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Prediction of species’ distributions is central to diverse applications in ecology, evolution and
conservation science. There is increasing electronic access to vast sets of occurrence records in
museums and herbaria, yet little effective guidance on how best to use this information in the
context of numerous approaches for modelling distributions. To meet this need, we compared 16
modelling methods over 226 species from 6 regions of the world, creating the most comprehensive
set of model comparisons to date. We used presence-only data to fit models, and independent
presence-absence data to evaluate the predictions. Along with well-established modelling methods
such as generalised additive models and GARP and BIOCLIM, we explored methods that either
have been developed recently or have rarely been applied to modelling species’ distributions. These
include machine-learning methods and community models, both of which have features that may
make them particularly well suited to noisy or sparse information, as is typical of species’
occurrence data. Presence-only data were effective for modelling species’ distributions for many
species and regions. The novel methods consistently outperformed more established methods. The
results of our analysis are promising for the use of data from museums and herbaria, especially as
methods suited to the noise inherent in such data improve.
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Detailed knowledge of species’ ecological and geo-

graphic distributions is fundamental for conservation

planning and forecasting (Ferrier 2002, Funk and

Richardson 2002, Rushton et al. 2004), and for under-

standing ecological and evolutionary determinants of

spatial patterns of biodiversity (Rosenzweg 1995, Brown

and Lomolino 1998, Ricklefs 2004, Graham et al. 2006).

However, occurrence data for the vast majority of species

are sparse, resulting in information about species dis-

tributions that is inadequate for many applications.

Species distribution models attempt to provide detailed

predictions of distributions by relating presence or

abundance of species to environmental predictors. As

such, distribution models have provided researchers with

an innovative tool to explore diverse questions in

ecology, evolution, and conservation. For example,

they have been used to study relationships between

environmental parameters and species richness (Mac

Nally and Fleishman 2004), characteristics and spatial

configuration of habitats that allow persistence of

species in landscapes (Araújo and Williams 2000, Ferrier

et al. 2002a, Scotts and Drielsma 2003), invasive

potential of non-native species (Peterson 2003, Goolsby

2004), species’ distributions in past (Hugall et al. 2002,

Peterson et al. 2004) or future climates (Bakkenes et al.

2002, Skov and Svenning 2004, Araújo et al. 2004,

Thomas et al. 2004, Thuiller et al. 2005), and ecological

and geographic differentiation of the distributions of

closely-related species (Cicero 2004, Graham et al.

2004b).

Most research on development of distribution model-

ling techniques has focused on creating models using

presence/absence or abundance data, where regions of

interest have been sampled systematically (Austin and

Cunningham 1981, Hirzel and Guisan 2002, Cawsey et

al. 2002). However, occurrence data for most species

have been recorded without planned sampling schemes,

and the great majority of these data consist of presence-

only records from museum or herbarium collections that

are increasingly accessible electronically (Graham et al.

2004a, Huettmann 2005, Soberón and Peterson 2005).

The main problem with such occurrence data is that the

intent and methods of collecting are rarely known, so

that absences cannot be inferred with certainty. These

data also have errors and biases associated with them,

reflecting the frequently haphazard manner in which

samples were accumulated (Hijmans et al. 2000, Reese et

al. 2005). Thus, the considerable potential of occurrence

data for analysis of biodiversity patterns will only be

realised if we can use them critically. Simultaneous with

increasing accessibility of species’ occurrence data,

environmental data layers of high spatial resolution,

such as those derived from satellite images (Turner et al.

2003) and through sophisticated interpolation of climate

data (Thornton et al. 1997, Hijmans et al. 2005), are

now much more abundant and available. In parallel,

development of methods for efficient exploration and

summary of patterns in large databases has accelerated

in other disciplines (Hastie et al. 2001), but only a few of

these have been applied in ecological studies. Given the

widespread use of distribution modelling, and the

synergy of advances in data availability and modelling

methods, a clear need exists for broad synthetic analyses

of the predictive ability and accuracy of species’ dis-

tribution modelling methods for presence-only data.

There is now a plethora of methods for modelling

species’ distributions that vary in how they model the

distribution of the response, select relevant predictor

variables, define fitted functions for each variable, weight

variable contributions, allow for interactions, and pre-

dict geographic patterns of occurrence (Guisan and

Zimmerman 2000, Burgman et al. 2005, Wintle and

Bardos in press). Initial attempts to analyze presence-

only data used methods developed specifically for that

purpose, based either on calculations of envelopes or

distance-based measures (Gómez Pompa and Nevling

1970, Rapoport 1982, Silverman 1986, Busby 1991,

Walker and Cocks 1991, Carpenter et al. 1993). Atten-

tion then turned to adapting presence-absence methods

(i.e. those that model a binomial response) to model

presence-only data, using samples of the background

environment (random points throughout the study area),

or of areas designated as ‘‘non-use’’ or ‘‘pseudo-

absence’’ (Stockwell and Peters 1999, Boyce et al. 2002,

Ferrier et al. 2002a, Zaniewski et al. 2002, Keating and

Cherry 2004, Pearce and Boyce in press).

More recently several novel modelling methods have

been proposed that have foundations in ecological and/

or statistical research, that may perform well for

distribution modelling with noisy data, such as pre-

sence-only records. Some of these methods use informa-

tion on the presences of other members of the

community to supplement information for the species

being modelled. Community methods are promising,

especially for rare species, because the additional in-

formation carried by the wider community may help

to inform the modelled relationships. Further, exten-

sive research in the machine-learning and statistical

disciplines has produced methods that are able to

capture complex responses, even with noisy input data.

These have received very little exposure in distribution

modelling, though the work that has been done is

promising (Phillips et al. 2006, Leathwick et al. in press.).

Regardless of the modelling method chosen, a major

problem in evaluation is that species’ distributions

are not known exactly. In many instances evaluation

focuses on predictive performance, some known occur-

rences are withheld from model development (either by

splitting the data set, k-fold partitioning, or bootstrap-

ping; Fielding and Bell 1997, Hastie et al. 2001, Araújo

et al. 2005), and accuracy is assessed based on how

well models predict the withheld data (Boyce et al. 2002,
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Hirzel et al. unpubl.). In presence-only modelling,

such withheld data are unlikely to provide a general

test of model accuracy in predicting species’ distribu-

tions, because the occurrence records often have biases in

both geographic and environmental space (Bojórquez et

al. 1995, Hijmans et al. 2000, Soberon et al. 2000,

Kadmon et al. 2004) and such biases will persist in

common resampling designs. More importantly, with-

held data are presence-only, which limits the options

for, and power of, statistical evaluations of predictive

performance. One step towards improving evaluation of

model performance in predicting distributions of species

is to use independent, well structured presence-absence

datasets for validation. Such datasets have rarely

been used to evaluate predictions from presence-

only models (but see Ferrier and Watson (1997) for an

earlier example of this type of evaluation). Further

possibilities include modelling artificial data and asses-

sing whether responses are correctly predicted (Austin et

al. 1995), or modelling with both presence-only and

presence-absence data and comparing the fitted func-

tions.

The primary aim of this research was to evaluate the

capacity of presence-only occurrence data for predicting

species’ distributions. We chose to focus on evaluation at

independent sites, using the performance of different

modelling methods averaged over many species. Detailed

evaluation of the ecological realism of all models was not

practical. We tested the performance of a representative

selection of modelling methods for presence-only data,

using data sets typical of the types of species and

environmental data that are commonly employed. This

exercise also provides insights into whether and how

these increasingly available data can be used for improv-

ing knowledge of species’ ranges. We compiled data only

for regions in which independent presence-absence data

were available for evaluation and invited participation

from researchers experienced in a range of distribution

modelling methods, including several novel methods that

have not been used widely in ecology. Our model

comparison is very broad, applying 16 methods to

modelling the distributions of 226 species from 6 regions

around the globe.

