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the “latency of understanding” paradigm 

 

? 

O(10-30 bytes/sec) 
Frietag et al. 2005 

O(hours) 

O(100,000 images) 

? 

O(days-weeks) 
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• compressed images can be transmitted acoustically 

which images get sent? 

 

• classification serves as semantic compression 

 

• real-time automated classification algorithms 

    correct for illumination/attenuation artifacts? 

 

motivation from related research 

 Murphy, 2012 PhD Thesis 
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• “the images were rigorously color corrected…” 

 

• radically different approaches towards scene 

classification vs. object detection 

 

• methods are computationally expensive 

 

 

motivation from related research 

 Loomis, 2011 PhD Thesis 
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overview of thesis structure 

 Kaeli, 2013 PhD Thesis 

0.   introduction 

 

1. underwater image correction 

 

2. computational strategies 

 

3. understanding underwater image datasets 

 

4. conclusions 
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overview of thesis contributions 

 Kaeli, 2013 PhD Thesis 

1. underwater image correction 

 

- detailed model of underwater image formation  

 

- review of broad range of correction techniques 

 

- present novel method for correction for robotic 

imaging platforms based on estimating environmental 

and system parameters using multi-sensor fusion 
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overview of thesis contributions 

 Kaeli, 2013 PhD Thesis 

2. computational strategies 

 

- use Hierarchical Discrete Correlation [Burt 81] as basis 

for novel octagonal pyramid framework 

 

- demonstrate efficient computation of gradient an 

 

- explore design of invariant features for reduced 

computation overhead in situ 
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overview of thesis contributions 

 Kaeli, 2013 PhD Thesis 

3. understanding underwater image datasets 

 

- fast keypoint detection and description 

 

- online navigation summaries [Girdhar 12] as basis for 

unsupervised mission-time low-bandwidth map 

 

- supervised object detection: finding crabs 

 

- building semantic maps 
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overview of thesis structure 

 

 

 

1. underwater image correction 

 

2. computational strategies 

 

3. understanding underwater image datasets 
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1. underwater image correction 

   underwater image formation 
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SeaBed - Autonomous 

Underwater Vehicle 

SeaSled – Towed 

Camera System 

1. underwater image correction 

   robotic imaging platforms 
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1. underwater image correction 

   altitude constraints 
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1. underwater image correction 

   diversity of approaches to correction 

 

frame averaging 

white balance 

raw image 

homomorphic filtering 

adaptive histogram equalization 

a.h.e. + white balance 
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1. underwater image correction 

   constrain light field equation using keypoints 
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1. underwater image correction 

   constrain light field equation using keypoints 
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1. underwater image correction 

   estimate beam pattern and correct 
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1. underwater image correction 

   sample corrected imagery 
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1. underwater image correction 

   sample corrected imagery 
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overview of thesis contributions 

 Kaeli, 2013 PhD Thesis 

1. underwater image correction 

 

- detailed model of underwater image formation  

 

- review of broad range of correction techniques 

 

- present novel method for correction for robotic 

imaging platforms based on estimating environmental 

and system parameters using multi-sensor fusion 
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overview of thesis structure 

 

 

 

1. underwater image correction 

 

2. computational strategies 

 

3. understanding underwater image datasets 
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2. computational strategies 

   multi-scale image representations 

convolution is still major bottleneck in many multi-scale 

image processing framework [Van 2011] 

even in fast keypoint description [Calonder 2010] 

 

can we exploit pixel grid geometries that allow us to 

substitute adds and bit shifts for costly convolutions 

while still approximating a Gaussian? [Viola 2001] 

 

applications on low-power robotic imaging platforms 
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2. computational strategies 

   multi-scale image representations 

continuous scale-space 

 [Lindeberg 1994] 

 

discrete scale-space: 

pyramids [Burt 1983] 
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2. computational strategies 

   Hierarchical Discrete Correlation [Burt 1981] 
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2. computational strategies 

   the octagonal pyramid 
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2. computational strategies 

   the recursive octagonal kernel 

1 

 

2 

 

3 

 

4 

 

8 

 

16 
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2. computational strategies 

   the recursive octagonal kernel 

only 3P adds + P bit shifts! 

(for sqrt(2) scale resolution) 

 

compare with ~3.3P 

multiplies + ~2.7 adds 

(for 1 scale resolution) 

 

must be vigilant about 

absolute orientation 

between levels 
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2. computational strategies 

   efficient oriented gradient computation 

how fine angular resolution 

do we need if we’re binning? 
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2. computational strategies 

 efficient oriented gradient computation 

9% overestimate 

RMS error only +-3% 

max bin diff ~6% 

inspired by LBP [Ojala 2002] 



30 J.W. Kaeli, 2013 

2. computational strategies 

   opponent color space 
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2. computational strategies 

 color demosaicing 

compare O(16P) sums 

versus O(30P) multiplies! 

