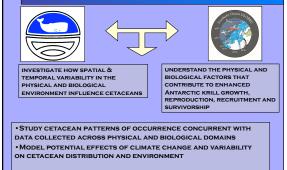
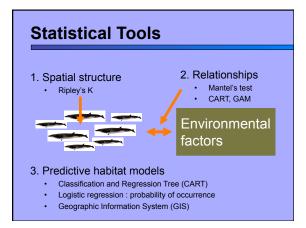
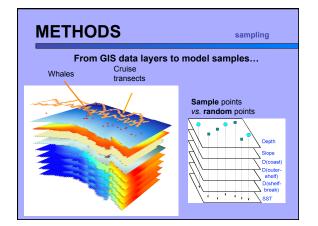
SPATIAL MODELS OF **ANTARCTIC WHALE DISTRIBUTION** IN RELATION TO PREY AND **OCEANOGRAPHIC PROCESSES:** CART, GAM, AND MANTEL'S TESTS


ACKNOWLEDGEMENTS PAT HALPIN NICHOLAS SCHOOL OF THE

QUICK OUTLINE


- RESEARCH OBJECTIVES & HYPOTHESES
 CETACEAN & ENVIRONMENTAL DATA
 ANALYTICAL TOOLS AND METHODS
 CART & GAM
- RESULTS
 CETACEANECOSYSTEM RELATIONSHIPS
 SPATIALLY-EXPLICIT ANALYSIS
 MANTEL'S TEST
- LOOKING AHEAD
 HYPOTHESES
 DATA

IWC-SO GLOBEC COLLABORATION


OBJECTIVES

- QUANTIFY & DESCRIBE ECOLOGICAL **RELATIONSHIPS BETWEEN CETACEANS, PHYSICAL** AND BIOLOGICAL ENVIRONMENT
- PATTERNS OF WHALES IN RELATION TO PREY
 - PROVIDE A FOUNDATION FOR PREDICTIVE HABITAT
 - STUDY FORAGING BEHAVIOR & PATCH SELECTION AT THE

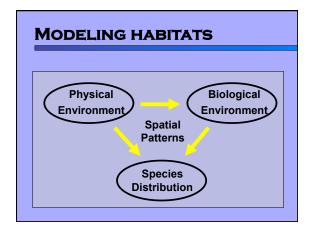
Cet	acea	an D)ata		
• VISUAL SIGHTINGS DATA FROM 6 CRUISES AROUND MARGUERITE BAY		D			
	2001	2001	2002	2002]
	GROUPS	WHALES	GROUPS	WHALES	
SPECIES					
SPECIES HUMPBACK	32	61	52	162	

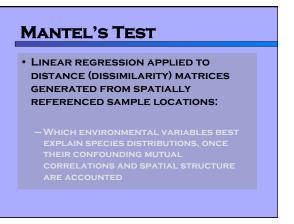
Environmental Data					
ENVIRONMENTAL VARIABLE		SAMPLING METHOD			
ACOUSTIC VOLUME BACKSCATTER 25-100M		CONTINUOUS ALONG TRACK AND INTERPOLATED FIELDS			
ACOUSTIC VOLUME BACKSCATTER 100-300M		CONTINUOUS ALONG TRACK AND INTERPOLATED FIELDS			
CHLOROPHYLL A		INTERPOLATED GRIDS FROM SAMPLING STATIONS			
BATHYMETRY		ETOPO MODIFIED BATHYMETRY GRID			
SLOPE OF BATHYMETRY		GRID CELLS CALCULATED FROM BATHYMETRY GRID			
WATER TEMPERATURE MAXIMUM BELOW 200M		INTERPOLATED GRIDS FROM SAMPLING STATIONS			
DISTANCE FROM COAST		STRAIGHT LINE DISTANCE GRIDS			
DISTANCE FROM ICE EDGE		STRAIGHT LINE DISTANCE GRIDS			
DISTANCE FROM HIGH SLOPE		STRAIGHT LINE DISTANCE GRIDS			
DISTANCE FROM INNER SHELF WATER		STRAIGHT LINE DISTANCE GRIDS FROM RECLASSIFIED DEEP TEMPERATURE MAX. (CHAPMAN ET AL)			

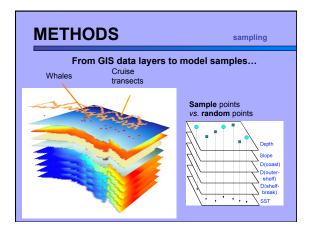
TREE-BASED	MODELS

- BINARY PARTITIONING METHOD FITTING DATA INTO INCREASINGLY HOMOGENEOUS SUB-GROUPS
 HIERARCHICAL
- HIERARCHICAL
- NON-PARAMETRIC, EXPLORATORY
 NO A PRIORI ASSUMPTIONS ABOUT RELATIONSHIPS
- USED AS A VARIABLE SELECTION TOOL TO IDENTIFY
 PREDICTOR VARIABLES FOR GAM;
 DEFERMINED BY WHETHER THE SEQUENTIAL
 - SPLITS REDUCE MODEL PREDICTIVE ERROR