Materials and methods

Data for modelling and evaluation

Our intention in selecting data was to collect represen-

tative examples of the types of data and species that are

commonly used in species distribution modelling. Spe-

cies locality data were assembled for six regions of the

world (Tables 1 and 2): birds and plants of the

Australian Wet Tropics (AWT); birds of Ontario, Ca-

nada (CAN); plants, birds, mammals and reptiles of

north-east New South Wales, Australia (NSW), plants of

New Zealand (NZ), plants from five countries (see

footnote, Table 1) of South America (SA), and plants

of Switzerland (SWI). The individual data sets had up to

54 species with a range of geographic extents and

rarities. For each region, two sets of data were available:

1) presence-only (PO) data, from unplanned surveys or

incidental records, including those from museums and

herbaria; and 2) independent presence-absence (PA) data

from planned surveys, with accurate location records.

The independence of these two data sets for each region

is an important underlying assumption of this study, and

the totally different data collection methods for the two

sets give us a high level of confidence that this assump-

tion is well founded. Table 2 summarises the key

characteristics of the data. One feature is that the

accuracy and sample size of the modelling data vary

between regions: mostly they were small-to-moderate

(101�/102 occurrences), but were larger (101�/103) for

SWI. Evaluation (PA) sets were larger for CAN, NZ and

SWI than the other regions. Further, the PA data sets for

AWT, NSW, NZ and SWI all provide better environ-

mental and geographic coverage than those for CAN

and SA.

The environmental data used for each region were

selected for their relevance to the species being modelled

(Austin 2002), as determined by the data provider

(Tables 1 and 3). Eleven to 13 predictors were supplied

per region, with grid cell sizes ranging from ca 100 by

100 m (AWT, NSW, NZ, SWI) to 1000 by 1000 m (CAN,

SA). Several regions had data sets where previous

research informed the development of ecologically

relevant predictors (NSW, NZ, SWI). Other regions

simply used variables typical of those used in distribu-

tion modelling, with emphasis on climatic data (CAN,

SA, AWT). None of the exact data sets used in our study

have previously been used for modelling, but some

published studies (Ferrier and Watson 1997, Guisan et

al. 1998, Venier et al. 2001, Leathwick 2002) use subsets

of these or closely related data.

The data as supplied required considerable grooming

and manipulation to generate datasets of consistent

quality both within and between regions. For each

region, environmental predictor variables were manipu-

lated so that projections, grid cell size and alignment,

and spatial extent were consistent across all layers. Some

species data (particularly in the PO datasets) had many

records per grid cell because of either repeat observa-

tions over years, or sites in close proximity to each other.

We reduced both the PO and PA datasets to one record

per grid cell. For the PA data, if any record in the grid

cell was a presence, presence was assigned to the one

record that was kept regardless of whether there was also

an absence in the same grid cell. This was not a common

feature of the data, but it occurred at least once in all

data sets except SA. In a small number of cases both a

PO and PA record occurred in the same grid cell; in these
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the PA record was usually deleted in order to ensure that

there was no spatial overlap between the modelling and

evaluation data sets. The exception was for the AWT

data, where the PO record was deleted due to limited PA

data.

As some of the modelling methods required data akin

to absences, background samples (sometimes also re-

ferred to as ‘‘pseudo-absences’’; Ferrier et al. 2002a)

were generated by drawing a random sample of 10 000

sites for each region. These were intended as a sample of

the whole region, and it is possible that a background

sample coincided with a presence record. In another

study we address alternative strategies for creating such

data (and see Zaniewski et al. 2002, Graham et al.

2004a). It is important to note that the community

methods (MARS-COMM and GDM) described below

use the species data differently to single species methods

(see Appendix, Text S1). In particular, they define a

model using all sites available for all the species of the

relevant biological group, and assume absences at sites if

presence is not recorded, effectively treating all presence

sites for a group of species as indicating an absence for

any species not recorded at a particular site. To preserve

as much consistency as possible between the single

species and community modelling approaches, we used

background samples in addition to the community data

for fitting the community models. Nevertheless, the

inclusion of the community data sets these apart from

the single-species methods.

Modelling methods

Eleven distinct modelling methods were used, but a

number of these were implemented in more than

one way, resulting in the 16 approaches presented here

(Table 4 and Appendix, Text S1). The methods form two

broad groups based on the type of data they use: those

that only use presence records (BIOCLIM, DOMAIN,

LIVES), and those that characterise the background

with a sample (all other methods). Among the techni-

ques that characterise the background, a critical distinc-

tion exists between those that use only the presence

records for the modelled species vs those that use data

describing the presences of other species, i.e. community-

based techniques. Details and key references for each

method are in Appendix, Text S1 and Table 4, and the

following briefly introduces the methods, with more

detail for lesser-known techniques.

The first group of methods (those that only use

presence records) includes one envelope-style method

(BIOCLIM) that characterises sites that are located

within the environmental hyper-space occupied by a

species, and two distance-based methods (DOMAIN

and LIVES) that assess new sites in terms of their

environmental similarity to sites of known presence. The

two distance-based methods differ both in their theore-

tical assumptions and the procedures used for calculat-

ing similarities.

The second group of methods includes several regres-

sion approaches (Table 4). Generalised linear models

Table 1. Summary of data available for modelling and evaluation.

Region Species records Predictor variables

Groups
(number species)

PO1:
number (mean)

PA1: number sites;
mean

Broad class Cell size (m) and
extent (km2�/106)

Australian Wet Tropics (AWT) birds (20) 155 340; 97 10 climate, 80�/80 m
plants (20) 35 102; 30 3 topography 0.024

Ontario, Canada (CAN) birds (20) 255 14571; 1282 6 climate,
3 topography,
1 distance,
1 vegetation

1�/1 km
1.088

New South Wales, birds (10) 162 mean3 920; 74 5 climate, 2 soil, 100�/100 m
Australia (NSW) plants (29) 22 mean3 1333; 214 1 site moisture, 0.089

mammals (7) 27 570; 76 3 topography,
reptiles (8) 84 1008; 62 1 disturbance,

1 vegetation

New Zealand (NZ) plants (52) 18�/211 19120; 1801 8 climate, 100�/100 m
2 substrate, 0.265
3 topography

South America2 (SA) plants (30) 17�/216 152; 12 11 climate 1�/1 km
14.654

Switzerland (SWI) plants (30) 36�/5822 10013; 810 7 climate, 100�/100 m
2 substrate, 0.041
2 topography,
2 vegetation

1 PO is the presence-only modelling data and PA, the presence-absence evaluation data.
2 Five countries: continental Brazil, Ecuador, Colombia, Bolivia, and Peru.
3 Means of subsets of sites appropriate to different groups of plants and birds (Table 2).
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Table 2. Species data.

Region Species information PO data PA data

AWT 20 birds and 20 plants. Birds from incidental surveys (accurate locations1); plants from
herbarium records within last 40 yr (9/3 km) #presence records:
Birds mean 155, range 32�/265; 78% occupied cells have �/1
species. Plants: mean 35, range 9�/74; 37% occupied cells have �/1
species.

Birds from planned field surveys at 340 sites (accurate
locations); plants from planned surveys over 20 yr at 102 sites
(accurate locations) #presence records: birds mean 97, range
32�/265; plants: mean 30, range 13�/214.

CAN 20 birds. Ontario Nest Records, Royal Ontario Museum (ROM).
Temporal Span 1870�/2002 (mostly 1960�/2001). Coordinates
derived from map by ROM; some locations with GPS. #presence
records: mean: 255, range: 16�/749; 26% occupied cells have �/1
species.

Breeding Bird Atlas (BBA) for Ontario. 14571 sites #presence
records: mean: 1282, range: 24�/4512.

