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Recent temperature extremes at high northern
latitudes unprecedented in the past 600 years
Martin P. Tingley1 & Peter Huybers1

Recently observed extreme temperatures at high northern latitudes1–7

are rare by definition, making the longer time span afforded by
climate proxies important for assessing how the frequency of such
extremes may be changing. Previous reconstructions of past tem-
perature variability have demonstrated that recent warmth is anoma-
lous relative to preceding centuries2,8,9 or millennia10, but extreme
events can be more thoroughly evaluated using a spatially resolved
approach that provides an ensemble of possible temperature histor-
ies11,12. Here, using a hierarchical Bayesian analysis13,14 of instru-
mental, tree-ring, ice-core and lake-sediment records, we show that
the magnitude and frequency of recent warm temperature extremes
at high northern latitudes are unprecedented in the past 600 years.
The summers of 2005, 2007, 2010 and 2011 were warmer than those
of all prior years back to 1400 (probability P . 0.95), in terms of the
spatial average. The summer of 2010 was the warmest in the previous
600 years in western Russia (P . 0.99) and probably the warmest in
western Greenland and the Canadian Arctic as well (P . 0.90). These
and other recent extremes greatly exceed those expected from a
stationary climate, but can be understood as resulting from con-
stant space–time variability about an increased mean temperature.

Exceptionally high temperatures have recently been observed in
Russia1–4, Greenland5,6 and other locations at high northern latitudes7.
Palaeoclimate reconstructions demonstrate that these temperatures
are anomalous2,8–10, but ascertaining whether they are unprecedented
requires a treatment beyond that supported by standard measures of
uncertainty11,12. At issue is how warm it could have been at each loca-
tion and each year in the past, given the uncertainty in each temper-
ature estimate. For example, a temperature T0 5 33 uC is almost
certainly higher than the ith realization of Ti 5 30 1 ei, where e is a
random variable drawn from a normal distribution with zero mean
and unit variance, but it is unlikely to be higher than the maximum of
1,000 independent realizations of Ti.

The probability that a given interval contains the most extreme
temperature in the span of a reconstruction is generally quantified
using ensemble-based reconstruction methods because they can be
used to estimate simultaneous, or pathwise, uncertainty intervals11,15,
and provide direct probabilistic assessments of extremes12. Ensemble-
based reconstructions have recently been used to evaluate extremes in
spatially averaged temperature using bootstrap methods16, Bayesian
principal component regression17 and realizations drawn from global
climate model simulations18,19.

Here we use a hierarchical Bayesian model13,14,20–22 to perform a
5u3 5u spatial resolution analysis of the past 600 years of summer
temperatures at high northern latitudes (see Methods). This approach
gives a spatially resolved ensemble of temperature reconstructions,
each of which is equally likely given the available instrumental and
proxy data (see Methods). This approach also provides estimates of
temperature and its uncertainty at locations without instrumental or
proxy observations. We can therefore assign probabilities to years
being warmest or coldest at each spatial location11,12 and assess recent
extremes in the context of space–time climate variability.

The reconstruction is based on April–September averages of the
Climate Research Unit’s gridded instrumental data set23 and 125
annually resolved proxy time series: 18 ice-core d18O series, 11 log-
transformed annual varve thickness series from lake-floor sediment
cores and 96 gridded maximum latewood tree-ring density series. We
infer April–September temperature anomalies from 1400 to 2011 at all
grid boxes between 45uN and 85uN that contain some fraction of land.
The requirement that the proxy series be annually resolved, coupled
with the need for sufficient coverage to produce a spatially complete
reconstruction, necessitates that we limit the study to the past 600 years.

For temperature anomalies averaged over land areas north of 45uN,
the years 2005, 2007, 2010 and 2011 are each warmer than all other
years in the 1400–2004 interval (P . 0.95; Fig. 1a), whereas on decadal
timescales, intervals subsequent to 1996 are warmer than all previous
intervals (P . 0.95; Fig. 1b). These results support and extend previous
findings regarding unprecedented warmth2,9,10 by explicitly consider-
ing whether a given anomaly is higher than those for all other years.
Spatially averaged temperature estimates become more uncertain at
earlier times, particularly before 1850 when the longest instrumental
records drop out of the analysis (Fig. 1a and b). The unweighted
average across the available instrumental observations closely agrees
with the spatially averaged estimates from all data types back to about
1900, but not before. As the early instrumental observations are spar-
sely and heterogeneously distributed in space, the spatially complete
reconstruction afforded by the statistical model (see Methods) and
the proxy indicators of temperature become increasingly important
towards earlier times.

