Computational Strategies for Understanding Underwater Optical Image Datasets

Jeffrey W. Kaeli

MIT / WHOI Joint Program in Oceanographic Engineering

ADVISOR:

Hanumant Singh, Deep Submergence Lab, WHOI

COMMITTEE:

John Leonard, Marine Robotics Group, MIT Ramesh Raskar, Camera Culture Group, MIT Media Lab Antonio Torralba, CSAIL, MIT EECS

the "latency of understanding" paradigm

motivation from related research Murphy, 2012 PhD Thesis

- compressed images can be transmitted acoustically which images get sent?
- classification serves as semantic compression
- real-time automated classification algorithms correct for illumination/attenuation artifacts?

motivation from related research Loomis, 2011 PhD Thesis

- *"the images were rigorously color corrected..."*
- radically different approaches towards scene classification vs. object detection
- methods are computationally expensive

overview of thesis structure Kaeli, 2013 PhD Thesis

- 0. introduction
- 1. underwater image correction
- 2. computational strategies
- 3. understanding underwater image datasets
- 4. conclusions

1. underwater image correction

- detailed model of underwater image formation
- review of broad range of correction techniques
- present novel method for correction for robotic imaging platforms based on estimating environmental and system parameters using multi-sensor fusion

2. computational strategies

- use Hierarchical Discrete Correlation [Burt 81] as basis for novel octagonal pyramid framework
- demonstrate efficient computation of gradient an
- explore design of invariant features for reduced computation overhead in situ

3. understanding underwater image datasets

- fast keypoint detection and description
- online navigation summaries [Girdhar 12] as basis for unsupervised mission-time low-bandwidth map
- supervised object detection: finding crabs
- building semantic maps

overview of thesis structure

1. underwater image correction

2. computational strategies

3. understanding underwater image datasets

1. underwater image correction underwater image formation

1. underwater image correction robotic imaging platforms

SeaBed - Autonomous Underwater Vehicle

SeaSled – Towed Camera System

 $\boldsymbol{c}_{\Lambda} = \boldsymbol{B} \boldsymbol{P}_{\theta,\phi} \boldsymbol{r}_{\Lambda} e^{-\alpha_{\Lambda} \boldsymbol{\ell}}$

 $\log c_{\Lambda} = \log BP_{\theta,\phi} + \log r_{\Lambda} - \alpha_{\Lambda} \ell$

1. underwater image correction altitude constraints

1. underwater image correction *diversity of approaches to correction*

raw image

$$rac{1}{K}\sum_{k}^{K}oldsymbol{c}_{\Lambda,k}pproxoldsymbol{I}_{\Lambda}\;rac{1}{K}\sum_{k}^{K}oldsymbol{r}_{\Lambda,k}=oldsymbol{I}_{\Lambda}ar{oldsymbol{r}}_{\Lambda}$$

frame averaging

adaptive histogram equalization

white balance

homomorphic filtering

a.h.e. + white balance

1. underwater image correction constrain light field equation using keypoints

1. underwater image correction constrain light field equation using keypoints

1. underwater image correction estimate beam pattern and correct

1. underwater image correction sample corrected imagery

1. underwater image correction sample corrected imagery

1. underwater image correction

- detailed model of underwater image formation
- review of broad range of correction techniques
- present novel method for correction for robotic imaging platforms based on estimating environmental and system parameters using multi-sensor fusion

overview of thesis structure

1. underwater image correction

2. computational strategies

3. understanding underwater image datasets

2. computational strategies multi-scale image representations

convolution is still major bottleneck in many multi-scale image processing framework [Van 2011] even in fast keypoint description [Calonder 2010]

can we exploit pixel grid geometries that allow us to substitute adds and bit shifts for costly convolutions while still approximating a Gaussian? [*Viola 2001*]

applications on low-power robotic imaging platforms

2. computational strategies multi-scale image representations

2. computational strategies Hierarchical Discrete Correlation [Burt 1981]

2. computational strategies the octagonal pyramid

2. computational strategies the recursive octagonal kernel

2. computational strategies the recursive octagonal kernel

only 3P adds + P bit shifts!
(for sqrt(2) scale resolution)

compare with ~3.3P multiplies + ~2.7 adds (for 1 scale resolution)

must be vigilant about absolute orientation between levels

2. computational strategies efficient oriented gradient computation

$$\mathcal{M} = \sqrt{\mathcal{I}_x^2 + \mathcal{I}_y^2}$$
$$\theta = \tan^{-1} \left(\frac{\mathcal{I}_y}{\mathcal{I}_x}\right)$$

how fine angular resolution do we need if we're binning?

$$\mathcal{D}_x = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathcal{D}_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

2. computational strategies *efficient oriented gradient computation*

9% overestimate RMS error only +-3% max bin diff ~6%

$$\mathcal{M} \approx \max\left(|\mathcal{I}_x|, |\mathcal{I}_y|\right) + \frac{1}{2}\min\left(|\mathcal{I}_x|, |\mathcal{I}_y|\right)$$

$$\left\{ \begin{array}{l} \mathcal{I}_x > 0 \\ \mathcal{I}_y > 0 \\ |\mathcal{I}_x| > |\mathcal{I}_y| \\ ||\mathcal{I}_x| - |\mathcal{I}_y|| > \frac{\mathcal{M}}{2} \end{array} \right\} \xrightarrow{\mathcal{T}_{\Theta}} \Theta$$

inspired by LBP [Ojala 2002]

2. computational strategies opponent color space

 $\mathcal{O}_0 = \frac{1}{4} \left(R + 2G + B \right)$ $\mathcal{O}_1 = \sqrt{3} \left(R - B \right)$ $\mathcal{O}_2 = 2G - R - B$

2. computational strategies *color demosaicing*

$$\mathcal{O}_0 = \frac{1}{4} \left(R + 2G + B \right)$$
$$\mathcal{O}_1 = \sqrt{3} \left(R - B \right)$$
$$\mathcal{O}_2 = 2G - R - B$$

compare O(16P) sums versus O(30P) multiplies!