NSW 54 species: 7 bats (ba); 8 diurnal birds (db);
2 nocturnal birds (nb); 8 open-forest trees
(ot); 8 open-forest
understorey plants (ou); 7 rainforest trees
(rt); 6 rainforest understorey plants (ru); 8
small reptiles (sr).

Fauna incidental records from Atlas of NSW Wildlife; flora from
herbaria. Across all groups, #presence records: mean: 62, range:
2�/426; 21% occupied cells have �/1 species.

From designed surveys (Ferrier and Watson 1996, Pearce et al.
2001). Accurate locations. #of sites: ba 570, db 702, nb 1137, ot
2076, ou 1309, rt 1036, ru 909, sr 1008. Across all groups,
#presence records: mean: 148, range: 4�/693.

NZ 52 plants, mostly trees and shrubs. Herbarium data. #presence records: mean: 59, range
18�/211; 16% occupied cells have �/1 species.

Designed surveys; 19 120 sites. Accurate locations. #presence
records: mean: 1801, range 20�/10 581.

SA 30 plants, family Bignoniaceae. Herbarium data. #presence records: mean: 74, range
17�/216; 36% occupied cells have �/1 species.

Al Gentry’s data (Missouri Botanic Gardens); 152 sites.
#presence records: mean: 12, range 7�/29.

SWI 30 trees. Forest vegetation data from non-systematic surveys. 1913�/1998;
75% post-1940. #presence records: mean: 1170, range 36�/5822;
80% occupied cells have �/1 species.

Forest inventory plots on regular lattice; 10 013 sites. Accurate
locations. #presence records: mean: 810, range: 19�/6953.

1 Locations are considered accurate if location error is estimated to be 5/100 m. Where accuracy data are not presented, no information was provided.
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(GLMs) and generalised additive models (GAMs) are

used extensively in species’ distribution modelling

because of their strong statistical foundation and ability

to realistically model ecological relationships (Austin

2002). GAMs use non-parametric, data-defined smooth-

ers to fit non-linear functions, whereas GLMs fit

parametric terms, usually some combination of

linear, quadratic and/or cubic terms. Because of their

greater flexibility, GAMs are more capable of modelling

complex ecological response shapes than GLMs (Yee

and Mitchell 1991). BRUTO provides a rapid method

to identify both the variables to include and the degree

of smoothing to be applied in a GAM model, but has

only recently been used in ecological applications

(Leathwick et al. unpubl.). Multivariate adaptive regres-

sion splines (MARS) provide an alternative regression-

based method for fitting non-linear responses, using

piecewise linear fits rather than smooth functions.

They are much faster to implement than GAMs, and

simpler to use in GIS applications when making maps of

predictions. An added feature that we investigate here is

their ability to analyse community data (Leathwick et al.

2005), i.e. to simultaneously relate variation in the

occurrence of all species to the environmental predictors

in one analysis, and then estimate individual model

coefficients for each species (MARS-COMM). Most of

our implementations of the regression methods did not

attempt to model interactions, with the exception of the

MARS models, where we allowed the fitting of first-

order interactions in single species models (MARS-

INT).

We implemented two versions of GARP: the desktop

version that has been used widely for modelling data

from natural history collections (DK-GARP), and a new

open modeller implementation (OM-GARP), that has

updated algorithms for developing rule sets. These both

use a genetic algorithm to select a set of rules (e.g.

adaptations of regression and range specifications) that

best predicts the species distribution (Stockwell and

Peters 1999).

Two methods have been developed within the machine

learning community: maximum entropy models

(MAXENT and MAXENT-T) and boosted regression

trees (BRT, also called stochastic gradient boosting).

MAXENT estimates species’ distributions by finding

the distribution of maximum entropy (i.e. closest to

uniform) subject to the constraint that the expected

value of each environmental variable (or its transform

and/or interactions) under this estimated distribution

matches its empirical average (Phillips et al. 2006). In

the MAXENT application for modelling presence-

only species’ data, choices can be made about the

complexity of the fitted functions. BRT combines

two algorithms: the boosting algorithm iteratively calls

the regression-tree algorithm to construct a combina-

tion or ‘‘ensemble’’ of trees. Regression trees areT
ab
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used because they are good at selecting relevant variables

and can model interactions; boosting is used to

overcome the inaccuracies inherent in a single tree

model. The regression trees are fitted sequentially on

weighted versions of the data set, where the weights

continuously adjust to take account of observations that

are poorly fitted by the preceding models. Boosting can

be seen as a method for developing a regression model in

a forward stage-wise fashion, at each step adding small

modifications in parts of the model space to fit the data

better (Friedman et al. 2000). When using BRT, we

avoided overfitting by using cross-validation to progres-

sively grow models while testing predictive accuracy on

withheld portions of the data.

Finally, generalised dissimilarity models (GDM)

model spatial turnover in community composition (or

‘‘compositional dissimilarity’’) between pairs of sites as a

function of environmental differences between these

sites. The approach combines elements of matrix regres-

sion and generalised linear modelling, thereby allowing

it to model non-linear responses to the environment that

capture ecologically realistic relationships between dis-

similarity and ecological distance (Ferrier 2002, Ferrier

et al. 2002b). For predicting species’ distributions,

an additional kernel regression algorithm (Lowe 1995)

is applied within the transformed environmental space

generated by GDM, to estimate likelihoods of occur-

rence of a given species at all sites. Two versions of this

approach were applied in the current study: 1) ‘‘GDM’’

in which a single GDM was fitted to the combined

data for all species in a given biological group, such

that the output from this GDM was then used as a

common basis for all of the subsequent kernel regression

analyses; and 2) ‘‘GDM-SS’’ in which a separate GDM

was fitted to the data for each species alone, such that

kernel regression analysis for each species was based on

the output from a GDM tailored specifically to that

species.

As the manner in which a particular method is

implemented can have substantial effects on model

performance, we deliberately used experienced analysts

to develop all models. We also implemented batch

processing of methods in order to run the large number

of models presented here, using settings judged by the

modellers to provide a robust and reliable implementa-

tion of the method. Details are contained in Appendix,

Text S1 and Table S1.

Experimental design

All analyses were carried out by modellers (Appendix,

Table S2) blind to the evaluation data, which was not

examined until after all modelling was complete. We

provided modellers with the presence-only (PO) loca-

tions for each species and random background locations

(one set for each of the 6 regions). For each region,

environmental data were presented in two formats: either

as a table that included the environmental variables for

each PO and random locality, or as environmental grids.

Table 4. Modelling methods implemented.

Method Class of model,
and explanation

Data1 Software Std
errors?2

Contact
person

BIOCLIM envelope model p DIVA-GIS no CG, RH
BRT boosted decision trees pa R, gbm package no JE
BRUTO regression, a fast implementation

of a gam
pa R and Splus, mda package yes JE

DK-GARP rule sets from genetic algorithms;
desktop version

pa DesktopGarp no ATP

DOMAIN multivariate distance p DIVA-GIS no CG, RH
GAM regression: generalised additive model pa S-Plus, GRASP add-on yes AG,AL,JE
GDM generalised dissimilarity modelling;

uses community data
pacomm Specialized program not general released;

uses Arcview and Splus
no SF

GDM-SS generalised dissimilarity modelling;
implementation for single species

pa as for GDM no SF

GLM regression; generalised linear model pa S-Plus, GRASP add-on yes AG,AL,JE
LIVES multivariate distance p Specialized program not general released no JLi
MARS regression; multivariate adaptive

regression splines
pa R, mda package plus new code to handle

binomial responses
yes JE, FH

MARS-
COMM

as for MARS, but implemented with
community data

pacomm as for MARS yes JE

MARS-INT as or MARS; interactions allowed pa as for MARS yes JE
MAXENT maximum entropy pa Maxent no SP
MAXENT-T maximum entropy with threshold

features
pa Maxent no SP

OM-GARP rule sets derived with genetic
algorithms; open modeller version

pa new version of GARP not yet available no ATP

1 p�/only presence data used; pa�/presence and some form of absence required �/ e.g. a background sample; comm�/community
data contribute to model fitting.
2 any method can have an uncertainty estimate derived from bootstrapping the modelling; these data refer to estimates that are
available as a statistical part of the method.
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The modellers could use the modelling data in any way

they chose, to decide how to develop their models (e.g.

they could run cross-validation testing on the PO data).