Centennial-timescale variations can be characterized by linear
trends (Fig. 1c). The linear rate of warming in the spatial-mean time
series over the interval 1912–2011 is 1.06 uC per century (90% uncer-
tainty is 1.03 uC to 1.08 uC). With P . 0.99, the largest 100-year warm-
ing trend is centred after 1900, indicating that recent rates of warming
are unprecedented in the past 600 years. The 100-year cooling trend
with the largest magnitude occurred between 1547 and 1646 at a rate
of 20.71 uC per century (90% uncertainty is 20.88 uC to 20.54 uC).
Interestingly, the warming trend has only recently exceeded the mag-
nitude of this earlier cooling trend, such that if the reconstruction is
curtailed at 2001, the cooling has a larger magnitude rate of change in
49% of the ensemble members. This early cooling trend, whose mag-
nitude rivals that of the recent warming, also indicates that the proxy
record is capable of capturing large, persistent temperature variations.

To investigate the distribution of extremes in both space and time,
we calculate the probability that each year was warmest or coldest for
each spatial location (Fig. 2). Whereas the 2000s had a high probabi-
lity of containing the warmest year in many locations throughout
northeastern Canada, Greenland, eastern Russian and the land areas
surrounding the Bering Sea, the 1990s contained the warmest year
predominantly in northwestern North America, and, to a lesser extent,
central Russia (Fig. 2a). Averaging across the ensemble, we find that
the warmest year occurs in 1990 or later for 60% of all locations, and in
2000 or later for 45%, demonstrating that the recent extreme warmth is
widespread (Fig. 2b). There is no such clear trend in the occurrences of
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minima, which are clustered in times following volcanic eruptions, as
well as during the cool 1600s. As observed elsewhere24, incidences of
record-breaking temperature maxima have been increasing in fre-
quency over the past few decades, whereas the rate of minima in the
summer average temperature has fallen close to zero.

At a more regional level, the summer of 2010 is very likely (P . 0.90)
to have been the warmest in seven of the eight grid boxes in the region
affected by the Russian heat wave (50uN–60uN, 35uE–55uE (ref. 1);
Fig. 2a). Averaging temperatures over this region reduces the variability
between ensemble members, and we then find that 2010 is the warmest
summer in western Russia in more than 99.9% of the ensemble
members. In contrast, the summer of 2003 is probably (P . 0.66) the
warmest for only two grid boxes in western Europe (Fig. 2a), in agree-
ment with other findings2,9 that the 2010 Russian heat wave exhibited
a broader spatial signature of extremes. We also find that 30 of the 47
continental grid boxes in western Greenland and the Canadian Arctic
archipelago are more likely than not to have experienced their warmest
conditions in 2010, in agreement with other more localized indications
of temperature, runoff and surface mass balance in this region5–7. For
the average over this region, 2010 has the warmest conditions in 93% of
the ensemble members.

The robustness of these results is indicated by the fact that using
subsets of the proxy data gives similar structure with respect to the
occurrence of extreme events. For instance, estimates based on only
the ice-core and varve proxies, with model parameters derived using the
complete data set (see Methods), give very similar results to inferences
from all data sources, which are dominated by tree-ring densities

before 1850 and by instrumental observations thereafter (Fig. 2c).
Both reconstructions show substantially elevated probabilities of
maxima occurring in recent decades, very low probability of maxima
in 1600–1850 and slightly elevated probabilities in the first two centuries
of the reconstruction (Fig. 2b and c). Estimates using only tree-ring-
density records result in a distribution of extreme years that is essentially
unchanged, provided the comparison extends only to 1960, after which
these proxies systematically underestimate temperature anomalies—
as expected, given the tree-ring divergence phenomenon25. More
generally, we find that the various temperature indicators used in this
study agree with each other given their respective uncertainties, except-
ing the tree-ring-density records after 1960 (see Methods and
Supplementary Information).