[Malvar 04]

2. computational strategies underwater invariance

$$egin{aligned} c_{\Lambda} &= BP_{ heta,\phi} \; r_{\Lambda} \; e^{-lpha_{\Lambda} \ell} \ \log c_{\Lambda} &= \log BP_{ heta,\phi} + \log r_{\Lambda} \; - lpha_{\Lambda} \ell \
abla \log c_{\Lambda} &\approx
abla \log r_{\Lambda} \
onumber \mathcal{O}_{L0} &= rac{1}{4} \left(\log R + 2\log G + \log B
ight) \
onumber \mathcal{O}_{L1} &= \sqrt{3} \left(\log R - \log B
ight) \end{aligned}$$

$$\vec{\alpha} = \begin{bmatrix} \alpha_{L1} \\ \alpha_{L2} \end{bmatrix} = \begin{bmatrix} \sqrt{3} (\alpha_R - \alpha_B) \\ (2\alpha_G - \alpha_R - \alpha_B) \end{bmatrix}$$

$$\mathcal{O}_{L2} = 2\log G - \log R - \log B$$

3. understanding underwater image datasets *illumination invariance – keypoint detection*

2. computational strategies attenuation invariance

2. computational strategies underwater invariance

2. computational strategies underwater invariance

 \mathcal{O}_{L2}

other strategies of invariance:

- single attenuation invariant axis [*Finlayson 01*]
- gradients of log color [Funt 95]
- comprehensive color image normalization [*Finlayson 98*]

2. computational strategies

- use Hierarchical Discrete Correlation [Burt 81] as basis for novel octagonal pyramid framework
- demonstrate efficient computation of oriented gradients and color features
- explore design of invariant features for reduced computation overhead in situ

overview of thesis structure

- 1. underwater image correction
- 2. computational strategies
- 3. understanding underwater image datasets

3. understanding underwater image datasets keypoint detection

• extrema in difference-of-Gaussian function across scale space make stable keypoints [Lowe 2004]

 $D(\sigma) = (G(k\sigma) - G(\sigma))^*I = L(k\sigma) - L(\sigma)$

• however, for "homogeneous" kernels [Lindeberg 93]

 $G(k\sigma) = G(\sigma)^*G(\sigma)$

 $D(\sigma) = G(\sigma)^* (G(\sigma) - 1)^* I$

• D can be accumulated up the scale space!

3. understanding underwater image datasets *keypoint detection – compare pyramids*

3. understanding underwater image datasets *keypoint detection – compare pyramids*

sqrt(2) scale resolution ample for keypoint detection [Lowe 04]

octagonal pyramid

- O(3) adds!
- 14 neighbors

traditional pyramid

- O(35) multiplies & O(27) adds
- 26 neighbors

3. understanding underwater image datasets keypoint detection – log intensity

3. understanding underwater image datasets keypoint detection – SIFT (blue) OP (yellow)

OP detects same *kind* of keypoints in images (if not the same ones), appealing for bag-of-keypoints model

3. understanding underwater image datasets *keypoint description – QuAHOG*

extract region, accumulate histogram of gradients QUantize Accumulated Histogram or Oriented Gradients

analogous to LBP [Ojala 2002]

underwater imagery is largely redundant, how can we communicate "key" images?

- offline vs online approaches
- minimize our "surprise" at seeing the dataset
- use summary images as basis for semantic maps

[[]Girdhar & Dudek, 2012]

5 (531)

- Conclusions
 - Decent summary of substrate types
 - Don't need expensive features for bag of words model
- Further work
 - How to make robust to transmitting summary images partway through

- intuition from fish detection [Loomis 2011]
 - 1. color saturated red
 - 2. shape long thin legs

- white-balance log opponent color is simple subtraction
- compute hue and saturation using binary pattern method
- index hue by weight vector \bm{w}_{ϕ} and multiply by saturation

- white-balance log opponent color is simple subtraction
- compute hue and saturation using binary pattern method
- index hue by weight vector \bm{w}_{ϕ} and multiply by saturation
- accumulate up scale space and find local maxima [Swain & Ballard, 1991]

- 1. flat
 2. edge
 3. misc.
 4

 5. corner
 6. thick bar
 7. spit
 8
- 4. thin bar8. spot
- gradients computed at lowest scale, accumulated, then threshold HOGs half their blurred mean gradient

3. understanding underwater image datasets

- fast keypoint detection and description
- online navigation summaries [Girdhar 12] as basis for unsupervised mission-time low-bandwidth map
- supervised object detection: finding crabs
- building semantic maps

conclusions

Advanced our ability to realistically process underwater images in mission time aboard robotic imaging platforms

Coupled with state-of-the-art image compression and acoustic transmission algorithms, reduce the latency of understanding paradigm for AUVs

