
Appendix N - Navigation Processing Notes
Several sources of data are collected independently by the TowCam (e.g., Pictures,
Navigation/Position, CTD data, Samples). In order to link these data streams into a final
product that will allow you to better interpret your results, some processing is required.
This processing is done primarily using a MATLAB script that has been developed to
deal specifically with TowCam data. The various data streams are linked by time, which
is recorded by each of the different sensors.

Recommended directory structure:
All of the data files from the different sources must be collected in one spot. It is
recommended that copies of the data be used and that the originals be kept in a safe
location and backed up. The following file structure should be used to facilitate data
processing. Each tow (e.g., CT01, CT02,…CT0N) should have its own directory. Within
that directory you should put the CTD data, a list of the image files, the ship navigation
for that tow, and a matlab processing script specific to that tow.

• OR1-810_processing
o ShipNav
o Pixlist
o CT01

 CT01_CTD (folder)
 OR1-810_CT01_pixlist.txt (text file)
 OR1-810_1001_nav.txt (text file)
 NavMerge_CT01.m (processing script)

o CT02
o CT03
o CT04

The parent directory should be named after the cruise (e.g., OR1-810). Subordinate to
that should be…

ShipNav folder that contains raw ship navigation files (e.g., OR1_1006.col), ship nav
processing scripts (e.g., OR1NavProc.pl), and processed nav files (e.g.,
OR1_1006_nav.txt, OR1-810_CT01_nav.txt).

Pixlist folder that contains the lists of images generated after each tow.
CT01 folder that contains CTD files within directories named for the tow (e.g.

CT01_CTD), a file containing the list of image names (OR1-
810_CT01_pixlist.txt), a copy of the processed ship navigation file for that tow
(OR1-810_1001_nav.txt), and a processing script (NavMerge_CT01.m).

How the different files are generated is described below.

Ship Navigation:
Ship navigation (GPS) files are obtained from the ships crew daily (or after each tow).
The files are named as ship_date.col (e.g., OR1_1002.col). The data needs to be
processed so that it is in the correct format for MATLAB. As an example, in the ship file

the time is stored as a string (hhmmss) and the script will change it to hh, mm, ss. The
script is written in the programming language perl, and perl must be installed on the
computer (it comes pre-installed on Mac computers).

**A print out of the perl script is attached at the end of this document.

To use the perl script to process the data, place the ship navigation file, processing script
(OR1NavProc.pl) in the same directory, and follow these instructions:

1. Using the Terminal program navigate to this directory (cd = change directory).
2. Make sure the script is executable (chmod u+x OR1NavProc.pl).
3. Run the script giving it an input file preceded by a '<' and an output file preceded

by a '>' (./OR1NavProc < OR1_1002.col > OR1-1002_nav.txt)

OR1_1002.col (before processing):

 120.29113150 22.61451983 0.000 00000000 011115 OR1_81
 120.29113517 22.61452233 0.000 20061002 011125 OR1_81
 120.29113483 22.61452117 0.000 20061002 011135 OR1_81
 120.29113450 22.61451850 0.000 20061002 011145 OR1_81
 120.29113267 22.61451633 0.000 20061002 011155 OR1_81
 120.29113217 22.61451367 0.000 20061002 011205 OR1_81
 120.29112933 22.61451033 0.000 20061002 011215 OR1_81
 120.29111933 22.61450967 0.000 20061002 011225 OR1_81

OR1-1002_nav.txt (after processing):

Year, Month, Day, Hour, Min, Sec, Long, Lat, Depth, SOM
0000, 00, 00, 01, 11, 15, 120.29113150, 22.61451983, 0.000, 4275
2006, 10, 02, 01, 11, 25, 120.29113517, 22.61452233, 0.000, 177085
2006, 10, 02, 01, 11, 35, 120.29113483, 22.61452117, 0.000, 177095
2006, 10, 02, 01, 11, 45, 120.29113450, 22.61451850, 0.000, 177105
2006, 10, 02, 01, 11, 55, 120.29113267, 22.61451633, 0.000, 177115
2006, 10, 02, 01, 12, 05, 120.29113217, 22.61451367, 0.000, 177125
2006, 10, 02, 01, 12, 15, 120.29112933, 22.61451033, 0.000, 177135
2006, 10, 02, 01, 12, 25, 120.29111933, 22.61450967, 0.000, 177145

1.

