this a priori bio-
logical model as

(1) Pr(Wh)µ f [m + slope+ zClass+ z2

+ (S2 in zClass) + (T2 in m)]

where the probability of whale occurrence (Pr(Wh)) is only
proportional tof [] becausef [] is the logit, or linear compo-
nent, of the generalized linear model, not the actual proba-
bility. Equation 1 contains all of the six predictor variables:
the categorical variables month (m), slope, and depth class
(zClass), the quadratic relationship in depth (z2), and salinity
(S2) and temperature (T2) nested inzClassand m, respec-
tively. The biological interpretation of this model is simply
that whale presence is dependent in some way on the month,
slope, and depth class and that there is an optimum salinity
at each depth class and an optimum temperature in each
month.

Model building
The regression terms, the amount of variance that each ex-

plained (RL
2 ), and the degrees of freedom for the annual
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models are summarized in Table 2. In all cases, when qua-
dratic terms entered the models, their respective linear com-
ponents were included. The variableslope was significant
for all species except blue whales.zClasswas significant for
all species except female sperm whales. Among the continu-
ous variables,z2 was significant for all species,S2 was sig-
nificant for fin, blue, and male sperm whales only, andT2

was significant only for sei and male sperm whales. The to-
tal amount of variance explained (RL

2 ) by the annual models
ranged from a low of 0.23 (humpback whales) to a high of
0.49 (fin whales). Generally,RL

2 values were higher for the
groups (sei, fin, and male sperm whales) with higher sample
sizes (i.e., number of whales killed).

The monthly models (Table 3) showed a higher diversity
of model terms but provided marginally lowerRL

2 values
than their annual counterparts. All three categorical variables
were significant for all species with the exception ofzClass
for female sperm whales. For the continuous variables,z2

was significant for all species, as wasS2, which was nested
in zClassfor both humpback and male sperm whales.T was
omitted only from the female sperm whale model and was
nested inm for sei and male sperm whales. TheRL

2 values
ranged from 0.24 (humpback whales and male sperm
whales) to 0.39 (sei whales).

Model predictions
The left-hand panels of the annual predictions (Figs. 5–7)

show the prediction grids, while the right-hand panels show
the locations of all the catches where position was recorded.
Both panels show the 150-nmi search radius, which encom-
passes the data used in building and fitting the models. The
positions shown in the right-hand panels include the small
number of records from the Kyuquot Harbour, Naden Har-
bour, and Rose Harbour stations, which operated prior to
1948 and where positions of kills were recorded periodically.

Annual predictions for the baleen whales (Figs. 5 and 6)
show sei, fin, blue, and humpback whales occupying habitats
that are increasingly on-shelf, with sei whales in the areas
furthest offshore. Predictions for humpback whales are al-
most exclusively on the shelf, while the habitat predicted for
fin whales is in between that of the sei and humpback whales.
Both the sei and fin whale predictions encompass a large
area that includes the shelf break and an offshore area ex-
tending from the south end of the Queen Charlotte Islands
southeastward, approximately one third of the way down
Vancouver Island and reaching almost 100 nmi (185 km)
offshore. This “habitat patch” is also apparent in the annual
blue whale prediction. The annual humpback whale predic-
tion includes large areas of the on-shelf region from the
outer coast of both Vancouver Island and the Queen Char-
lotte Islands to the protected waters on the inside of these is-
lands.

The annual sperm whale predictions (Fig. 7) highlight the
difference between the sexes, with the males showing a
much tighter distribution along the shelf and in the same
habitat patch as identified for the baleen species. The predic-
tion for female sperm whales is much more diffuse, although
a stronger signal is evident in the habitat patch described
above.

The seasonal predictions (Figs. 8–12) show monthly prob-
ability plots overlaid with the monthly positional data for the

species. These predictions not only contain an expected
monthly effect but also generally appear to refine the annual
predictions, showing that the predicted probabilities shift as
a function of month. This is most apparent with fin and
humpback whales (Figs. 9 and 10), which have the highest
probability of being on-shelf and in sheltered waters in the
middle months (June–August for humpback whales and July
and August for fin whales). Both sei (Fig. 8) and fin whales
show an increasing probability of occurrence in the habitat
patch off Vancouver Island.