Based on these decisions, modellers made predictions for

each species using a set of evaluation data, one set of

which was prepared for each region. This consisted of a

table of environmental data for the evaluation sites, but

it contained no species records, i.e., predictions were

made from the PO data with no knowledge of the

pattern of the species as described by the PA dataset.

Modellers who applied more than one method to the

data (Appendix, Table S2) approached each method as a

new situation and aimed to implement the method in the

best way possible for a multi-species analysis (Appendix,

Text S1).

Evaluation

The evaluation focussed on predictive performance at

sites. We used three statistics, the area under the Receiver

Operating Characteristic curve (AUC), correlation

(COR) and Kappa, to assess the agreement between

the presence-absence records and the predictions. AUC

has been used extensively in the species’ distribution

modelling literature, and measures the ability of a model

to discriminate between sites where a species is present,

versus those where it is absent (Hanley and McNeil

1982). This provides an indication of the usefulness of

the models for prioritising areas in terms of their relative

importance as habitat for the particular species. The

AUC ranges from 0 to 1, where a score of 1 indicates

perfect discrimination, a score of 0.5 implies predictive

discrimination that is no better than a random guess,

and values B/0.5 indicate performance worse than

random. ‘‘Worse than random’’ can occur because a

model may fit the modelling data but predict badly, and

we tested predictive performance on independent data

rather than model fit. AUC values can be interpreted as

indicating the probability that, when a presence site and

an absence site are drawn at random from the popula-

tion, the first will have a higher predicted value than the

second. It is closely related to a Mann-Whitney U

statistic, and it is in this context it is seen to be a rank-

based statistic �/ the prediction at the presence site can be

higher than the prediction at the absence site by a small

or large amount, and the value of the statistic will be the

same. Standards errors were calculated with the methods

of Hanley and McNeil (1982).

The correlation, COR, between the observation in the

PA dataset (a dichotomous variable) and the prediction,

is known as the point biserial correlation, and can be

calculated as a Pearson correlation coefficient (COR;

(Zheng and Agresti 2000)). It is similar to AUC, but

carries with it extra information: instead of being rank-

based, it takes into account how far the prediction varies

from the observation. This gives further insight into the

distribution of the predictions, and in the technical

evaluation framework of Murphy and Winkler (1992)

further informs the user about the model’s discrimination.

Kappa (Cohen 1960), which is a chance-corrected

measure of agreement, is commonly used in ecological

studies with presence-absence data. It requires a thresh-

old to be applied to the predictions, to convert them to

presence-absence predictions. Kappa provides an index

that considers both omission and commission errors. We

calculated a maximum kappa (KAPPA) for each model

by calculating kappa at all possible thresholds for each

species-specific set of predictions and identifying both

the maximum kappa and the threshold at which this

occurred. This method used information not available to

the modeller �/ i.e. information from the evaluation data

set. It returns the best possible KAPPA score for each

method. Liu et al. (2005) have demonstrated that other

methods are more reliable for selecting thresholds from

the training data (i.e. that used in model development),

but in this case we wanted to characterise the best

possible KAPPA value that could be attained on these

evaluation data, so that threshold selection did not

confound the results.

Variation in AUC and COR values were analysed

using Generalized Linear Mixed Models, with the

statistic (e.g. AUC) as the response and modelling

method fitted as a fixed effect. Both species and an

interaction between modelling method and region were

fitted as random effects, the interaction term allowing

for differing performance of methods across regions.

Analyses were performed using WinBUGS (Spiegelhal-

ter et al. 2003a), which fits a Bayesian model. We

assumed uninformative priors for all parameters, result-

ing in a GLMM that is equivalent to one fitted using

maximum likelihood. Comparisons of the sixteen meth-

ods were summarized from 50 000 Monte Carlo itera-

tions after a burn-in period of 10 000. The performance

of modelling method was summarized as the mean and

standard deviation of the posterior distributions. The

percentage of runs where the response (e.g. AUC) for

method X is greater than that for method Yestimates the

probability that the true difference between the methods

is greater than zero. This is a 2-tailed test, and values

close to 1 mean that method X’s response is greater than

that of method Y, and vice-versa for values close to

zero. The importance of each term in the GLMM

was assessed by change in the Deviance Information

Criterion (DIC, Spiegelhalter et al. 2003b) for the full

model compared with subsets where each term was

excluded from the model. The DIC is the Bayesian

equivalent of Akaike’s Information Criterion, and rules

of thumb suggest that changes in DIC of �/10 units

indicate that the excluded term had an important effect

(Burnham and Anderson 2002, McCarthy and Masters

2005).
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To further explore the results, we calculated a series of

metrics that define the distances between sites, and the

area occupied, in both environmental and geographic

space. These are useful for assessing to what extent a

species ‘‘fills’’ the regional space. The nearest neighbour

(NN, also called p-median) summarises the distances

between points in multidimensional environmental

space, using a Manhattan distance (Sneath and Sokal

1973). We used the 10 000 random points and the

presences in the evaluation data set and calculated the

median of the minimum distances between any one

random point and all the presence points. In each

dimension, the distance was scaled by the range of the

random points. NN values are larger for species that

occupy only part of the environmental space of the

region. The range overlap method used the same sets of

points but summarised the mean overlap in ranges over

all environmental dimensions; high values indicate

species that span most of the environmental space in

the regions. In contrast to those two methods, maximum

distance and area of convex polygons are measures in

geographic space, calculated on presence only data but

presented in relation to the maximum measures in the

presence absence data for each biological group in each

region. Small distances or areas indicate species that are

restricted geographically.

Finally, we recorded time taken for modelling and

made comments on potential improvements, and these

are presented in Appendix, Table S2.

Results

To display mapped model results, we show distributions

predicted with several modelling methods for species in

NSW (Fig. 1 and Appendix, Fig. S1). These maps

illustrate variation in model predictions among techni-

ques. There is considerable agreement between some

methods. The most obvious differences are in the

proportion of the region that appears to be predicted

most suitable for the species, and although these might

stem from predictions that are scaled in different ways,

the variation in AUC suggests actual differences between

methods.

Evaluating the results at independent sites across all

species and methods, we found clear indications that

presence-only data can provide the basis for accurate

predictions, but also marked variation in modelling

success (Fig. 2 and Appendix, Table S3). For example,

although AUC varied from 0.07 to 0.97, 40% of models

had an AUC�/0.75 (a useful amount of discrimination;

see methods), and 90% of methods performed better

than random (AUC�/0.5). The following analyses

explore trends and sources of variation among methods,

regions and species.

A) Broad trends across regions and species

Assessments of modelling success using AUC and COR

indicate that methods can be analysed in three groups

(Fig. 3 and Appendix, Fig. S2). The first and highest-

performing group (above-right of the solid black line in

Fig. 3) included MARS community (MARS-COMM),

boosted regression trees (BRT), generalised dissimilarity

(GDM and GDM-SS) and maximum entropy (MAX-

ENT and MAXENT-T) models, all of which performed

relatively well according to each of the evaluation

measures (Figs 3 and 4). A second group of methods

(between the solid and dashed diagonal black lines, Fig.

3) showed intermediate performance for AUC and COR.