2.

3.

*The last column, SOM, is a unique time ID for each navigation point that is the number
of the seconds from the first of the month (Day*3600*24 + Hour*3600 + Minute*60 +
Second).

Making the Pixlist file:
The MATLAB processing scripts require a list of the file names of all the pictures taken
by the camera. This list should start with the first bottom picture and end with the last
bottom picture. You will need to generate this list and cut off files that are not pictures of
the bottom.

• Using the Terminal program, navigate to the location where the images are stored.
• Type the command 'ls' followed by a '>' and an output file name. This will pipe

the list generated by 'ls' into the output file.
o example: ls > OR1-810_CT02_pixlist.txt

• Look at the images to see where the first and last bottom pictures are and cut off
file names that are earlier and later. **Check the end of the pixlist file to make
sure that the filename of the list itself (e.g., OR1-810_CT02_pixlist.txt) is not
included.

MATLAB processing script:
The MATLAB processing script will allow you to link the ship navigation, CTD data,
and image data. Linking is achieved by using the time stamp that is present in each
record. The script will allow you to cut-off excess data, filter the data, produce plots for
each tow, and output a series of data files containing the linked data. The MATLAB
script is divided into sections (i.e., cells) that contain a block of code that conducts a
specific task. Below the function of each cell is described and notes are provided to
explain how this is achieved. Almost all of the functions used in this script are native
MATLAB commands and descriptions of these can be found by typing 'help
<command>' or 'doc <command>' (e.g., doc textread). As each camera tow is different,
new challenges will arise each time data is processed. Although the code is flexible and
designed to meet these challenges, invariably some modification of the code will be
required. It is highly recommended that a new copy of the processing script be used for
each tow and saved along with the data. This will allow data to be reprocessed later
without having to troubleshoot the code again. Notes describing common errors and how
they may be corrected are marked by **.

**A complete, documented copy of the code is included at the end of this document.

%% Clear the memory
This section clears any stored data from memory and closes any open figure windows.

%% Paths to data
Paths to the location of input files are hard coded. This is one reason it is useful to create
a new version of the code for each camera tow.

**The paths need to be changed for each tow. If the next section (load data) fails, be sure
to check that the path names (including all dashes '-' and underscores '_' are correct.

%% Load data
Data is loaded using the function textread. The format of each data element is indicated
in common latex syntax where %f is a floating point number, %s is a string, %d is an
integer, etc. Arguments after the textread command include the delimeter between data
elements, the number of headerlines above the data.

%% Preallocating memory
Memory is preallocated for variables that will be used later to speed up processing.
Variables are created with the proper size (number of elements) and filled with zeroes.

%% Change times to second of day
A unique ID is created to link data elements from different input files. The ID is the
number of seconds since the beginning of the month and is calculated as:
(Day*3600*24 + Hour*3600 + Minute*60 + Second).

%% Sample CTD data at image times
Variables are created that subsample the CTD data, which is recorded at 1 Hz, at a time
interval dictated by the time of the photos.

%% Cut off unnecessary data
Data is recorded in the ship navigation, CTD, and image records over a time window that
exceeds that of the time the camera is on the bottom.

**Check the figures that are generated here to see that the cut data looks like the right
section of the total data. If it is incorrect, make sure that the pixlist file really covers the
first to last bottom pictures.

%% Calculate layback
Layback, the distance between the ship and the camera system is difficult to determine. In
general, a constant layback (100-300 m) can be applied to the ship position in the
direction opposite that which the ship is traveling. When the ship makes tight turns, a
constant layback direction does not work well. The ships track often has small jogs as it
tries to maintain course. In reality, small jogs in the ship's course are not felt by the
camera system and the camera track is likely much smoother than the ship track.
However, accurately and reliably removing these jogs can not be done automatically

To determine the layback direction a MATLAB command that determines the azimuth
between successive ship navigation points is used. Due to course jobs, however, the
point-to-point azimuth is a very noisy record, so a filtered version of this is used to
determine the layback position. The matlab command 'reckon' is then used to find a new
layback position for each ship position.