The increased frequency of warm extremes in recent decades
(Fig. 2b and c) may result from increased average temperature,
increased variance or changes in higher-order moments of the tem-
perature distribution26. To explore the underlying cause of the recent
increase in warm extremes, we use the Bayesian model and its data-
derived parameters to simulate both temperature anomalies and
observations of those anomalies having noise properties consistent
with the instrumental data (see Methods). The distribution of simu-
lated temperature anomalies over the past 20 years is biased substan-
tially lower than estimates using the actual data (Fig. 3a). Shifting the
mean of the simulated anomalies to match that observed over the past
20 years, which is 1.16 uC higher than the 600-year average, results in
much closer agreement between the distributions of simulated and
estimated temperatures (Fig. 3a), although the five highest individual
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Figure 1 | Time series of temperature anomalies and centennial slopes.
a, Average land temperature between 45uN and 85uN (black), 90% pointwise
(blue shading) and pathwise (grey) credible intervals20 (see Methods); the
unweighted average of all available instrumental observations (magenta); and
the ten largest volcanic eruptions in the 1400–2011 interval according to ice-
core sulphate concentrations30 (vertical red). b, As in a, but individual ensemble

members are first smoothed with a nine-year Hanning window, along with a
separate reconstruction10 (dashed red). c, As in a, but for linear trends
calculated for overlapping 100-year intervals. To facilitate comparison between
the recent rate of warming and earlier rates of cooling, the median and 90%
pointwise uncertainty for the cooling centred at 1596 is also inverted in sign and
extended across to the modern period (red lines and shading).
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Figure 2 | Warm and cold extremes. a, The proportion of draws (see
Methods) for which 2003 and 2010 were warmest, and for which the warmest
year fell in the 1990s and 2000s. White shading indicates zero. b, The fraction of
all locations for which years were warmest or coolest, averaged across all

ensemble members. Results are binned by decade, except for the last interval,
which contains only 2010–2011. c, As in b, but for a reconstruction that uses
only the ice-core and lake-varve series and covers the interval 1400–1994.
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Figure 3 | Histograms of temperature anomalies and instrumental maxima
for the period 1992–2011. a, Histogram of temperature anomalies across
locations, ensemble members and years for the interval 1992–2011 (blue); the
simulated distribution of temperature anomalies, using median parameter
values fitted over 1400–2011 (black) and after shifting its mean to that of the
1992–2011 anomalies (dashed red). Vertical lines are repeated in each panel
and correspond to the 3.8 uC anomaly near Moscow in 2010 and the four other
even more extreme values in the 1992–2011 interval which, from lowest to

highest, are from Siberia in 2007, Svalbard in 2006 and two locations in
northern Canada in 1998. b, Histogram of the maximum value of the
instrumental observations at each location over the 1992–2011 interval (blue),
and the distribution of the maximum values according to 10,000 realizations
(black) and a single (magenta) realization based on the simulations with the
mean shifted as in a. c, Distributions of the five largest simulated instrumental
observations across space and time in the 1992–2011 interval, with the mean
shifted as in a.
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instrumental anomalies during the past 20 years remain far in the tail
of the simulated distribution.

Analogous to the need for pathwise uncertainties when evaluating
whether particular years featured the warmest conditions (Fig. 1), we
must also take into account that the five highest observed temperature
extremes are selected from a range of locations. Shifting the mean and
selecting the largest simulated instrumental observations in both time
(Fig. 3b) and space (Fig. 3c) results in distributions consistent with the
observed extremes, each of which falls below the 95th percentile of the
corresponding distribution from the simulations (Fig. 3c). To first
order, therefore, the highest temperature observations over the past
20 years can be accounted for by a shift in the average temperature and
by considering the distribution of maxima across both space and time.

We find a similar relationship between the mean and extremes
when performing the same analysis for earlier 20-year intervals
between 1852 and 1991 (see Supplementary Information), indicating
that the observed extremes require no change to the distribution of
temperature anomalies other than to the mean, at least on the temporal
and spatial scales of this analysis. Applying the same analysis to 100-
year intervals of each proxy data set gives similar results, although with
more scatter than the results shown in Fig. 3. There are two exceptions
where the distributions of positive extremes do not follow the mean:
over the most recent 100-year interval of tree-ring-density observa-
tions, positive extremes are biased low on account of the divergence
phenomenon, and there is a general tendency for the largest log-trans-
formed varve observations to be biased high relative to the mean-
shifted simulations, suggesting that the log transform is an insufficient
scaling for these largest values.