It included most of the standard regression methods

(generalised additive models �/ GAM and BRUTO;

generalised linear models �/ GLM; individual multi-

variate adaptive regression splines �/ MARS), and OM-

GARP. Models in the third group all performed

relatively poorly (lower left of the dashed black line,

Fig. 3) and included the 3 methods that use only

presence data (BIOCLIM, LIVES, DOMAIN) with no

inferred absences, along with DK-GARP, and the

MARS individual models fitted with interactions

(MARS-INT). This group also deviated from the gen-

erally linear relationship between AUC and COR results,

i.e. assessment of their predictive success depends on

which measure is used. DOMAIN was close to the

middle group in relation to AUC but not COR, and DK-

GARP was close for COR but less successful with AUC.

DK-GARP results are not completely comparable to the

others because this method could not be applied to for

one region (NZ) because of computational constraints.

The GLMMs confirmed our graphical interpretation

and indicated that differences in the performance of

modelling methods were statistically important, because

the removal of the modelling method term from the full

model resulted in a change in the Deviance Information

Criterion of 472 units (Table 5). These results are for

AUC, and those for COR are comparable. Results from

the pair-wise comparison of methods (Table 6) indicate

that those methods occurring to the top right in Fig. 3

provide significantly better performance that those to the

lower left, and also to several methods located in the

central part of this figure. The error bars in Fig. 3 are

those estimated from the model, and bars that do not

overlap coincide with high probabilities that the methods

are different (Fig. 3, Table 6).

The same general trends are evident also for KAPPA

(Fig. 4), although methods are not so clearly separated

because KAPPA is a less sensitive measure, estimating

performance at a single prediction threshold. Never-

theless, the highest-performing methods as assessed by

AUC and COR also had the highest KAPPA scores (to

the right in Fig. 4) and the presence-only methods also

ranked among the lowest.

ECOGRAPHY 29:2 (2006) 137



B) Comparison of regional results

Predictive success varied markedly across regions (Fig. 5,

Appendix, Figs S3 and S4; Table 7 and Appendix, Table

S3). For example, AUC scores were generally high for

SWI and SA (mean values of 0.77 and 0.76, Table 7, and

details in Appendix, Table S3), intermediate for NSW,

NZ and AWT (mean AUC 0.69, 0.71, 0.67 respectively)

and mostly poor for CAN (mean AUC 0.58). Regional

differences as assessed using COR (Table 7, Appendix,

Table S3) and KAPPA (Appendix, Tables S3 and S4)

indicated a slightly different ordering of regions: SA and

AWT were better modelled than the next group (SWI,

NSW, NZ), but again predictions for CAN species were

generally poor. The relative success of different methods

did not differ greatly across the three test statistics,

therefore we focus on AUC statistics for the remainder of

this section.

In some regions there were relatively large differences

in mean AUC among methods, whereas in others

differences were more muted, as shown by the vertical

spread of the lines in Fig. 5 (and see Table 7). When data

are analysed within regions there is less power to detect

differences, so error bars were relatively larger (compare

Fig. 3 and Appendix, Fig. S5) and fewer pairwise

differences between methods were significant. Our

Fig. 1. Maps for two species from NSW for each of three selected techniques. Details: ousp6, Poa sieberiana (53 records for
modelling and 512 presence/797 absence for evaluation); srsp6 Ophioscincus truncatus (79 model, 74/932 eval). The first column
shows modelling sites (grey triangles) and evaluation sites: presence�/black circle, absence�/black cross.
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ability to clearly distinguish between methods was partly

related to the amount of evaluation data; SWI, NZ, and

CAN had more data (i.e. number of records per species

is to the right of Appendix, Fig. S6, leading to lower

standard errors, Appendix, Fig. S7), and more records

provide more opportunity to find differences in these

regions. For example, Table 8 presents pairwise differ-

ences for SA and SWI, and demonstrates more distinc-

tions between methods in SWI. Nevertheless, relative

rankings of methods were broadly consistent across

regions (Fig. 5, Table 7, and see Appendix, Table S3,

Fig. S5) and the group of highest-performing methods

identified in Fig. 3 was generally reliable across all

regions, but with some variation depending on the

evaluation statistic (Appendix, Fig. S5).

Some interesting patterns and exceptions to model

performance by region were apparent. Performance of

methods in NSW, NZ, SA, and SWI was generally

similar, with BRT, MAXENT and MAXENT-T,

MARS-COMM, and GDM and GDM-SS usually

performing well. In NZ, presence-only methods (BIO-

CLIM, DOMAIN and LIVES) performed particularly

poorly. In most regions DOMAIN and LIVES had

lower COR values in relation to AUC than the average

method (i.e. they sit below the line fitted to the means in

Appendix, Fig. S5).

The importance of the interaction term (method�/

region) in the GLMM (Table 5) indicated anomalies in

the relative performance of methods in particular

regions. These tended to occur in regions with lower

overall performance �/ i.e. to the right in Fig. 5 (see also

Table 7 and Appendix, S3), and with highest uncertainty

in estimates (see standard errors, Appendix, Fig. S5). For

example, in AWT, OM-GARP ranked with the better

methods (GDM-SS and MAXENT-T), whereas it gen-

erally had only intermediate overall performance in all

other regions (Fig. 5, Table 7). However, AUC only

varied from 0.64 to 0.70 in AWT and many differences

were not statistically important (Appendix, Fig. S5).

Canada had the lowest AUC, COR and KAPPA scores

of any region, and many methods performed poorly,

with evaluation statistics only marginally better than

random (Table 7 and Appendix, Table S3; Figs S3, S4

and S5). Of the two methods with the highest AUC

scores in CAN, one (MARS-COMM) ranked consis-

Fig. 2. Distribution of AUC for all species and from all
methods. The solid curve is a density plot, and the y axis is
scaled to show the relative density of points; for the histogram
bars the sum of the area below all bars is 1. The grey vertical
solid line shows random predictions, and grey dashed indicates
reasonable predictive performance.

Fig. 3. Mean AUC vs mean
correlation (COR) for modelling
methods, summarised across all
species. The grey bars are standard
errors estimated in the GLMM (see
Appendix), reflecting variation for
an average species in an average
region. The labels are broad
classifications of the methods: grey
underlined�/only use presence
data, black capitals�/use presence
and background samples, black
lower case italics�/community
methods.
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tently among the best across regions, whereas the other

(BIOCLIM) tended to be among the lowest.

C) Results at the species level

The greatest variation in the performance of different

methods was apparent at the species level, but with

similar trends: methods shown above to perform well

when averaged across species and regions (i.e. MARS-

COMM, BRT, MAXENT/MAXENT-T and GDM/

GDM-SS) also tended to perform well when ranked

against other methods on an individual species’ basis

(Table 9 and Appendix, Fig. S2). Figure 6a shows results

from SA that are typical for most regions, in that there is

marked variation in which methods perform best for

different species (i.e. lines cross in the graphs). Most

methods occasionally failed badly, although the better

methods tended to have more stable performance. The

exception to this general pattern was SWI, in which we

observed clear and reasonably consistent separation

between methods (Fig. 6b), probably reflecting the larger

amounts of accurately located data for both modelling

and evaluation. Results for SWI using both AUC and

COR indicate that the highest-performing methods for

most species were MARS-COMM, BRT and MAXENT/

MAXENT-T, while the lowest were LIVES, BIOCLIM,

and DK-GARP (Appendix, Fig. S5). Across all species

in all regions, and considering the best method only, 78%

of species had AUC scores of 0.70 or more, and 64% had

scores of 0.75 or more (Appendix, Table S3). In some

cases a species was modelled well (or poorly) by most

methods, whereas in others there was considerable

variation in predictive accuracy depending on the

method used. Mean AUC scores per species varied

from 0.36 to 0.97, with coefficients of variation (cv)

ranging from 2 to 47% (Appendix, Table S3). The

correlation between mean AUC and cv was weakly

negative (Pearson r�/�/0.39), indicating a slight trend

for more variation across methods for species with low

mean AUC scores.