You should be aware of several options when calculating layback:

1. Using the aforementioned filtered course data to determine layback.
2. Using a constant layback azimuth in place of the course (or filtered course data).
3. Using no layback at all.

**The latter is advised if the ship made many turns during the tow.

%% Interpolate ship and layback nav to 1 Hz

With layback applied to the ship's navigation, the data are interpolated to 1 Hz, the same
frequency as the CTD data. The MATLAB command 'interp1' uses ship nav time, ship
nav position, and CTD time to achieve this.

%% Calculate distances between nav points

The distance along the track is an effective way to plot data such as seafloor depth and
temperature records. This is especially true is the ship speed was not constant during the
tow. Distances are calculated using the simple pythogorean theorem.

%% Sample data

Sample times are used to pull CTD data at sample times.

%% Filter depth data

Seafloor depth can be a noisy record, so data is filtered using a low-pass butterworth
filter. A function (not a native MATLAB command) is used to do this. The function
called lowfilt.m must be on the computer and in the MATLAB path!!

%% Plot seafloor profile and samples

The next 5 sections make plots of the data. The first is a plot of the seafloor depth and
sample locations. Sample names are shown on this plot, but the code that executes
writing text on the plot will have to be adjusted for each tow. Depending on the profile,
some of the sample labels work better above the profile and others below. In the last 2
'for' loops in this section change the code 'for o = [1,4,5]' to adjust this. Also in these
loops change the code 'SAMwdep(o)+80' so that the labels appear at the correct height
relative to the seafloor profile.

%% Plot depth as a function of time

Self-explanatory.

%% Multi-axis plot – temp

Self-explanatory.

%% Multi-axis plot – sal (developed by Yee Ching)

Self-explanatory.

%% Depth, temperature, salinity, turbidity

Self-explanatory.

%% Making a sample file

The first output file contains comma separated data at each sample time.

%% Making new flash file

The second output file that is created has the following elements for each flash record
(image) during the tow:
DATE,TIME,LAT,LON,UTMx,UTMy,SHIPLAT,SHIPLON,DEPTH,ALT,WDEP,TEM
P,TURB,SAL,HLINK
This information is contained in a headerline at the beginning of the file.
Lat,Lon,UTMx,and UTMy are position of the camera using layback (if used). SHIPLAT
and SHIPLON are the original ship's position. The last column, HLINK, is the name of
the image path preceded by 'path:/'. When imported in Arc, this column can be used to
link the pictures to the map. The data is comma separated.

%% Saving stuff

The last file created is a .mat file. This is a binary file that is only read by MATLAB. All
the variables created during the processing are stored in this file. This data can be loaded
for further processing without re-running the processing script.

Page 1 of 1OR1NavProc.pl
Printed: Wednesday, September 27, 2006 8:04:48 PM

#!/usr/bin/perl -
#	

OR1NavProc.pl
Written by A. Soule, 27 Sept. 2006
contact ssoule@whoi.edu for further instructions
#
This perl script will parse the navigation files produced by the OR1 to a
format suitable for use in TowCam processing scripts. A unique, time-based
ID is generated for each GPS point to allow merging of the ship navigation
with TowCam imagery, sampling, and CTD data.
#
Place the script in a folder with ascii navigation files obtained from OR1.
Make sure the script is executable. If it is not, type the following command
in the terminal window where the script resides '>> chmod u+x OR1NavProc.pl'.
#
Usage: At the command prompt, call the script and give the name of the input
file preceeded by a less than sign and the name of the output file preceeded
by the greater than sign.
#
prompt>> ./OR1NavProc.pl < 'input file' > 'output file'

$line = <>;
	

	

while ($line = <>) {	

 	

 	

 #perform parsing for each line in the file
	

	

	

 chomp($line);	

 	

 	