Visual inspection of the correlations between the predic-
tions and the data for sei whales shows good correlation un-
til August, when the model fails to capture an apparent
offshore movement of sei whales. The fin whale model
agrees well with kills recorded in Dixon Entrance (north of
the Queen Charlotte Islands) but only predicts whales in
Hecate Strait in August. The seasonal humpback whale
model performs well in July and August, but the month of
May is poorly represented.

Seasonal predictions show a dramatic difference between
male and female sperm whales (Figs. 11 and 12). Male
sperm whale distributions appear to be similar to those of
the baleen species, while female probabilities are distributed
much more diffusely. The seasonal model for male sperm
whales captures the majority of the data points in all months.
The model predicts that female sperm whales should be vir-
tually absent after May, which does not reflect the small
numbers that were killed through September.

Model testing
The predictive efficiencies of the species models were de-

fined using classification tables. The cutoff values selected
consistently generated classification tables where the number
of presence cells was predicted with much less efficiency
than the absences. Overall monthly predictive efficiencies
ranged from 0.60 (humpback whales) to 0.82 (male sperm
whales), while the overall annual efficiencies ranged from
0.58 (blue whales) to 0.79 (fin whales).

For each group, we also compared the annual probability
distributions generated by the “hot” (1983, 1987, 1992,
1994) and “other” predictor sets using a paired two-samplet
test (Zar 1996). The resulting predictions were significantly
different (p < 0.0001) in all cases. However, a qualitative
comparison of the probability plots generated by annual
models based on the “hot” and “other” data sets showed lit-
tle apparent difference (Gregr 2000).

Discussion

The annual models predicted that fin, sei, and male sperm
whales occurred, with near certainty, sometime over the
course of the summer along the entire shelf break and in a
large area extending 75–100 km beyond the shelf at the north
end of Vancouver Island. This offshore region stretches from
the continental shelf to approximately 100 nmi offshore and
ranges from Kyuquot Sound, just south of Brooks Peninsula,
to the northwest as far as the Dellwood Seamounts. Both the
annual and the monthly models predicted a high probability
of sei, fin, blue, and male sperm whales in this habitat patch,
with lower predicted use in this area by humpback and female
sperm whales. The monthly models served to capture some of
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the migratory movement of these species and provided pre-
dictions of seasonal peaks. Humpback and male sperm whales
had the most complicated models at both annual and monthly
time scales.

The apparent importance of the shelf break and the habitat
patch was persistent at both the annual and the monthly time
scales. The increased predicted probability in the southwest
corner of the study area corresponds to a group of seamounts
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Species Model RL
2 df

Sei slope + zClass + z + z2 + T + T 2 0.48 1495
0.021 0.275 0.182 0.005

Fin slope + zClass + z + z2 + S + S2 0.49 1495
0.027 0.147 0.284 0.029

Humpback slope + zClass + z + z2 0.23 1497
0.104 0.040 0.081

Blue + zClass + z + z2 + S + S2 0.25 1501
0.098 0.128 0.026

Male sperm slope + zClass + z + z2 + T + T 2 + S + S2 0.38 1493
0.172 0.084 0.097 0.008 0.020

Female sperm slope + z + z2 0.25 1499
0.010 0.235

Note: The contribution of the terms to theRL
2 is shown below each term. Degrees of freedom are based on the

number of grid cells in the analysis (n = 1507) and are uncorrected for spatial autocorrelation. The coefficients for the
regression equations are shown in the Appendix.

Table 2. Annual regression models showing model terms (selected using stepwise forward regression),
total variance explained (RL

2 ), and degrees of freedom.

Species Model RL
2 df

Sei m + slope + zClass + z + z2 + m/T + S + S2 0.39 9006
0.116 0.012 0.147 0.098 0.009 0.010

Fin m + slope + zClass + z + z2 + T + S + S2 0.39 9011
0.025 0.016 0.085 0.162 0.002 0.011

Humpback m + slope + zClass + z + z2 + T + zClass/(S + S2) 0.24 9007
0.058 0.064 0.025 0.012 0.046 0.031

Male sperm m + slope + zClass + z + z2 + m/T + zClass/S 0.24 9005
0.004 0.098 0.048 0.055 0.004 0.032

Female sperm m slope + z + z2 S 0.30 9015
0.165 0.006 0.132 0.001

Note: The contribution of the terms to theRL
2 is shown below each term. A slash denotes an interaction between categorical and

continuous predictors. Degrees of freedom are based on the number of grid cells in the analysis (n = 9029) and are uncorrected for spatial
or temporal autocorrelation.