Predictive performance did not vary consistently

with number of presence records available for modelling

(Table 10, Fig. 7, Appendix, Table S5). Species that

are rarer because they are environmentally or geogra-

phically restricted appeared to be modelled with greater

accuracy than more common and generalist species

(Table 10). We note here and discuss later that this

result depends on the spatial extent of analysis and the

type of evaluation.

Discussion

The model comparison developed herein is unique for

its broad geographic scope, application of numerous

modelling methods (including several new techniques) to

Table 5. Analysis of importance of factors affecting predictive
performance, from Generalized Linear Mixed Model.

DIC1

Full model:AUC�/Method�/Method�/Region
�/Species

�/8996

Without Method �/8524
Without Interaction (Method�/Region) �/8803
Without Species �/4071

1Deviance Information Criterion. Changes in DIC �/10 are
important.

Fig. 4. Performance measured by
maximum kappa and its variance
across all species. Variance axis
reversed so low is higher on plot; it
is desirable to have high kappa and
low variance (i.e. upper right in
plot), for consistent and good
performance. Labels as for Fig. 3.
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the analysis of presence-only data, and incorporation of

extensive presence/absence data to enable well-informed

evaluations of predictive performance. We interpret

results in the context of the feasibility of using such

techniques to predict accurately species’ distributions in

situations in which only presence data are available. Our

evaluation also explores the utility of the vast storehouse

of occurrence information in resources such as world

natural history museums.

We can draw two major conclusions from our results.

First, presence-only data are useful for modelling

species’ distributions. This result bolsters the recent

movement to capitalize on the growing availability of

both species’ occurrence records (Soberon et al. 2000,

Graham et al. 2004a) and high-resolution spatial envir-

onmental data. Not all species were predicted well

according to our evaluation data, but we found that

64% of the best models for each species had AUCs

�/0.75 and an additional 14% had AUCs between 0.7

and 0.75. These AUC scores indicate that predictions

based on presence-only data can be sufficiently accurate

to be used in conservation planning (Pearce and Ferrier

2000a) and in numerous other applications in which

estimates of species’ distribution are relevant. Second,

new modelling methods that have only recently been

applied to the challenge of modelling species’ distribu-

tions generally outperformed established methods. Some

of these new methods originated in other disciplines and

have had little exposure in ecological analyses. These

methods appear to offer considerable promise across a

much broader range of ecological applications, providing

an exciting avenue for future research. The other strong

performers were community methods, and these also

deserve further scrutiny, particularly where data for the

species in question are sparse.

Broad comparison of methods

We demonstrated differences in predictive performance

among modelling methods, despite substantial variation

at both regional and species levels. Within the suite of

relatively commonly used methods, those that character-

ise the background environment and that can differen-

tially weight variables outperform those that use

presence data alone (BIOCLIM, LIVES, and �/ for

some measures �/ DOMAIN). These results give no

support to using methods that do not attempt to

characterise the distribution of a species relative to the

background environment in which it occurs. The various

regression-based methods are largely indistinguishable

from one another in terms of predictive performance.

The new version of GARP (OM-GARP), first imple-

mented for this study, is comparable to, but slower than,

the regression methods and outperforms the widely used

desktop version.T
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Results for the more common approaches are con-

sistent with previous studies of presence-absence model-

ling methods, and with the relatively few comparisons of

methods used to model presence-only data. Studies of

presence-absence modelling methods suggest that several

non-linear techniques (e.g. GAMs, artificial neural net-

works, and MARS) are comparable in terms of pre-

dictive ability, and are often superior to methods such as

traditional single decision trees (Ferrier and Watson

1997, Elith and Burgman 2002, Moisen and Frescino

2002, Muñoz and Fellicı́simo 2004, Segurado and

Araujo 2004). Comparisons of methods using pre-

sence-only records are less common, but tell a similar

story: GLMs and GAMs generally outperform simpler

methods (Ferrier and Watson 1997, Brotons et al. 2004),

MAXENT outperforms GARP (Phillips et al. 2006) and

some presence-only methods (e.g. DOMAIN, ENFA,

(Hirzel et al. 2002)) have advantages over BIOCLIM

(Loiselle et al. 2003). Most of these studies, however,

have focused on single geographic regions and/or smaller

numbers of species. Several have been evaluated on the

same data sets as were used for model development, and

this makes it difficult to generalise results, and to discern

whether models have good predictive performance or

whether they are simply overfit (Leathwick et al.

unpubl.). Our use of independent presence/absence test

Table 7. Regional data: mean AUC and mean COR per method, per region.

Method Mean AUC Mean COR

AWT CAN NSW NZ SA SWI AWT CAN NSW NZ SA SWI

BIOCLIM 0.65 0.63 0.63 0.61 0.75 0.71 0.22 0.08 0.12 0.08 0.29 0.15
BRT 0.68 0.60 0.71 0.73 0.80 0.81 0.24 0.08 0.19 0.18 0.32 0.24
BRUTO 0.64 0.55 0.68 0.72 0.75 0.79 0.20 0.04 0.15 0.17 0.22 0.20
DK-GARP 0.68 0.56 0.66 na1 0.75 0.70 0.28 0.05 0.15 na1 0.21 0.13
DOMAIN 0.67 0.60 0.70 0.69 0.77 0.73 0.22 0.05 0.15 0.10 0.21 0.14
GAM 0.65 0.55 0.68 0.73 0.75 0.80 0.22 0.04 0.15 0.17 0.23 0.21
GDM 0.67 0.57 0.73 0.74 0.79 0.78 0.24 0.06 0.21 0.16 0.30 0.19
GDM-SS 0.70 0.56 0.70 0.73 0.79 0.79 0.29 0.04 0.17 0.15 0.28 0.20
GLM 0.66 0.57 0.68 0.71 0.74 0.78 0.24 0.06 0.16 0.16 0.22 0.19
LIVES 0.66 0.61 0.66 0.66 0.77 0.72 0.23 0.06 0.12 0.08 0.21 0.13
MARS 0.66 0.55 0.67 0.72 0.75 0.79 0.23 0.04 0.15 0.17 0.24 0.21
MARS-COMM 0.67 0.64 0.73 0.74 0.77 0.82 0.20 0.11 0.19 0.18 0.26 0.26
MARS-INT 0.65 0.54 0.64 0.70 0.73 0.78 0.22 0.05 0.14 0.16 0.24 0.21
MAXENT 0.68 0.58 0.71 0.74 0.78 0.80 0.23 0.05 0.18 0.18 0.27 0.24
MAXENT-T 0.69 0.58 0.71 0.73 0.77 0.80 0.24 0.06 0.18 0.18 0.26 0.25
OM-GARP 0.69 0.55 0.68 0.70 0.77 0.77 0.29 0.04 0.15 0.13 0.25 0.19
mean 0.67 0.58 0.69 0.71 0.76 0.77 0.24 0.06 0.16 0.15 0.25 0.20

1 DK-GARP could not be run for NZ; the large number of grid cells could not be accomodated by the available computers.

Fig. 5. Predictive success across
regions, for 10 methods. Regions
are sorted by the mean AUC
across all 16 methods and all
species per region.
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Table 8. Probability that the method in the column gives a higher AUC than the method in a row for (a) SA and (b) SWI.Format follows Table 6.
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data across multiple geographic regions provides a

broader basis for comparisons.