 	

 #remove any 'end of line' characters

	

 ($A, $B, $C, $D, $E, $F) = split(" ", $line);	

 #split data into variables
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 #using a 'space' delimeter

	

 $LON = $A;	

 	

 	

 	

 	

 #longitude in decimal degrees
	

 $LAT = $B;	

 	

 	

 	

 	

 #latitude in decimal degrees
	

 $DEP = $C;	

 	

 	

 	

 	

 #heading in decimal degrees
	

 $DATE = $D;	

	

 	

 	

 	

 #date in format: YYYYMMDD
	

 $TIME = $E;	

	

 	

 	

 	

 #time in format: hhmmss
	

	

 $YY = substr($D,0,4);	

 	

 #sample date string for year
	

 $MM = substr($D,4,2);	

 	

 #sample date string for month
	

 $DD = substr($D,6,2);	

 	

 #sample date string for day
	

	

 $hh = substr($E,0,2);	

 	

 #sample time string for hour
	

 $mm = substr($E,2,2);	

 	

 #sample time string for minute
	

 $ss = substr($E,4,2);	

 	

 #sample time string for second
	

	

 #second of day provides a unique id for each gps measurement that can be
	

 #linked to CTD data. second of month removes any problems for tows that
	

 #cross a gmt day (NOTE: this will fail if a tow crosses a gmt day from the
	

 #end of one month to the beginning of the next month!!!)
	

	

 $SOD1 = ($hh*3600) + ($mm*60) + ($ss);	

 #calculate second of day
	

 $SOD2 = ($DD)*24*3600;	

 	

 #seconds in the month until current day
	

 $SOM = $SOD1+$SOD2;	

	

 	

 #second of month
	

	

 #print the data to a new file.
	

	

	

 print "$YY $MM $DD $hh $mm $ss $LON $LAT $DEP $SOM \n";
}

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

1 of 12 10/7/06 6:35 PM

C o n t e n t s

Layback code for NTU-CGS TowCam
Paths to data
Load data
Preallocating memory
Change times to second of day
Sample CTD data at image times
Cut off unnecessary data
Calculate layback
Plot course (azimuth) data
Interpolate ship and layback nav to 1 Hz
Calculate distances between nav points
Sample data
Filter depth data
Plot seafloor profile and samples
Plot depth as a function of time
Multi-axes plot-temp
Multi-axes plot-sal
Depth, temperature, salinity, turbity
Making a sample file
Making new flash file
Saving stuff

Layback code for NTU-CGS TowCam

Adam Soule, 01 October 2006

Variable naming conventions: SOURCE + variable + description

SOURCES: SNAV = ship nav, CTD = ctd, BTL = bottle, PIX = picture, LB = layback nav, SAM
= sample. descriptions: C = cut, i = interpolated, F = filtered

clear all
close all
clc

Paths to data

Paths are hard-coded and need to be modified for different computers, cruises, deployments,
etc.

SN = 'C:\Towcam\Cruise\OR1-2006\process\CT07\OR1-1006_nav.txt';
CT = 'C:\Towcam\Cruise\OR1-2006\process\CT07\CT07_CTD\CT07_ctd.txt';
BT = 'C:\Towcam\Cruise\OR1-2006\process\CT07\CT07_CTD\CT07_core.txt';
PI = 'C:\Towcam\Cruise\OR1-2006\process\CT07\OR1-810-CT07-pixlist.txt';

Load data

data loaded by textread function based on the syntax and structure within each datafile.
Updates for loading will read as shown below code block.

disp('Loading Ship Navigation...')
[SNAVyear,SNAVmonth,SNAVday,SNAVhr,SNAVmin,SNAVsec,...
 SNAVlon,SNAVlat,SNAVdep,SNAVsod]= textread(SN,...
 '%d %d %d %d %d %f %f %f %f %f','headerlines',1,...
 'delimiter',',');
disp(['Done!'; ' '])

disp('Loading CTD data...')
[CTDdate,CTDtime,CTDprSM,CTDtemp,CTDc0m,CTDupoly,CTDturb,...
 CTDdep,CTDalt,CTDupoly,CTDsal,CTDflag]=...
 textread(CT,'%s %s %f %f %f %f %f %f %f %f %f %f',...
 'headerlines',1,'delimiter',',');