Table 3. Monthly regression models showing model terms (selected using stepwise forward regression), total variance ex-
plained (RL

2 ), and degrees of freedom.

Number of whales
Annual
(total grid cells = 1507)

Monthly
(total grid cells = 9029)

Species Total
Within
150 nmi

Presence
cells

Mean
Pr(Wh)

Presence
cells

Mean
Pr(Wh)

Sei 2716 2560 574 0.38 1004 0.11
Fin 3233 2613 680 0.45 1409 0.16
Humpback 598 433 212 0.14 288 0.03
Blue 249 146 118 0.08 138 0.02
Male sperm 1800 522 0.35 909 0.10
Female sperm 612 234 0.16 263 0.03

Note: Pr(Wh) is the mean probability of finding a whale in a grid cell. Pr(Wh) reflects the proportion of
grid cells that contained whale kills. Monthly grid cells were created by extending the study grid across six
months (May–October). Cells where depth was >10 m and salinity <30.0 ppt were removed. Whales were
distributed by month and location of capture. The coefficients for the regression equations are shown in the
Appendix.

Table 1. Comparison of sample sizes and probability of whale occurrence (Pr(Wh)) for each spe-
cies at annual and monthly time scales.
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well offshore and is largely a function of the depth and slope
predictors. These results support the trends observed in the
preliminary analysis, confirming that in almost all cases,
each of the six predictor variables played some role in defin-
ing the probability distribution of these species.

A number of the predictors that we used have been exam-
ined in previous studies, and the results are broadly similar.
Bottom floor topography appears to be correlated with odon-
tocetes (Hui 1985; Tynan 1996) and fin whales (Woodley
and Gaskin 1996), while depth and temperature have been
used as predictors of right whale distributions (Moses and
Finn 1997). Temperature has also been cited as affecting the
distribution of baleen species (Nasu 1966; Woodley and
Gaskin 1996) and sperm whales (Smith and Whitehead
1993). However, the majority of work relates cetacean distri-
butions to chlorophyll concentrations (i.e., Smith et al. 1986;
Jaquet et al. 1996). Given that the relative importance of the
predictors to each species is complicated by scale and by the
building of the predictive models, a detailed interpretation of
these results is beyond the scope of this paper. Further dis-

cussion is limited to the predictive power of our models and
to the broad ecological implications of our predictions.

Sei whales
The annual model predicted a high probability for sei

whales to be in deep water, while the monthly model showed
strong seasonal effects. This is supported by the significant
effects of depth class and month on the presence–absence of
this species. The large amount of variance explained by the
sei whale model suggests that this species may be closely
tied to oceanographic conditions.

Fin whales
The annual habitat prediction for fin whales is consistent

with Pike and MacAskie’s (1969) observation that this spe-
cies occurred mostly offshore but frequently entered exposed
coastal seas such as Hecate Strait and Queen Charlotte
Sound. The monthly predictions show how the movement of
fin whales into these coastal seas is a seasonal effect (stron-
gest in July and August). These monthly predictions support
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(a) (b)

(c) (d)

Fig. 5. Annual probability predictions and kill locations for (a andb) sei whales (n = 2716) and (c andd) fin whales (n = 3233). Dark areas
represent a high probability of whale occurrence and white areas represent a low probability. The circle shows the 150-nmi (275-km) search
area used to select the data for the regression analysis.
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the interpretation that fin whales returned to feeding grounds
off the British Columbia coast (Gregr et al. 2000). The
amount of variance explained rivals that of the sei whale
models, implying that the historic distributions of fin whales
also had a close relationship with the predictor variables.
The similarity in monthly predictions between the fin and
sei whale models suggests that these two species respond in
a similar way to the predictor variables. However, the inabil-
ity of the monthly fin whale model to capture much of the
on-shelf data suggests that either the contribution of the in-
dividual predictors is unequal or a significant predictor is
missing from the model.

Humpback whales
The strong affinity of humpback whales for coastal waters

is confirmed by the annual model. The model predictions are
consistent with reports of humpback whales in the Strait of
Georgia and Barkley Sound (Webb 1988) and show a high
probability of humpback whales being over the entire shelf
area, including enclosed straits and inlets.

The strong interaction between depth class and salinity

could be interpreted as a change in the behaviour of these
animals as they move from deep water (migration), where
they are relatively indifferent to salinity, to slope and shelf
areas (feeding), where higher salinity may be an indication
of prey abundance.