During the past 20 years, 61% of all high northern latitude locations
are more likely than not to have experienced warm temperatures that
are unprecedented in the past 600 years, and 25% of northern loca-
tions are very likely (P . 0.95) to have experienced high temperatures
that are without precedent. Assessment of these recent temperature
extremes in the context of space–time variability and observational
error allows for a simple, cohesive explanation in terms of an increase
in mean temperature. Specifically, the Bayesian model of variability in
conjunction with a mean warming reproduces the general distribution
of temperature anomalies (Fig. 3a), the maximum instrumental obser-
vation at each location (Fig. 3b) and the highest instrumental tem-
perature observations over space and time (Fig. 3c). These results are
consistent with analyses of global instrumental records demonstrating
that recent incidences of extreme temperature are a result of an
upward shift in the mean of the temperature distribution24 but that
the variance of that distribution has not significantly changed27.
Further work is needed, however, to assess whether extremes also
follow mean temperatures at smaller temporal and spatial scales, such
as those associated with local weather.

METHODS SUMMARY
Observations are first re-expressed as anomalies with respect to the full time
interval spanned by each data type28 and the ice-core and log-transformed lake-
varve series are additionally standardized to unit variance. The Bayesian model13,14

represents the temperature anomalies as a first-order autoregressive process in
time with exponentially decaying spatial covariance. Each proxy type is separately
modelled as linearly related to temperature anomalies with mean-zero normal
noise, and instrumental observations are modelled as temperature anomalies with
mean-zero normal noise.

The spatial mean time series is computed for each ensemble member by weight-
ing the grid boxes by land area. Taking the 50th percentile at each year gives the
best estimate of temperature, taking the 5th and 95th percentiles produces 90%
pointwise uncertainty envelopes, and expanding the pointwise uncertainty enve-
lopes to contain 90% of ensemble members in their entirety produces pathwise
uncertainties15,17,29 (Fig. 1). Estimates of temporally smoothed quantities and
centennial-scale trends are derived analogously after applying these operations
to each ensemble member in turn (Fig. 1). Probability statements concerning
extremes are derived by calculating the fraction of ensemble members that feature
warmest or coldest conditions for a given year or interval (Fig. 2). To assess the
robustness of results, we perform reconstructions using only subsets of the data

(Fig. 2c). To explore recent extremes, we simulate the expected variability of
instrument-like observations in the absence of data (Fig. 3), using model para-
meters that result from the full analysis.

The analysis technique gives results at a level comparable to or better than other
climate field reconstruction techniques22, even when the underlying assumptions
are not fully met14. Validation metrics similarly suggest that the simple assump-
tions underlying the analysis are an adequate statistical description of the data,
whereas experiments based on predicting withheld instrumental observations
from the proxies indicate that the uncertainty intervals have accurate coverage
properties.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Data. Instrumental observations are derived from the gridded 5u3 5uCRUTEM3v
data set compiled by the University of East Anglia’s Climate Research Unit (ref. 23;
data available at http://www.cru.uea.ac.uk/cru/data/temperature/). We use all time
series having at least ten years of complete monthly April–September data, that are
poleward of 45u N, and that contain a non-zero fraction of land according to a
0.25u3 0.25u land–sea mask (ref. 31; data available at http://ldas.gsfc.nasa.gov/
gldas/GLDASvegetation.php). To avoid introducing spurious structure in the time
series of spatial standard deviations, which could result from the short 1961–90
reference period used in standardizing the CRUTEM3v data set, we apply a
Bayesian ANOVA technique (ref. 28; code available at http://www.ncdc.noaa.
gov/paleo/softlib/softlib.html) to estimate and remove means with respect to the
entire 1850–2011 interval spanned by the instrumental data set.

The maximum latewood-density data set32,33 is on the same spatial grid as the
instrumental data set, and we use only the 96 grid boxes with centres poleward of
45u N. Data files and descriptions are available at http://www.cru.uea.ac.uk/
,timo/datapages/mxdtrw.htm. As with the instrumental data, we apply the
Bayesian ANOVA technique28 to estimate and remove means with respect to
the entire interval spanned by the data set, in this case 1400–1994.

All varve thickness records publicly available from the NOAA Paleolimnology
Data Archive (http://www.ncdc.noaa.gov/paleo/paleolim/paleolim_data.html) as
of January 2012 are incorporated, provided they meet the following criteria: extend
back at least 200 years, are at annual resolution, are reported in length units, and the
original publication or other references indicate or argue for a positive association
with summer temperature. As is common34, varve thicknesses are logarithmically
transformed before analysis, giving distributions that are more nearly normally
distributed and in agreement with the assumptions characterizing our analysis
(see subsequent section). Records that are complete between 1400 and 1969 are
standardized to unit variance and zero mean using the sample statistics computed
over that interval. To obtain a more homogeneous normalization for records
incomplete between 1400 and 1969, we scale the mean and standard deviation of
each incomplete record to equal those statistics of the corresponding data points in
the scaled, complete records. Finally, the Bayesian ANOVA technique28 is used to
remove means with respect to the entire 1400–2005 time span of the varve data set.

