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MODELING SPECIES-HABITAT RELATIONSHIPS IN THE MARINE ENVIRONMENT 
A COMMENT ON HAMAZAKI (2002) 

There is a growing interest in the development of spatial models to predict marine animal 
distributions. However there are considerable theoretical and methodological hurdles to 
overcome. It is crucial that these issues be discussed plainly and openly so that we may learn 
from each other, and avoid common pitfalls. Hamazaki (2002) developed predictions of 
cetacean habitats in the mid-western North Atlantic using logistic regression models. While 
the work was impressive in scope-covering 13 species and applying a number of different 
analyses-it overlooked key methodological issues, casting doubt on the conclusions. 

As is common with the development of species-habitat relationships, Hamazaki used 
a grid to divide the ocean into cells, making these the unit of observation. A consequence of 
this approach is that the resulting sample ( i e . ,  collection of grid cells) becomes inflated in 
size, and highly autocorrelated. However these effects were ignored, and results were 
presented as “highly significant” (table 2) based on a Chi-square test, in violation of the 
necessary independence assumption. Equally egregious was the development of logistic 
models with no justification for the selection of predictor variables. Understanding the 
relationships in one’s data is accepted as fundamental to the development of any ecological 
model (e.g., Hilborn and Mengel 1997). Hamazaki’s selection of predictor variables appears 
to be based solely on an automated, stepwise selection approach. This is of concern because, 
in addition to the lack of independence among sample units, the stepwise approach is further 
compromised by an artificially large sample size. Although choosing predictors based on 
data availability is often unavoidable, their inclusion, and the selection of quadratic and 
interaction terms still requires justification. Selected predictors should subsequently be 
tested for colinearity, and the interactions between them explored in detail to ensure that all 
hypothesized statistical relationships are on a reasonable ecological footing (e.g., Gregr and 
Trites 2001, Maury ef a/. 2001). The potential effects of multicolinearity can be significant 
(Zar 1996), and should not be ignored. 

I am also concerned about the confidence expressed in the results, which was based on 
“effective classification rates” (which I assume were derived from classification tables). While 
this approach is not unreasonable, these tests are sensitive to the threshold values selected. 
Some discussion of the threshold values and their effects on the results would, therefore, have 
been valuable, particularly since this approach was subsequently used to evaluate what was 
termed a “sensitivity analysis” across spatial scales. In this analysis, Hamazaki generated 
a series of regressions using increasing grid cell size ( i e . ,  increasing spatial scale), and 
evaluated their performance as predictive tools using classification tables. However 
Hamazaki’s conclusion that “96-km squares and possibly larger . . . are sufficient for pre- 
diction of oceanwide cetacean habitat” is on a poor foundation without a discussion of the 
threshold values used, a rationale for their application, and the behavior of the predictor 
variables at different spatial scales. An exploration of how the predictor variables behaved as 
the spatial scale was increased-perhaps beyond the scale of autocorrelation-would have 
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provided more insight into what defines marine mammal habitat, and also come closer to 
a true sensitivity analysis. 

Predictive models of species-habitat relationships in the marine environment (Moses and 
Flinn 1997, Gregr and Trites 2001, Guinet et al. 2001, Hamazaki 2002) have, to date, all 
been done on rasters (ie., grids). As discussed in Gregr and Trites (2001), this shifts the 
sampling unit from species observations to the grid cell. While this is convenient for 
analytical methods such as regression analysis, it also creates a data set that is zero-inflated 
(contains artificially high number of zero values), exhibits strong spatial autocorrelation, and 
is often effort biased. 

One problem introduced by the inflated data set is “the problem of large sample size.” 
As pointed out by Hays (1963): “Virtually any study can be made to show [statistically] 
significant results if one uses enough subjects regardless of how nonsensical the content may 
be.” This effect is also recognized by Tabachnick and Fidell (2001) who describe the danger 
of having too much power, suggesting that rejection of the null hypothesis may be trivial if 
the sample size is large enough to reveal any difference whatsoever. The effect of large sample 
sizes in null hypothesis significance testing (NHST) appears well understood in the social 
sciences, although dealing with it is not (see Germano 1999). 

The creation of an inflated sample size is not the only problem introduced by rasterizing 
the data. A related issue is the consequent spatial autocorrelation of the grid cells. Spatial 
autocorrelation exacerbates the pre-existing problem of non-independence among the 
predictor variables by adding additional structure to the data that cannot be addressed in 
a simple, logistic regression. In addition, the raster sample is unlikely to conform to any 
standard parametric distribution, casting doubt on the use of parametric statistics. This is 
problematic for both the selection of regression parameters and for subsequent significance 
tests. 

Fortunately, the independence of predictors can be tested (e.g. ,  Menard 1995), and the 
extent of spatial autocorrelation can be measured using variograms (e.g. ,  Manly 2000). 
Eventually, we shall have to start including spatial correlation structures in our models to 
account for the autocorrelation. In the meantime, it is crucial that we recognize the problems 
we introduce during data rasteritation, and moderate the confidence we have in our results 
accordingly. 

While the fit of species-habitat models has been tested with classification tables, this 
method is extremely sensitive to the arbitrarily selected threshold value (the value at which 
the continuous probability distribution-generated by a logistic regression-is turned into 
presence-absence counts needed for classification analysis). Since the value fundamentally 
impacts the results, this test is considerably less than ideal. Improved methods for testing 
the fit of spatial models are urgently needed. 

Ultimately, we are interested in the processes which drive the patterns that we see. 
However “because we are so clever at devising explanations of what we see, we may think we 
understand the system when we have not even observed it correctly” (Wiens 1989). We 
should, therefore, be cautious when interpreting the results of our modeling efforts, and be 
sure to consider a range of alternative interpretations. This is particularly true since the 
issues described herein are further compounded by the effects of scale, the discussion of 
which is well beyond the scope of this letter. In light of these issues, I think it is clear that 
our progress towards meaningful descriptions of marine mammal habitat will be enhanced if 
we share and discuss what we don’t know, in addition to what we have learned. 
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