The humpback whale models (annual and monthly) ex-
plain less variance than the sei or fin whale models. This is
also evident from the probability plots, which show lower
probabilities for humpback whales. The low correlation co-
efficients of these humpback whale models are due in part to
the small sample of whales killed and the partitioning of this
sample into a monthly time scale. However, it may also im-
ply that the association with the predictor variables is rela-
tively weak and that other factors are better predictors of
humpback whale habitat.

Blue whales
Given the small sample size available for this species, it is

not surprising that the annual prediction shows little con-
trast. However, the fact that the model predicts blue whale
use of the same habitat patch as sei and fin whales may be

(a) (b)

(c) (d)

Fig. 6. Annual probability predictions and kill locations for (a andb) blue whales (n = 249) and (c andd) humpback whales (n = 598).
Dark areas represent a high probability of whale occurrence and white areas represent a low probability. The circle shows the 150-nmi
(275-km) search area used to select the data for the regression analysis.
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significant. Given that blue whales are believed to migrate
away from coastlines (Mizroch et al. 1984) and feed in east-
ern Pacific coastal areas (Fiedler et al. 1998), it is possible
that the smaller, younger blue whales that dominated the
Coal Harbour catch (Gregr et al. 2000) frequented the habi-
tat patch off northern Vancouver Island. This is indirectly
supported by our preliminary analysis, which showed the
mean depth for this species to be less than that observed for
the fin and sei whales.

Sperm whales
The annual model predicted a narrower distribution for

male sperm whales than for the baleen species and one that
is more closely associated with the shelf break. This is con-
sistent with the strong correlation between slope and male
sperm whale presence. An apparent month effect on the pre-
ferred depth of male sperm whales shows movement into
shallower water after May. This is supported by the spatial
shift evident in the monthly probability plot.

The annual probability plot for female sperm whales pre-
dicts a virtually uniform distribution throughout the deeper

waters, although the habitat patch is shown with a slightly
higher probability. The monthly predictions serve only to
distribute this annual prediction between April and May.
This is consistent with the observed effects of depth class
and month on the presence of female sperm whales. The
lack of temperature and salinity predictors in the annual
model and the inclusion of a simple, linear salinity compo-
nent in the monthly model explain why there is little vari-
ance in the predictions. The fact that the monthly female
sperm whale model, fitted with a sample one third the size
of the male model, explained more of the variance than did
the monthly male model (0.30 versus 0.24) is likely due to
the limited temporal distribution of female catches.

The model suggests that female sperm whales were rela-
tively uninterested in their surrounding oceanography and
supports the hypothesis proposed in Gregr et al. (2000) that
sperm whale mating occurred in British Columbia waters
during April and May. Given that males are spatially segre-
gated by size, with larger males at higher latitudes (Best
1979), a reasonable hypothesis is that breeding schools
travel north to increase their encounter rates with stronger,
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(a) (b)

(c) (d)

Fig. 7. Annual probability predictions and kill locations for (a and b) male sperm whales (n = 1800) and (c and d) female sperm
whales (n = 612). Dark areas represent a high probability of whale occurrence and white areas represent a low probability. The circle
shows the 150-nmi (275-km) search area used to select the data for the regression analysis.
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more mature males. Alternatively, given that the waters off
Vancouver Island represent the northern boundary for
female sperm whales (Reeves and Whitehead 1997), which
apparently exhibit a strong degree of natal philopatry
(Lyrholm 1998), this area may represent the breeding
ground for a subpopulation of females. This mating hypothe-

sis would help explain the presence of small numbers of
females in the catch during all months.

Underlying processes
The processes responsible for the patterns that we ob-

served are likely a function of oceanographic effects, which
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(f)

(e).

(d)

(c)

(b)

(a)

Fig. 8. Sei whale monthly probability predictions overlaid with the positions of whale kills: (a) April (n = 67); (b) May (359);
(c) June (613); (d) July (1056); (e) August (495); (f) September (126). Dark areas represent a high probability of whale occurrence and
white areas represent a low probability.
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result in enhanced productivity and (or) entrainment of prey,
primarily zooplankton. Given the temporal (and spatial) lags
between primary production and the development of grazing
zooplankton populations, conditions that concentrate plank-
ton may create a more suitable whale habitat than conditions
that promote plankton growth.