[Malvar 04] 
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2. computational strategies 

   underwater invariance 
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3. understanding underwater image datasets 

   illumination invariance – keypoint detection 
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2. computational strategies 

   attenuation invariance 
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2. computational strategies 

   underwater invariance 
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2. computational strategies 

   underwater invariance 

other strategies of invariance: 

 

- single attenuation invariant axis 

   [Finlayson 01] 

 

- gradients of log color [Funt 95] 

 

- comprehensive color image 

normalization [Finlayson 98] 
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overview of thesis contributions 

 Kaeli, 2013 PhD Thesis 

2. computational strategies 

 

- use Hierarchical Discrete Correlation [Burt 81] as basis 

for novel octagonal pyramid framework 

 

- demonstrate efficient computation of oriented 

gradients and color features 

 

- explore design of invariant features for reduced 

computation overhead in situ 
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overview of thesis structure 

 

 

 

1. underwater image correction 

 

2. computational strategies 

 

3. understanding underwater image datasets 
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• extrema in difference-of-Gaussian function across 

scale space make stable keypoints [Lowe 2004] 

 

 D(σ) = ( G(kσ) - G(σ) )*I = L(kσ) - L(σ)  

 

• however, for “homogeneous” kernels [Lindeberg 93] 

 

 G(kσ) = G(σ)*G(σ) 

 

 D(σ) = G(σ)*( G(σ) -1 )*I 

 

• D can be accumulated up the scale space! 

3. understanding underwater image datasets 

   keypoint detection 
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3. understanding underwater image datasets 

   keypoint detection – compare pyramids 
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3. understanding underwater image datasets 

   keypoint detection – compare pyramids 

sqrt(2) scale resolution ample for 

keypoint detection [Lowe 04] 

 

octagonal pyramid 

- O(3) adds! 

- 14 neighbors 

 

traditional pyramid 

- O(35) multiplies & O(27) adds 

- 26 neighbors 
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3. understanding underwater image datasets 

   keypoint detection – log intensity 
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3. understanding underwater image datasets 

   keypoint detection – SIFT (blue) OP (yellow) 

OP detects same kind of keypoints in images (if not the 

same ones), appealing for bag-of-keypoints model 



44 J.W. Kaeli, 2013 

3. understanding underwater image datasets 

   keypoint description – QuAHOG 

analogous to LBP [Ojala 2002] 

extract region, accumulate histogram of gradients 

QUantize Accumulated Histogram or Oriented Gradients 
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underwater imagery is largely redundant, how can 

we communicate “key” images? 

 

- offline vs online approaches 

 

- minimize our “surprise” at seeing the dataset 

 

- use summary images as basis for semantic maps 

3. understanding underwater image datasets 

 Online Navigation Summaries 

[Girdhar & Dudek, 2012] 
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3. understanding underwater image datasets 

 Online Navigation Summaries 

[Girdhar & Dudek, 2012] 

Z 

S3 
S2 

S1 

posterior 

dKL 

prior 

Kullback-Leibler 

divergence 
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3. understanding underwater image datasets 

 Online Navigation Summaries 



48 J.W. Kaeli, 2013 

3. understanding underwater image datasets 

 Online Navigation Summaries 

    1 (1897)   2 (101)        3 (9)  4 (35) 

    5 (531)      6 (5)        7 (2)  8 (1) 
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3. understanding underwater image datasets 

 Online Navigation Summaries 

1 
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3. understanding underwater image datasets 

 Online Navigation Summaries 

5 
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3. understanding underwater image datasets 

 Online Navigation Summaries 

1 

5 
2 

4 
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• Conclusions 

• Decent summary of substrate types 

• Don’t need expensive features for bag of 

words model 

 

• Further work 

• How to make robust to transmitting summary 

images partway through 

 

3. understanding underwater image datasets 

 Online Navigation Summaries 
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• intuition from fish detection [Loomis 2011] 

 

 1. color 

        saturated red 

 

 2. shape 

        long thin legs 

 

3. understanding underwater image datasets 

 supervised object detection: crabs 
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• white-balance log opponent 

color is simple subtraction 

 

• compute hue and saturation 

using binary pattern method 

 

• index hue by weight vector wφ 

and multiply by saturation 

3. understanding underwater image datasets 

 supervised object detection: crabs 
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• white-balance log opponent 

color is simple subtraction 

 

• compute hue and saturation 

using binary pattern method 

 

• index hue by weight vector wφ 

and multiply by saturation 

 

• accumulate up scale space 

and find local maxima 
  [Swain & Ballard, 1991] 

3. understanding underwater image datasets 

 supervised object detection: crabs 
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1. flat   2. edge  3. misc. 4. thin bar 

5. corner   6. thick bar  7. spit  8. spot 

• gradients computed at lowest scale, accumulated, then 

threshold HOGs half their blurred mean gradient 

3. understanding underwater image datasets 

 supervised object detection: crabs 
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overview of thesis contributions 

 Kaeli, 2013 PhD Thesis 

3. understanding underwater image datasets 

 

- fast keypoint detection and description 

 

- online navigation summaries [Girdhar 12] as basis for 

unsupervised mission-time low-bandwidth map 

 

- supervised object detection: finding crabs 

 

- building semantic maps 
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conclusions 

Advanced our ability to realistically process underwater 

images in mission time aboard robotic imaging platforms 

 

Coupled with state-of-the-art image compression and 

acoustic transmission algorithms, reduce the latency of 

understanding paradigm for AUVs 