A novel aspect of our work is the inclusion of newer

modelling methods that have had little exposure in

previous comparative studies and few applications in

ecology in general. These novel methods outperform the

established methods, and this observation should pro-

voke attention and scrutiny. Several of the novel

methods have been developed and tested in fields other

than species’ distribution modelling, and have been

shown to handle noisy data and complex analytical

challenges successfully. For example, boosted regression

trees have been a focus of attention in the machine-

learning and statistical fields for a number of years

(Ridgeway 1999, Hastie et al. 2001), but the present

paper and a companion application to New Zealand fish

(Leathwick et al. in press) are among the first in ecology.

Similarly, maximum entropy methods are well known in

other fields (Jaynes 1982) but only recently developed for

questions of species’ distributions (Phillips et al. 2006).

One question of interest is whether our ‘‘best’’

methods share certain characteristics that set them apart

from the others? One feature that they all share in

common is a high level of flexibility in fitting complex

responses. As a consequence they all have what we term

here ‘‘expressiveness’’ �/ a well-developed ability to

express or demonstrate the complex relationships that

exist in the data. In several methods this includes

effective mechanisms for modelling interactions among

variables. However, expressiveness needs to be controlled

so that models are not overfit, and to that end several

methods use ‘‘regularization’’ techniques (Hastie et al.

2001) to achieve balance between complexity and

parsimony.

These methods achieve those goals in different ways.

BRT achieves expressiveness by combining the strengths

of regression trees, namely omission of irrelevant vari-

ables and ability to model interactions, with those of

boosting, that is, the building of an ensemble of models

that approximate the true response surface more accu-

rately than a single model by overcoming the misclassi-

fication problems inherent in single tree models. Both the

model building procedure (a penalized forward stepwise

search) and our cross-validation methods for finding

optimal numbers of trees help to control overfitting. The

application of maximum entropy methods to distribu-

tion modelling was developed specifically for use with

presence-only occurrence data (Phillips et al. 2006). In

MAXENT, strong focus has been placed on the role of

penalty functions (i.e. regularization) in parameter

estimation. Regularization has most impact when sam-

ple sizes are small, so the MAXENT modellers tuned

their regularization in relation to sample size (Phillips et

al. 2004). MAXENT can also fit complex functions

between response and predictor variables, and can

include interaction terms but to a more limited extent

than BRT. GDM-SS models are single-species versions

of the community-based GDM models. They are para-

meterized on data for individual species, not including

community data. These models are developed in a 2-step

fashion, which together achieves controlled expressive-

ness. The first step operates effectively like a GAM,

fitting additive smoothing functions (albeit to dissim-

ilarities rather than raw observations). The second step,

a kernel regression, incorporates interactions by model-

ling distances and densities within a truly multivariate

predictor space, with no assumption of additivity. The

success of the kernel regression step depends on the first

step accurately transforming the predictor space, thereby

addressing the ‘‘curse of dimensionality’’ normally

associated with kernel regression type techniques

(Lowe 1995).

The success of these new methods suggests that

predictive performance of some more common methods

such as GAMs might be improved substantially if better

tradeoffs between expressiveness and complexity could

be incorporated into the model fitting process. In the

case of GAMs the issue is not whether it can fit complex

responses �/ it can �/ but whether the model building

methods commonly used are optimal for species dis-

tribution modelling. One aspect is modelling interac-

tions, which is possible in regression but rarely

implemented when many species are being modelled.

Another is model selection: alternative techniques al-

ready exist, but are rarely implemented in ecology. For

example, the ‘‘lasso,’’ used for regularization in MAX-

ENT, can be applied to variable selection and coefficient

estimation in regression (Hastie et al. 2001), and has

been shown to perform better than stepwise selection for

determining model complexity (Tibshirani 1996).

Ferrier et al. (2002b) developed and used GDM for

reserve selection and survey design. The impetus for

using GDM and other community modelling methods

(e.g. MARS-COMM) in distribution modelling is based

Table 9. Comparison of performance at a species level and over
all species. Rank of 1�/highest to 16�/lowest.

Method
(sorted by column 2)

Mean AUC
rank per species

Rank of mean
AUC over all species

MARS-COMM 6.15 1
BRT 6.20 2
MAXENT-T 6.42 3
MAXENT 6.69 5
GDM-SS 7.38 6
GDM 7.53 4
GAM 8.26 7
GLM 8.64 10
DOMAIN 8.70 9
BRUTO 8.79 12
MARS 8.92 8
OM-GARP 8.92 11
MARS-INT 9.72 13
LIVES 10.22 14
DK-GARP 10.47 15
BIOCLIM 10.85 16
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on the understanding that important but subtle environ-

mental trends may only be apparent in the response of

multiple species, and, more pragmatically, that rare

species are difficult to model with standard statistical

methods and, hence, community signals may improve

model performance. Community models use information

from suites of species to inform variable selection and

modelling. Relevant predictors are included because of

their strong community signal, whereas that signal might

be insufficient to trigger inclusion in single species

models (Leathwick et al. unpubl.). GDM is the more

ecologically sophisticated approach to community mod-

elling, but the simpler MARS-COMM models per-

formed at least as well in this study. The comparison

of MARS single species models with the MARS com-

munity models shows that the community models

Fig. 6. Predictive performance
for the 30 South American
species (6a) and the 30 Swiss
species (6b), for 10 methods.
Species are sorted by the mean
AUC across all 16 methods.
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perform strongly in this trial. In contrast, a recent

application of MARS and MARS-COMM to modelling

a large presence-absence freshwater fish data set from

New Zealand indicated no consistent advantage for

community models (Leathwick et al. unpubl.). This

difference probably reflects the advantage in using

community data to infer absences for presence-only

data (see Materials and methods), the importance of

the community signal in the more biased and noisier

data analyzed here, and the small amounts of data

available for fitting some species. Further comparisons

of alternative community modelling approaches would

be useful to identify the factors influencing success of the

various techniques. It is likely that the inference of

absences is important, and could be adopted as an

alternative to random background samples for single

species models.

In summary, we suggest that the good performance of

the novel methods result from their ability to fit complex

responses (often including interactions) and select a

relevant set of variables. We do not expect that the fitted

models are too complex �/ for example, MAXENT as

used here is similar in expressiveness to a GLM without

interactions (for species with B/80 presences) or a GAM

with pairwise interactions (Appendix, Text S1). How-

ever, for any method an ability to fit complex responses

is not useful in itself, and has to be balanced against the

requirement for model features to be ecologically

realistic (Austin 2002). Systematic assessment of whether

individual fitted responses were realistic was beyond the

scope of the current research as our aim was to test

models across numerous species and regions. None-

theless, this would be a fruitful avenue for research and

model assessment.

Table 10. Pearson correlation coefficients between data characteristics and the maximum AUC achieved per species, summarised at
a regional level.

Sample sizes Environmental space Geographic space

P in PO Prevalence Nearest neighbour Range overlap Relative maximum distance Relative area of convex polygon

AWT �/0.340* �/0.276 0.589* �/0.302 �/0.456* �/0.421*
CAN 0.048* �/0.318 0.621* �/0.589* �/0.313 �/0.304
NSW �/0.045 �/0.654* 0.675* �/0.770* �/0.230 �/0.359*
NZ 0.028 �/0.298* 0.713* �/0.669* �/0.491* �/0.300*
SA �/0.601* �/0.714* 0.541* �/0.922* �/0.667* �/0.708*
SWI �/0.186 �/0.165 0.619* �/0.520* �/0.534* �/0.620*

Asterisks indicate significant values (pB/0.05). Prevalence is the frequency of occurrence records in the PA data. The measures are
detailed in the methods.