A number of currents converge at the north end of Van-

couver Island, including the Vancouver Island Coastal Cur-
rent, which brings nutrient-rich, upwelled waters to the re-
gion from the southeast (Thomson 1981). This region is a
highly productive area during the summer months and sup-
ports well-nourished resident zooplankton populations from
spring through the fall (Mackas and Galbraith 1992). Sum-
mer circulations appear to cause a high washout rate of sur-

(f)

(e)

(d)

(c)

(b)

(a)

Fig. 9. Fin whale monthly probability predictions overlaid with the positions of whale kills: (a) April (n = 244); (b) May (404);
(c) June (620); (d) July (727); (e) August (828); (f) September (410). Dark areas represent a high probability of whale occurrence and
white areas represent a low probability.
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face zooplankton from on-shelf waters into offshore areas
(Mackas 1992), where summer circulations are variable due
to the bifurcation of the Kuroshio Current into the Alaskan
and Californian currents (Thomson 1981). Thus, oceano-
graphic conditions may combine to create an environment
where nearshore primary production is translated into zoo-
plankton concentrations offshore. The habitats identified by

our study may be characterized by mesoscale fronts and
eddies, produced by a number of converging currents, en-
training both primary production and zooplankton.

The distributions of sperm whales, which feed primarily
on cephalopods (Kawakami 1980), are unlikely to be influ-
enced by the distribution of zooplankton. Rather, the data
suggest that male sperm whale occurence is more closely re-

(f)

(e)

(d)

(c)

(b)

(a)

Fig. 10. Humpback whale monthly probability predictions overlaid with the positions of whale kills: (a) April (n = 6); (b) May (54);
(c) June (133); (d) July (162); (e) August (170); (f) September (73). Dark areas represent a high probability of whale occurrence and
white areas represent a low probability.
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lated to depth and slope. Sperm whale associations with
bottom topography have also been observed in the tropical
Pacific (Jaquet and Whitehead 1999) and in the northeast
Atlantic (Whitehead et al. 1992). The habitat patch proposed
off northern Vancouver Island overlays the Dellwood Sea-
mounts, a region of high relief. This would explain why the

critical habitat predicted for male sperm whales overlaps
with that predicted for the baleen species.

Model test results
Predictive efficiencies, calculated using classification ta-

bles, are most commonly applied to dependent data that have

(f)

(e)

(d)

(c)

(b)

(a)

Fig. 11. Male sperm whale monthly probability predictions overlaid with the positions of whale kills: (a) April (n = 226); (b) May
(402); (c) June (363); (d) July (388); (e) August (438); (f) September (340). Dark areas represent a high probability of whale occur-
rence and white areas represent a low probability.
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no spatial component (i.e., probability of disease, probability
of failure, etc.). Although we are unaware of anyone using
this method to evaluate dependent data with spatial charac-
teristics, we are also unaware of any more suitable tests of
spatial predictions. Experimenting with different values for
the cutoff (i.e., the value that classified a prediction as a pos-

itive or a negative outcome) showed that the calculated pre-
dictive efficiency was highly sensitive to this value. The
classification tables were also sensitive to the spatial distri-
bution of the data, since the “presence” cells were highly
autocorrelated. Therefore, the composition of the (randomly
generated) prediction and testing samples strongly affected

(f)

(e)

(d)

(c)

(b)

(a)

Fig. 12. Female sperm whale monthly probability predictions overlaid with the positions of whale kills: (a) April (n = 186); (b) May
(328); (c) June (88); (d) July (12); (e) August (21); (f) September (4). Dark areas represent a high probability of whale occurrence and
white areas represent a low probability.
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the results. These results highlight the need for spatially ex-
plicit quantitative methods to test the spatial predictions of
this and other models of habitat.

The sensitivity of our model predictions to the oceano-
graphic data showed that while the different predictor data
sets (i.e., all, hot, and other) generated statistically different
predictions, the resulting probability plots were almost iden-
tical. This can be interpreted in a number of ways.

The simplest explanation is that the sample size (19 375
grid cells) is so large that any small differences between the
two predictions would be statistically significant. The valid-
ity of the test is also a concern, since the grid cells are likely
autocorrelated, violating a key assumption of thet test. This
highlights the need for more sophisticated statistical meth-
ods and procedures to ensure that statistical methods are cor-
rectly applied and that spurious statistical significance is not
interpreted as biological significance.