The ice-core data set consists of 14 of the 15 annually resolved d18O series used
in a recent sea ice reconstruction35. We exclude the Mount Logan series, as the
original reference36 indicates it is a proxy for precipitation source region, not
temperature. To increase the spatial coverage, we additionally use two d18O series
from Svalbard (refs 37, 38; data available at ftp://ftp.ncdc.noaa.gov/pub/
data/paleo/icecore/polar/svalbard/svalbard2005d18o.txt) and one each from
Baffin Island (refs 39, 40; data file fisher_1998_baffin.ppd available at http://
www.ncdc.noaa.gov/paleo/pubs/pcn/pcn-proxy.html) and Devon Island (ref. 41;
data available at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/polar/devon/
d7273del_1yr.txt), all with annual observations. The data set spans the 1400–
1998 interval; the standardization procedure is the same as for the log-transformed
varve series except that it uses the 1400–1974 interval for initial standardization.

Section 1 of Supplementary Information and Supplementary Tables 1 and 2
provide additional details regarding the data sources.
Inference. Bayesian hierarchical models provide a flexible framework for com-
bining models and observations20. They are generally characterized by a process
level that represents the structure of the system and a data level that represents the
relationships between each data type and the process. Both the process and data
levels contain parameters that are uncertain and whose distributions are inferred
as part of the analysis. Similarly, each observation is considered uncertain; in the
current analysis this includes both the proxy and the instrumental observations.
The process targeted for inference is, therefore, never directly observed but must
be inferred using uncertain observations and a model with parameters whose
distributions must likewise be estimated. Although Bayesian hierarchical models
have been proposed and used to infer past climate12–14,42,43, the analysis presented
here is, to our knowledge, the first application of such a model to infer surface
temperatures as a function of space and time from a multiproxy data set.

In this analysis, we use the Bayesian Algorithm for Reconstructing Climate
Anomalies in Space and Time (BARCAST)13,14. In our application, the process
level describes the evolution of the average April–September temperature anomaly
field, T, as,

T t{m1~a(T t{1{m1)zE t ð1Þ

where m is the mean of the temperature anomaly field, a is the coefficient of a first-
order autoregressive process, the subscript t indexes the year, and 1 is a column
vector of ones. The temperature field is represented on a 5u3 5u grid, and we
consider only continental locations that are north of 45uN. The innovation vector

for each year, Et, is assumed to be an independent draw from a mean-zero multi-
variate normal distribution with an exponentially decaying spatial correlation:
Et , N(0, S), where Sij 5 s2exp(–w jsi2sjj), and jsi2sjj is the distance between
the ith and jth elements of the field vector, Tt.

The data level describes the relationships between the true temperature anom-
alies and the instrumental and proxy observations of these anomalies.
Instrumental observations, W0,t, are modelled as noisy versions of the true anom-
alies at the corresponding locations,

W 0,t~H 0,t T tze0,t ð2Þ

The noise terms are assumed to be independent draws from a multivariate normal
distribution, e0,t , N(0,t0

2I), where I is the identity matrix, and H0,t is a selection
matrix of zeros and ones that picks out elements of Tt for which there are instru-
mental observations.

The types of proxy observations included are tree-ring density chronologies,
ice-core d18O series, and log-transformed lake-varve thickness series. Each
type, k, is assumed to have a linear relationship with the local value of the true
temperature,

W k,t~bk,1H k,T T tzbk,01zek,t ð3Þ

where bk,1 and bk,0 are respectively the slope and intercept terms and Hk,t is, as
above, a selection matrix. The noise terms are once more assumed to be inde-
pendent normal draws, ek,t , N(0,tk

2I). The regression parameters vary between
proxy types, but are constant for all proxies of a given type.

Prior distributions are placed on each of the parameters included in the model:
a, m, w, s2, t2

k50…3, bk51…3,1, bk51…3,0, as well as for T in the year before observa-
tions become available. Priors are selected to be proper, weakly informative, and—
where possible—conjugate20. Bayes’ rule is used to calculate the posterior distri-
bution of the parameters and field given the observations and priors. A Gibbs
sampler with a single Metropolis step (for w) is then used to draw from the
posterior distribution20. Further details of the inference are available in an
earlier publication13, code is available at http://www.ncdc.noaa.gov/paleo/softlib/
softlib.html, and convergence of the Gibbs sampler is discussed in Section 3.5 of
the Supplementary Information.