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

2 of 12 10/7/06 6:35 PM

CTDwdep = -(CTDdep+CTDalt);
disp(['Done!'; ' '])

disp('Loading Bottle data...')
[BTLnum,BTLdate,BTLtime,BTLprSM,BTLtemp,BTLcond,BTLpoly,...
 BTLturb,BTLdep,BTLalt,BTLpoly1]=...
 textread(BT,'%d %s %s %f %f %f %f %f %f %f %f',...
 'headerlines',1,'delimiter',',');
disp(['Done!'; ' '])

disp('Loading Pixlist data...')
PIXtime = textread(PI,'%s');
disp(['Done!'; ' '])

Loading Ship Navigation...
Done!

Loading CTD data...
Done!

Loading Bottle data...
Done!

Loading Pixlist data...
Done!

Preallocating memory

Memory is preallocated for all arrays that will be grown by indexing to speed processing
time.

CD = zeros(1,length(CTDtime));
CH = zeros(1,length(CTDtime));
CM = zeros(1,length(CTDtime));
CS = zeros(1,length(CTDtime));
PD = zeros(1,length(PIXtime));
PH = zeros(1,length(PIXtime));
PM = zeros(1,length(PIXtime));
PS = zeros(1,length(PIXtime));
BD = zeros(1,length(BTLdate));
BH = zeros(1,length(BTLdate));
BM = zeros(1,length(BTLdate));
BS = zeros(1,length(BTLdate));

Change times to second of day

disp('Changing time (hh:mm:ss) to second of day...')

for k = 1:length(CTDtime)
 tt = CTDtime{k};
 gg = CTDdate{k};
 CD(k) = str2double(gg(1:2));
 CH(k) = str2double(tt(1:2));
 CM(k) = str2double(tt(4:5));
 CS(k) = str2double(tt(7:8));
end

CTDsod = (CD.*3600*24)+(CH.*3600)+(CM.*60)+(CS);

SNAVsod = floor(SNAVsod);

for j = 1:length(PIXtime)
 aa = PIXtime{j};
 PD(j) = str2double(aa(9:10));
 PH(j) = str2double(aa(12:13));
 PM(j) = str2double(aa(15:16));
 PS(j) = str2double(aa(18:19));
end

PIXsod = (PD.*3600*24)+(PH.*3600)+(PM.*60)+(PS);

disp(['Done!'; ' '])

for g = 1:length(BTLdate)
 bb = BTLdate{g};
 aa = BTLtime{g};
 BD(g) = str2double(bb(1:2));
 BH(g) = str2double(aa(1:2));
 BM(g) = str2double(aa(4:5));
 BS(g) = str2double(aa(7:8));
end

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

3 of 12 10/7/06 6:35 PM

BTLsod = (BD.*3600*24)+(BH.*3600)+(BM.*60)+(BS);

Changing time (hh:mm:ss) to second of day...
Done!

Sample CTD data at image times

This function replaces the flash file created by the seabird software. Occasionally the flash
record will become misaligned with the image times and this ensures that CTD data is sampled
at the correct intervals.

for k = 1:length(PIXsod)
 aa(k) = find(CTDsod==PIXsod(k));
end
FLAsod=CTDsod(aa);
FLAdate=CTDdate(aa);
FLAwdep=CTDwdep(aa);
FLAtime=CTDtime(aa);
FLAdate=CTDdate(aa);
FLAdep=CTDdep(aa);
FLAalt=CTDalt(aa);
FLAtemp=CTDtemp(aa);
FLAturb=CTDturb(aa);
FLAsal=CTDsal(aa);

Cut off unnecessary data

CTD data is collected during the descent and ascent. This function will subsample the CTD
data 10 seconds prior to and after images start and stop, OR over an interval selected from a
GUI.