However, if we assume that El Niño events do change the
spatial location of critical habitats, it may be that the rela-
tionships represented by our habitat models do not accu-
rately capture the response to variations in temperature. It
may also be that our study is at the wrong spatial scale to
detect a shift in habitat as a function of these predictors. A
more detailed oceanographic model, perhaps containing
depth profiles, combined with concurrent biological data,
would address this and other similar questions about the rel-
ative importance of all of the predictor variables.

Model biases
The habitat probability plots depict the combination of

predictors that best describe where the whales were found
within the study area. These “oceanographic recipes” can be
considered descriptions of suitable, or perhaps even critical,
habitat for these species. However, a number of complicat-
ing factors — specifically, data independence, whaling ef-
fort, TIN interpolation, and the lack of concurrency between
the dependent and independent variables — must be consid-
ered when interpreting the habitat plots.

Data independence
Although we did not directly address the issues of auto-

correlation (the dependence of a particular measurement on
its immediate neighbors, either in space or in time) or
colinearity (the effects of one variable on another), the con-
sequences of these effects for our analysis should be consid-
ered. Autocorrelation in the dependent data can be assumed
to exist at both very fine and very coarse space–time scales
due to certain accepted behaviour patterns. For example, the
well-documented migration of baleen species implies tempo-
ral autocorrelation at monthly time scales and spatial
autocorrelation at scales on the order of hundreds or even
thousands of kilometres. Similarly, the congregation of
whales in areas of high food abundance implies strong spa-
tial and temporal autocorrelation on a scale of metres and
minutes. Autocorrelation at these finer scales is further im-
plied for all species in our study by the biological data,
which provide numerous examples of multiple kills of a par-
ticular species at the same time and location. Thus, the com-
monly asked question about point data, whether or not the
observed distribution patterns are random, is of little interest
in our case. Rather, the two questions that need answering

are at what temporal and spatial scales are whales correlated
and what are the processes responsible? While we do not at-
tempt to answer the first question, the question of processes
is central to our study.

The lack of independence, both within and among predic-
tors, complicates the interpretation of our habitat models.
Since our sampling unit is a grid cell, spatial autocorrelation
will exist for all the independent variables that we consid-
ered (i.e., the value at a particular grid cell will not be inde-
pendent of the values of its neighbours). While methods
exist to extract the spatial scales of these autocorrelations
(e.g., variograms), it is not clear how identifying the spatial
scales of these autocorrelations would help to identify the
processes and relationships of interest. Similarly, while slope
and depth may be correlated to some degree, quantifying
this relationship using some form of categorical analysis
(i.e., principal components analysis) does not provide any
additional insight into what defines whale habitat and may,
in fact, complicate the analysis by introducing abstract com-
ponent terms.

We accept that there is a significant lack of independence
in both the dependent and the predictor data sets, and we
have not attempted to correct for these effects. Conse-
quently, the degrees of freedom reported for the results are
artificially high. To some extent, this lack of independence is
offset by the large sample size and the use of generalized
linear models and is more a cause for debating the relative
strength and scale of the proposed processes rather than a
reason for dismissing the hypotheses out of hand.

Effort assumption
The assumption of equal whaling effort throughout the

150-nmi search area warrants detailed consideration, as it is
central to the analysis. Based on information available on
the British Columbia coastal whaling industry, whalers trav-
eled up to 200 nmi from shore and remained at sea for sev-
eral days (Pike and MacAskie 1969; Webb 1988). Captured
whales were marked and floated for later recovery while the
vessels pursued additional animals. Evidence for the annual
movement of whaling effort further and further offshore was
provided by Gregr et al. (2000) who showed that the annual
mean distance from shore for animals killed changed signifi-
cantly between 1948 and 1967. Thus, the whalers clearly
had to move through areas that were closer to Coal Harbour
with greater frequency than through areas further away. It is
therefore unlikely that equal effort was expended on all 1507
grid cells within the 150-nmi area. If the monthly time scale
is included, the likelihood of equal effort over all 9029
monthly grid cells becomes very small indeed. Given that
the change in effort with distance could be estimated, as
could the relative monthly effort, it is theoretically possible
to develop a technique for weighting the contribution of indi-
vidual cells based on time and space. However, this additional
research and analysis was beyond the scope of our study.