Fig. 7. The maximum AUC (over
all methods) vs sample size in
modelling data. Each point
represents a species.
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Regional patterns

The trend for good performance of the novel methods in

our experiment (BRT, MAXENT, GDM and MARS-

COMM) was also apparent at the regional level. In

regions such as SWI, where overall performance was

high, the ‘‘best’’ methods performed well, but most

methods were able to produce reasonable quality models

for many of the species. Exceptions to the usual ranking

of methods sometimes appeared in regions in which

overall predictive performance was generally poor

(AWT and CAN), with no clearly consistent cause. In

these regions, the good methods usually still showed

moderate success in prediction, and often were not

impacted as severely as other methods. The fact

that some regions had relatively poor average perfor-

mance and even the best methods could not do well

suggests that in such regions, modelling might most

benefit from attempts to improve the training data set.

This is particularly apparent in the CAN bird data set, in

which the data display many of the biases possible in

presence-only data (Anderson 2003). Sampling is se-

verely biased towards the southern extreme of the study

area, species’ ranges are only partially represented, and

environmental data may not capture the important

conditions affecting bird distribution, especially those

with large ranges. The effects of the partial sampling of

ranges may be similar to those demonstrated by Randin

et al. (in press) in their study of transferability of models.

One would expect the sampling bias to be particularly

problematic in cases, like CAN, where the gradient in

sampling efforts corresponds to strong environmental

gradients. As a consequence, only 4 of 20 species had a

mean ROC�/0.7, and the best methods (MARS-COMM

and BIOCLIM) had mean ROC scores of only 0.63

across species. With poor modelling success, the data

and ecology of the species need to be further investigated

to identify how to supplement or otherwise improve

both the species’ occurrence records and the predictor

variable set.

Species-level patterns

Though not a primary focus of our analysis, we can

highlight two results to guide those needing to under-

stand what species’ attributes might affect model per-

formance. Firstly, sample size (i.e. number of occurrence

records) was not consistently related to modelling

success. While other studies indicate that small sample

size negatively influences modelling success (Pearce and

Ferrier 2000a, Harrell 2001, Stockwell and Peterson

2002, Kadmon et al. 2003), this was not evident here,

perhaps because in general we had adequate localities for

modelling (mean number of modelling records�/233;

range�/2�/5822)

The other pattern that emerged is that species judged

to be specialists by the distribution of records in

environmental or geographic space tended to have higher

AUC scores than generalists, an effect also observed

elsewhere (Guisan and Hofer 2003, Segurado and

Araújo 2004, Thuiller et al. 2004, Luoto et al. 2005).

However, this result requires further scrutiny because it

may well be largely a function of spatial extent of the

analysis. If the extent is fixed (say, to a region) and the

evaluation data are a constant set of sites, specialists by

definition are those that exist in only a subset of that

space. Therefore, the evaluation data set will have many

zero records for such species, and any model that can

restrict its non-zero predictions to the zone that the

species occupies will have a good AUC score, due to the

comparison with the many absence sites. The question

then becomes one of whether a constant extent of

analysis is appropriate for all species in relation to the

purpose of the predictions. This consideration needs to

be defined by the end-use of the predictions, and merits

attention in any evaluation of modelling success.

Limitations

Whereas the present study points to both the potential

informativeness of presence-only data and to improved

methods for predicting species distributions from them,

we also need to emphasize what this doesn’t tell us. Our

evaluation strategy is specific to the question of how best

to predict species distribution under current environ-

mental conditions, which has broad relevance to con-

servation and ecological or macro-ecological studies

(Ferrier 2002, Funk and Richardson 2002, Rushton et

al. 2004). Our approach, however, does not inform

selection of methods for predicting potential ranges or

extrapolation from the current to alternative climates.

Modelling of potential ranges (Soberón and Peterson

2005) has applications to predicting expansions of

invasive species and investigating speciation processes

(Hugall et al. 2002, Peterson 2003). However, as the true

potential range may differ from the realized range

because of dispersal limitation, competition or other

factors (Van Horne 1983, Hanski 1994, Tyre et al. 2001,

Anderson et al. 2002), evaluating model performance is

a complex task and use of observed absences may be

misleading.

Projection of modelled relationships to alternative

climates (past or future) is an increasingly popular

application of distributional modelling, e.g. in relation

to potential effects of global warming. However, strong

performance of a particular method in the present

climate does not guarantee similar performance under

different climates (Thuiller 2004), particularly where this

requires prediction outside the range of environments on

which the original model was based (Araújo et al. 2005).
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Community-based models could fail if patterns of

species co-occurrence change due to idiosyncratic re-

sponses by individual species to climate change. Similar

caution should also be exercised in making predictions

for sites distant from the geographic domain from which

the modelling data were drawn, given the potential for

accurate prediction to be confounded either by unrecog-

nised environmental factors or by large-scale geographic

variation in disturbance regimes (Randin et al. in press).

Clearly, different models may be necessary, and different

approaches needed to evaluate relative performance of

modelling methods under these scenarios. Araújo et al.

(2005) argue that whilst evaluation of models to new

climates and new regions is particularly difficult, evalua-

tions of models even within one region are prone to over-

optimism. This occurs when modelling and evaluation

data sets are not sufficiently independent. Because the

data in this study were sourced from collections with

substantially different survey protocols, the evaluation is

unlikely to suffer from such problems. Nevertheless,

further explorations of the ability of the novel methods

to predict reliably to unsampled areas �/ for example, by

spatially stratifying the evaluation data �/ would be

useful.

A further qualification needs to be made. Whilst these

models have been shown to produce predictions that are

useful in their ability to rank sites for relative suitability

for many species, we do not suggest that models built

with presence-only data will be well calibrated. That is,

they do not accurately predict probability of presence

because they do not have access to reliable information

on the prevalence (frequency of occurrence) of the

species in the region. Rather, they provide relative indices

of suitability. Our implementations of most of the

methods that take into account background were simple

applications of the methods, not attempting to make

sophisticated adjustments at might improve this aspect.

Alternative approaches such as case control methods for

regression (Keating and Cherry 2004, Pearce and Boyce

in press), and Bayesian methods (Gelfand et al. 2006)

continue to be developed and have potentially important

contributions because they deal more appropriately with

the presence-only paradigm.

This is by no means a complete analysis, and

important questions remain. To advance our under-

standing of the strengths and weaknesses of methods

and the differences between them requires theoretical

investigations of the techniques (Austin 2002), testing on

simulated data (Austin et al. 1995), analysis of the

modelled response shapes (e.g. Austin et al. 1994, Bio

2000, Leathwick 2002) and evaluation of the spatial

trends in errors (Fielding and Bell 1997, Barry and Elith

in press). Our method of evaluation relies on the

evaluation site data and summarises over these, but

this might mask effects that can only be clarified with

these more detailed evaluations. Operator expertise will

affect model performance, and tests of the sensitivity of

the methods to how they are applied would be informa-

tive. These were beyond the scope of this paper but are

necessary for a deeper understanding of the models and

their predictive capacities and limitations.

Finally, we stress that modelling can never provide a

complete substitute for detailed, ongoing collection

of field data, including data on species’ distribution,

demography, abundance, and interactions (Guisan

and Thuiller 2005). Modelling approaches which attempt

to integrate such information include Bayesian

approaches (Gelfand et al. 2006), investigation of

competitors (Leathwick and Austin 2001, Anderson et

al. 2002), and studies of connectivity (Ferrier et al.

2002a, Moilanen et al. 2005). To date, few models

have been validated via collection of new data (but see

Ferrier and Watson 1997, Elith and Burgman 2002,

Raxworthy et al. 2003, Peterson 2005). Likewise, colla-

borative efforts between modellers and users such

as conservation managers are rare (Pielke Jr 2003).

Ideally, models should be developed and tested in

iterative cycles that take account of the desired uses of

model, investigate the ecological rationality of the

modelled responses and explore errors in predictions

(Burgman et al. 2005, Barry and Elith in press). We hope

that our model comparisons will stimulate more research

into both modelling methods, further development of

efficient user interfaces for the more successful methods,

and greater integration among modellers and end-users.
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