plot(CTDsod,CTDwdep)
% [x,y] = ginput(2); % uncomment to select the interval
 % through a GUI and comment next
 % line.
x = [PIXsod(1)-10,PIXsod(end)+10];
cc = find(CTDsod<x(2)&CTDsod>x(1));
clear x y

CTDsodC = CTDsod(cc);
CTDwdepC = CTDwdep(cc);
CTDtempC = CTDtemp(cc);
CTDsalC = CTDsal(cc);
CTDtimeC = CTDtime(cc);
CTDturbC = CTDturb(cc);
CTDdateC = CTDdate(cc);
CTDcdepC = CTDdep(cc);
CTDaltC = CTDalt(cc);

figure
plot(CTDsodC,CTDwdepC)

be = CTDsodC(1);
en = CTDsodC(end);

temp = find(SNAVsod<=be); %%% fix this!!
x(1) = temp(end);
x(2) = find(SNAVsod>=en,1);
cs = [x(1):x(2)];
clear x

SNAVsodC = SNAVsod(cs);
SNAVlatC = SNAVlat(cs);
SNAVlonC = SNAVlon(cs);
[SNAVx,SNAVy,zone] = ll2utm(SNAVlatC,SNAVlonC,1);

FLAsodC = FLAsod;
FLAwdepC = FLAwdep;
FLAdateC = FLAdate;
FLAtimeC = FLAtime;
FLAtempC = FLAtemp;
FLAturbC = FLAturb;
FLAdepC = FLAdep;
FLAaltC = FLAalt;
FLAsalC = FLAsal;

PIXtimeC = PIXtime;
PIXsodC = PIXsod;

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

4 of 12 10/7/06 6:35 PM

 UTM zone is 50
 Central Meridian Longitude is 117.0000

Calculate layback

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

5 of 12 10/7/06 6:35 PM

lb = km2deg(0.01);

[course,dist]=legs(SNAVlatC,SNAVlonC);
course = [course(1);course];
courseF = lowfilt2(course);

%Options:
% If layback does not look right you can:
% a) change the layback from "courseF" to a constant number (line 207).
% b) change the amount of layback (line 194)to a very small number 0.001.

for g = 1:length(course)
 [LBlat(g),LBlon(g)] = reckon(SNAVlatC(g),SNAVlonC(g),...
 lb,(315-180));
end

[LBx,LBy,zone]=ll2utm(LBlat,LBlon,1);

 UTM zone is 50
 Central Meridian Longitude is 117.0000

Plot course (azimuth) data

figure
plot(course,'c')
hold on
plot(courseF,'b')
legend('course','filtered')

Interpolate ship and layback nav to 1 Hz

Interpolate position data to 1 hz by time.

SNAVxi = interp1(SNAVsodC,SNAVx,CTDsodC);
SNAVyi = interp1(SNAVsodC,SNAVy,CTDsodC);

[SNAVloni,SNAVlati] = utm2ll(SNAVxi,SNAVyi,zone);

LBxi = interp1(SNAVsodC,LBx,CTDsodC);
LByi = interp1(SNAVsodC,LBy,CTDsodC);

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

6 of 12 10/7/06 6:35 PM

[LBloni,LBlati] = utm2ll(LBxi,LByi,zone);

figure
plot(SNAVxi,SNAVyi,'-k')
hold on
plot(LBxi, LByi, '-r')
xlabel('UTMx');
ylabel('UTMy');
print -depsc OR1-810_CT07_layback
print -dpdf OR1-810_CT07_layback

Calculate distances between nav points

CTDdist = 0;
for t = 2:length(LBxi)
 Ac = (LBxi(t)-LBxi(t-1))^2;
 Bc = (LByi(t)-LByi(t-1))^2;
 Cc = (Ac+Bc)^(1/2);
 CTDdist(t) = Cc+CTDdist(t-1);
end

% create a buffer (200 m to either side) for plotting

d1 = CTDdist(1)-200;
d2 = CTDdist(end)+200;

Sample data

Subsample data at sample (bottle) times

for u = 1:length(BTLsod)
 SampID(u) = find(CTDsodC==BTLsod(u));
end

% SampID = SampID(2:end);