Fortunately, the behaviour of the whalers likely mitigated
the effect of unequal effort in both time and space. Given the
practices described above, it is likely that animals of any
species encountered in nearshore areas were killed prior to
the whalers proceeding further offshore. This effectively
eliminated any significant monthly bias towards particular
species, leaving legal lengths as the only remaining bias
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(Gregr et al. 2000). Spatially, it can be assumed that the
whalers operated with a fairly detailed knowledge of where
whales were commonly found. The whaling captains operat-
ing from Coal Harbour had years of experience to draw
upon. They were also provided with incentives to whale co-
operatively and in later years relied on aerial reconnaissance
(Webb 1988). Thus, it is likely that regions with few kills
did in fact contain very few whales, even though they may
not have been heavily searched.

Any effects of nonrandom sampling on our results would
bias the predictions towards certain values of the predictor
variables or cause the contributions of the individual predic-
tors to the overall model fit to be incorrectly calculated. This
is most apparent at the monthly time scale, where it can
safely be assumed that equal effort was not expended in all
months. While this monthly effort bias would be a serious
concern if our study addressed animal abundance, limiting
our interest to animal occurrence reduces its effects. Given
the nature of the data, it is unlikely that this bias could be
disentangled from the real process of whale migration.

Nonrandom spatial sampling (i.e., the preferential search-
ing by whalers of some areas over others) would bias our
habitat predictions towards the oceanographic conditions
found in the more commonly searched areas. Since cells
closer to Coal Harbour were searched with greater effort
than those at a distance, by treating all cells equally, our pre-
dictions are biased to some degree towards oceanographic
conditions at the more distant cells.

TIN interpolation
TINs are a standard method of representing point data.

They are built by connecting data points into a series of tri-
angles based on Delauney triangulation (Burrough and
McDonnell 1998). The triangles are then used to interpolate
missing values. The greater the density of point data, the
smaller the triangles that are created. The accuracy of the in-
terpolation increases with the density of the point data. Inter-
polations done across larger geographic areas (where point
data are sparse) may fail to capture smaller scale regions of
variation.

In our study, additional biases were likely introduced by
edge effects and extrapolation. The outermost triangles of
the TIN surface were artifacts of masking, which set the re-
gion outside the study area to zero. This made the interpo-
lated predictor values inaccurate at the edges. In addition, a
number of areas in the study area (British Columbia coast)
required the predictors to be extrapolated outside the range
used to define the models (i.e., within the 150-nmi radius).
These extrapolations represent another type of edge effect: at
the boundaries of the sampled data.

Concurrency of biological and oceanographic data
The whaling data (1948–1967) did not overlap temporally

with the independent oceanographic data (pooled over the
years 1980–1998). Although it is clearly more desirable to
have dependent and independent measurements made con-
currently, the spatial coverage of the oceanographic point
data for years prior to 1967 is very poor. We therefore chose
data density over data currency.

We have shown that this lack of temporal currency be-
tween the dependent and independent variables has statisti-

cally significant effects on the habitat predictions using a
10-km grid size. However, at larger spatial scales, we would
expect this significance to decrease as localized differences
in temperature are pooled and averaged. A more sophisti-
cated oceanographic model is needed to explore how scale
mediates the effects of changes in ocean temperature and sa-
linity.

Despite the foregoing, areas of predicted high probability
likely represent some aspect of whale habitat. The potential
problems associated with the biases discussed only raise the
question of the relative importance of the habitats described
and do not invalidate our findings. While we may debate
whether the habitats described here are “critical” or “impor-
tant” or simply “suitable,” the areas identified should be ac-
knowledged as having some level of importance to these
species.

Future work
Our habitat predictions could be refined through field

studies and through a multiscale analysis of the predictor
effects at other combinations of spatial and temporal scales.
Field tests of the habitat predictions would provide some es-
sential validation of the predictions, while tracking and long-
term monitoring of these relatively depleted populations
would provide contemporaneous sighting and predictor data.
Conducting multiscale analyses would provide valuable in-
formation on the scale and relative strength of the predictors,
leading to a better understanding of the scales over which
the proposed processes operate. Other predictors (i.e., pri-
mary production, depth of mixed layer, distance to frontal
features, etc.) should also be considered if they can be con-
sistently collected concurrently with the sighting data. The
fit of the model could also be improved by addressing the
problems of searching effort and autocorrelation. Cells in the
study grid could be weighted based on assumptions about
the distribution of effort, while an analysis of the correla-
tions within and between the variables would improve the
independence of the grid cells. Applying the approach to a
larger geographic area, either by adding oceanographic data
from California, Washington, Oregon, and Alaska or by con-
structing new models using positional data from other whale
fisheries in the North Pacific (i.e., the pelagic fishery), would
provide valuable comparisons of scale and process.