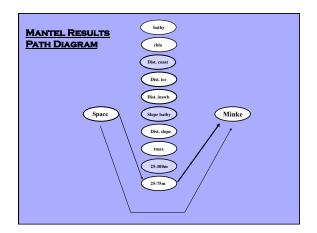
VARIABLE SELECTION FROM CART

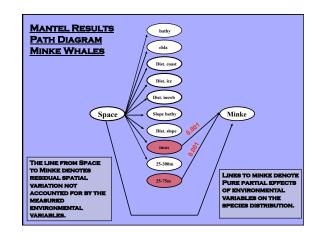

Rank at primary split	Environmental variable	Improvement to model score (split #)
1	Volume backscatter 25-100m (Av. 100) dB	249.38 (1)
2	Volume backscatter 100-300m (A.v. 300) dB	203.72 (1)
3	Slope of bathymetry	103.47 (1)
4	Distance to ice edge (Dist. ice)	97.42 (1)
5	Distance to inner shelf water boundary (Dist.inswb)	89.41 (1)
6	Chlorophyll a concentration (chla)	102.51 (3)
7	Distance to Coast	132.77 (6)
8	Bathymetry	130.52 (6)

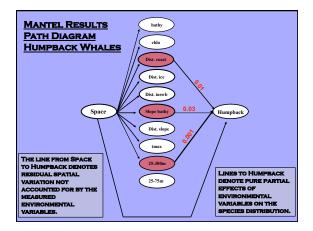

GENERALIZED ADDITIVE MODEL (GAM)


- EXPLORATORY TOOL TO ELUCIDATE FUNCTIONAL RELATIONSHIPS
- INTERPRET ECOLOGICAL INTERACTIONS BY FITTING NON-PARAMETRIC FUNCTIONS RELATIONSHIPS BETWEEN RESPONSE AND PREDICTOR VARIABLES

				Model Variable	Est. d.f.	Chi-sq.	p-value
	NA D			Full GAM			
БA		KESU	JLTS	25-100dB	4.028	44.686	<0.0000
				Chl_a	5.379	60.304	<0.0000
		1-	1	Bathymetric slope	7.577	42.513	<0.0000
GAM	Pr(>t)	R-sq.	% Dev.	100-300dB	5.924	19.001	0.0
			Exp.	Dist_lce	3.609	60.641	<0.0000
Full	0.01	0.408	63.1	Dist_INSWB	4.309	23.709	0.00
2001	0.001	0.977	97.7	2001 25-100dB	4.493	21 792	0.00
	1	1		Chi a	4.493	21.792	0.00
2002	0.003	0.436	74.1	Bathymetric slope	<0.00001	18 142	0.9
				100-300dB	<0.00001	30.0	0.0
				Dist Ice	5.035	24 614	0.00
				Dist_INSWB	4.526	17.931	0.0
				2002			
				25-100dB	4.763	42.09	<0.0000
				Chi_a	5.571	48.395	<0.0000
				Bathymetric slope	6.756	35.441	<0.0000
				100-300dB	2.054	15.909	0.0
				Dist_Ice	0.7126	12.41	0.00
				Dist INSWB	1.897	20.578	0.0


GAM RESULTS	WHALE SIGHTINGS IN RELATION TO ZOOPLANKTON VOLUME BACKSCATTER





	minke (y)	Space	Pyx/space	Pyx/**
Minke		-0.075(0.983)		
Tmax	02528	0.329(0.001)	0.197(0.001)	0.187(0.001)
Slope.bathy	01744	0.196(0.002)	-0.095(0.987)	-0.085(0.949)
Chla	0	0.217(0.001)	0.0127(0.340)	-0.017(0.503)
Dist.inswb	0	0.214(0.001)	-0.055(0.907)	-0.084(0.994)
Dist.slp	0	0.213(0.001)	-0.003(0.499)	0.028(0.194)
Bathy	0	0.149(0.014)	-0.010(0.502)	-0.001(0.482)
Dist.ice	-0.206	0.522(0.001)	0.124(0.006)	0.055(0.117)
Dist.coast	-0.263	0.392(0.001)	0.004(0.400)	-0.026(0.789)
X25-75db	0.346	-0.026(0.747)	0.187(0.002)	0.213(0.001)
X25-300db	0	0.100(0.007)	-0.053(0.897)	-0.091(0.991)

TAKE-HOME

- CONCURRENT MEASUREMENTS OF CETACEANS, ENVIRONMENTAL VARIABLES, AND PREY ALLOW FOR ECOLOGICAL INSIGHTS
- MULTIPLE TECHNIQUES TO TEST HYPOTHESES REGARDING SPECIES/ENVIRONMENT RELATIONSHIPS
 - FUNCTIONAL RESPONSE
- PURE SPATIALLY EXPLICIT RELATIONSHIPS
- THIS KNOWLEDGE ALLOWS FOR MODEL BUILDING
 HARITAT ENVELOPES
 - HABITAT ENVELOPES
 - SPECIES-SPECIFIC/INDIVIDUAL FORAGING BEHAVIOR