SAMwdep = CTDwdepC(SampID);
SAMdist = CTDdist(SampID);
% SAMtime = BTLtime;
SAMtime = BTLtime;
SAMdate = CTDdateC(SampID);

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

7 of 12 10/7/06 6:35 PM

SAMlat = LBlati(SampID);
SAMlon = LBloni(SampID);
SAMx = LBxi(SampID);
SAMy = LByi(SampID);

Filter depth data

CTDwdepF = lowfilt(CTDwdepC);

Plot seafloor profile and samples

figure
plot(CTDdist,CTDwdepC,'Color',[0.7 0.7 0.9])
hold on
plot(CTDdist,CTDwdepF,'-b')
xlim([d1 d2])
plot(SAMdist,SAMwdep,'ok','MarkerFaceColor','r')
legend('water depth','filtered','sample')
xlabel('distance (m)')
ylabel('water depth (m)')
uu = ylim;

samplename = 'OR1-810_CT07-'; % Change sample name for different cruise
 % and tows

% above

for o = [1,4,5]
 text(SAMdist(o),(SAMwdep(o)+80),['\leftarrow', samplename, num2str(o)...
 ', ' SAMtime{o}],'HorizontalAlignment','right','rotation',90)
end

% below

for o = [2,3,6]
 text(SAMdist(o),(SAMwdep(o)-80),[samplename, num2str(o) ',' SAMtime{o}...
 '\rightarrow'],'HorizontalAlignment','left','rotation',90)
end

print -depsc OR1-810_CT07_dist_depth
print -dpdf OR1-810_CT07_dist_depth

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

8 of 12 10/7/06 6:35 PM

Plot depth as a function of time

dd1 = CTDsodC(1);
dd2 = CTDsodC(end);
dd3 = 0;
for nn = 500:(round(length(CTDsodC)/10)):length(CTDsodC)
 dd3 = dd3 + 1;
 plottime(dd3,:) = CTDtimeC{nn};
end
pttime = cellstr(plottime);

figure
plot(CTDsodC,CTDwdepC,'Color',[0.8 0.8 0.8])
hold on
plot(CTDsodC, CTDwdepF, 'k')
% hold on
% plot(CTDsodC, -CTDcdepC,'b')
xlim([dd1 dd2])
tk = 500:(round(length(CTDsodC)/10)):length(CTDsodC);
tkmk = CTDsodC(tk);
set(gca, 'XTick', tkmk)
set(gca,'XTickLabel',pttime)
grid on
print -depsc OR1-810_CT07_time_depth
print -dpdf OR1-810_CT07_time_depth

Multi-axes plot-temp

lowT = min(CTDtempC);
highT = max(CTDtempC);

figure
x1 = CTDdist; y1 = CTDwdepC;
x2 = CTDdist; y2 = CTDtempC;
hl1 = line(x1,y1,'Color','k');
xlabel('Distance along tow (m)')
ylabel('Seafloor depth (m)')
ax1 = gca;
set(ax1,'XColor','k','YColor','k');
grid on
ax2 = axes('Position',get(ax1,'Position'),...
 'XAxisLocation','top',...
 'YAxisLocation','right',...
 'Color','none',...
 'XColor','r','YColor','r');

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

9 of 12 10/7/06 6:35 PM

hl2 = line(x2,y2,'Color','r','Parent',ax2);
% ylim([4.0 4.15])
ylabel('Potential T (deg C)')

print -depsc OR1-810_CT07_dist_depth-temp
print -dpdf OR1-810_CT07_dist_depth-temp