Our work extends previous studies that have been limited
to correlation analysis between whale species and various
oceanographic features. We treated a suite of independent
oceanographic measures as predictor variables in a general-
ized linear model and compared the relationships at mean
annual and monthly time scales. Our study shows that, even
in the presence of nontrivial spatial and temporal auto-
correlation, unequal sampling effort, and a lack of
concurrency between the independent and dependent vari-
ables, reasonable hypotheses can be generated using this
type of retrospective analysis. Our methods provide a novel
approach for generating habitat predictions based on mea-
surements of the physical environment. The software that we
developed facilitates the integration of diverse spatial data
sets and provides a powerful framework for exploring and
presenting the predictions of critical habitat. The ability to
quickly generate and view predictions at various spatial and
temporal scales is useful to the investigation of scale effects
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and the linkages between pattern and process. Our study can
therefore be considered as both a preliminary set of habitat
predictions for five whale species that frequent British Co-
lumbian waters and a method for constructing and exploring
habitat models.
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Appendix. Regression coefficients

Coefficients are shown for the annual and monthly models. The coefficients are for Poisson regressions. To convert to proba-
bilities, the result is transformed according to

(A1) Pr(Wh) = 1 – e–u

whereu is the Poisson prediction.
The categorical variables slope, depth class, and month have a coefficient for each level, with the value for the first level =

0 (not tabulated). The coefficients for the continuous predictors are multiplied by the predictor value. Where interactions be-
tween the categorical and continuous predictors occur, there is a continuous coefficient for each level of the categorical pre-
dictor.

SW FW HW BW SPW-M SPW-F

intercept –1.98 –1660 –1.59 –2340 –2430 –8.03
slope1 –0.35 –0.308 –0.00195 –0.114 –0.297
slope2 –0.934 –0.407 0.488 –0.077 –0.138
slope3 –1.59 –0.741 0.347 –0.16 –0.61
slope4 –1.12 –0.398 0.773 0.768 –0.388
slope5 –0.931 –0.7 0.804 0.372 –1.15
slope6 –0.851 –0.371 0.679 0.817 –0.584
dclass2 1.91 0.336 0.073 2.78 2.1
dclass3 2.64 1.15 1.22 3.52 2.84
depth –0.00561 –0.00498 –0.00279 –0.00382 –0.00208 –0.0074
temp –0.516 0.459
temp2 0.0226 –0.022
salt 105 149 154
salt2 –1.67 –2.36 –2.43

Note: SW, sei whale; FW, fin whale; HW, humpback whale; BW, blue whale; SPW-M, male sperm whale; SPW-F,
female sperm whale.

Table A1. Annual regression model coefficients for whale species.
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SWa FW HWb SPW-Ma,b SPW-F

intercept –505 –877 –1310 –28.9 –21.2
month5 8.36 0.548 2.1 –5.28 0.558
month6 7.82 1.23 3.55 –5.42 –0.991
month7 6.11 1.6 4.12 –0.532 –2.71
month8 –4.18 1.85 4.18 –1.09 –2.12
month9 3.63 1.17 3.38 –1.64 –3.81
slope1 –0.296 –0.294 –0.191 –0.19 –0.313
slope2 –0.879 –0.38 0.355 –0.171 –0.142
slope3 –1.54 –0.717 0.311 –0.222 –0.632
slope4 –1.07 –0.327 0.758 0.76 –0.41
slope5 –0.809 –0.651 0.689 0.293 –1.15
slope6 –0.809 –0.355 0.479 0.741 –0.554
dclass2 1.99 0.398 –104 40.5 –0.0072
dclass3 2.66 1.15 –785 70.6 0
depth –0.00535 –0.00506 –0.00231 –0.00243
salt 31.8 55.8 80.7 1.01 0.385

89 –0.198
134 –1.12

salt2 –0.514 –0.89 –1.25
–1.41
–2.13

temp 0.717 –0.172 –0.299 –0.924
–0.0662 –0.239
0.0425 –0.206
0.194 –0.525
0.77 –0.44
0.198 –0.417

Note: SW, sei whale; FW, fin whale; HW, humpback whale; SPW-M, male sperm whale; SPW-F, female
sperm whale.

aInteraction between temperature and month.
bInteraction between salinity and depth class.

Table A2. Monthly regression model coefficients for whale species.
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