Multi-axes plot-sal

lowT = min(CTDsalC);
highT = max(CTDsalC);

figure
x1 = CTDdist; y1 = CTDwdepC;
x2 = CTDdist; y2 = CTDsalC;
hl1 = line(x1,y1,'Color','k');
xlabel('Distance along tow (m)')
ylabel('Seafloor depth (m)')
ax1 = gca;
set(ax1,'XColor','k','YColor','k');
grid on
ax2 = axes('Position',get(ax1,'Position'),...
 'XAxisLocation','top',...
 'YAxisLocation','right',...
 'Color','none',...
 'XColor','g','YColor','g');
hl2 = line(x2,y2,'Color','g','Parent',ax2);

ylabel('Salinity (psu)')

print -depsc OR1-810_CT07_dist_depth-sal
print -dpdf OR1-810_CT07_dist_depth-sal

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

10 of 12 10/7/06 6:35 PM

Depth, temperature, salinity, turbity

figure
subplot(4,1,1)
plot(CTDdist,CTDwdepC,'k')
subplot(4,1,2)
plot(CTDdist,CTDtempC,'r')
subplot(4,1,3)
plot(CTDdist,CTDsalC,'g')
subplot(4,1,4)
plot(CTDdist,CTDturbC,'c')
CTDturbF = lowfilt(CTDturbC);
hold on
plot(CTDdist,CTDturbF,'b')
ylim([0.1 0.3])

print -depsc OR1-810_CT07_depth-temp-sal-turb
print -dpdf OR1-810_CT07_depth-temp-sal-turb

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

11 of 12 10/7/06 6:35 PM

Making a sample file

outfile1 = 'OR1-810_CT07_samples.txt';

fid=fopen(outfile1, 'w');
fprintf(fid,'%s\n','SAMPLE,DATE,TIME,LAT,LON,UTMX,UTMY,WDEP,ID');

for bb = 1:length(SAMtime)
 sampN = ['OR1-810_CT07_0' num2str(BTLnum(bb))];
 gg = SAMtime{bb};
 sampT = [gg(1:2) '_' gg(4:5) '_' gg(7:8)];
 fprintf(fid,'%s,%s,%s,%9.8f,%10.7f,%8.2f,%8.2f,%6.2f \n',...
 sampN,SAMdate{bb},sampT,SAMlat(bb),SAMlon(bb),SAMx(bb),...
 SAMy(bb),SAMwdep(bb));
end

Making new flash file

rec = zeros(1,length(FLAsodC));

for bb = 1:length(FLAsodC)
 rec(bb) = find(CTDsodC == FLAsodC(bb));
end

FLAxlb = LBxi(rec);
FLAylb = LByi(rec);
FLAlonlb = LBloni(rec);
FLAlatlb = LBlati(rec);
FLAshlat = SNAVlati(rec);
FLAshlon = SNAVloni(rec);

display('Making output file...')
outfile = 'OR1-810_CT07_arc.txt';

fid=fopen(outfile, 'w');
fprintf(fid,'%s\n','DATE,TIME,LAT,LON,UTMx,UTMy,SHIPLAT,SHIPLON,DEPTH,ALT,WDEP,TEMP,TURB,SAL,HLINK');
for i = 1:length(FLAtimeC)
% temp = FLAtimeC{i};
% image_name=[temp(1:2) '_' temp(4:5) '_' temp(7:8)];
 temp = PIXtimeC{i};
 image_name=temp;
 temp3 = FLAtimeC{i};
 image_time=temp3;
 temp2 = FLAdateC{i};
 image_date=[temp2(8:11) '_08_' temp2(1:2)];

NavMerge_CT07 file:///Users/admin/Documents/OR1-810/TowCam_DP_Manual/htm...

12 of 12 10/7/06 6:35 PM

 path=['path:\' image_name];
 fprintf(fid,'%s,%s,%9.8f,%10.7f,%8.2f,%8.2f,%9.8f,%10.7f,%6.2f,%4.2f,%6.2f,%7.4f,%7.4f,%7.4f,%s\n',...
 FLAdateC{i},image_time,FLAlatlb(i),FLAlonlb(i),FLAxlb(i),FLAylb(i),FLAshlat(i),FLAshlon(i),FLAdepC(i),FLAaltC(i),...
 FLAwdepC(i),FLAtempC(i),FLAturbC(i),FLAsalC(i),path);
end

Making output file...

Saving stuff

eval('save OR1-810_CT07.mat');

fclose('all');

display('Jia shun!!')

Jia shun!!

Published with MATLAB® 7.2