The result of the analysis is an ensemble of draws of both the parameters and the
temperature anomalies, each of which is equally likely given the data, priors and
modelling assumptions. Furthermore, each ensemble member will have variability
similar to the actual temperature anomalies14, insomuch as the model and data are
correctly represented. The median across the ensemble (Fig 1a, b; Supplementary
Fig. 5), however, has attenuated variability14, especially in data-poor parts of the
reconstruction. This attenuation provides a more accurate estimate of the past
temperature, though not the variability of that temperature, and is generally used
as our best estimate.

For the purposes of comparing the climatic information content of the different
proxies (for example, Fig. 2c), it is possible to run BARCAST in a reduced mode,
using a subset of the data to update the temperature field while sampling all model
parameters from the posterior distributions resulting from the analysis with the
full data set. That is, at each iteration of the Gibbs sampler, a vector of parameters is
drawn from the posterior distribution derived using all data, and then the draw of
the temperature field is updated using these parameters and a given subset of the
data. It is likewise possible to simulate the natural variability of the temperature
field (for example, Fig. 3) by not applying any of the data constraints. In this case,
the process level model has parameters constrained by the data but the specific
evolution of the temperature field is unconstrained. Comparison of the variability
between the constrained and unconstrained simulations indicates the extent
to which the data controls the solution (see Supplementary Information Sec-
tions 2.5 and 6).
Assumptions and implications. The stationary, isotropic and exponentially
decaying spatial covariance model specified for the temperature anomalies is a
simplifying assumption that does not account for directionality and long-
range covariance relationships in the climate system. Indeed, many palaeoclimate
reconstruction techniques, generally based on eigendecompositions of sample
covariance or correlation matrices, are explicitly designed to exploit such covari-
ance patterns9,44–46. This class of methods assumes that the characteristic spatial
structures identified in the calibration interval are constant in time, but have
varying amplitudes; results can be strongly dependent on the particulars of how
these modes of variability are determined and used47. BARCAST, in contrast, relies
on the simpler assumption of a temporally constant decorrelation length scale and
represents each observation as indicative of local temperature. This local representa-
tion (equation (3)) is similar to the proxy representation in the LOC method18,19,48,
although BARCAST additionally models errors in the instrumental observations
and arrives at an estimate of the spatial field of temperature anomalies49,50.
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Temporal stationarity is assumed through the first-order autoregressive
description of interannual temperature variability (equation (1)). This parameter-
ization lacks any representation of long-term temperature trends, or associations
between temperatures and climate forcings43,51. In some sense, however, this is
advantageous as the process level is agnostic regarding any changes, and inferences
concerning the unprecedented nature of recent extremes are consequently derived
exclusively from the data. Furthermore, this approach permits exploration of
exactly where the assumption of strict temporal stationarity fails (see Fig. 3).

The assumption that the space–time covariance function is separable—that is,
that it can be factored into the product of purely spatial and purely temporal
elements—is also unlikely to hold in detail12. Predictive performance, however,
is often not affected by incorrectly assuming a separable covariance form52. With
regard to both stationarity and separability, BARCAST has been shown to perform
at a level comparable to or better than other climate field reconstruction tech-
niques22, even when the underlying assumptions are not strictly met by the data14.
The validation metrics reported in Supplementary Information Section 5 also
suggest that BARCAST provides an adequate statistical description of the data
for the present purposes.
Analysis of results. The analysis presented here is based on 4,000 posterior draws
taken from four parallel Gibbs samplers. Spatial mean values are computed by
weighting the grid boxes by land area according to a 0.25u land–sea mask31. Taking
the 50th percentile of the 4,000-member ensemble at each year of the spatial mean
time series results in a best estimate of the time series, while taking the 5th and 95th
percentiles produces 90% pointwise credible intervals20, which are used to indicate
the uncertainty in the reconstruction at each year.

Pathwise 90% credible intervals are calculated by inflating the pointwise inter-
vals such that the envelope contains 90% of the posterior time series in their
entirety15,17,29. The two uncertainty intervals have different interpretations, with
the pointwise intervals covering the true temperature anomaly for 90% of the
years, whereas the time series of true temperature anomalies lies entirely within
the pathwise envelope with 90% probability. The statement that certain recent
years are warmer than all previous years with P . 0.95 follows from noting that
the 90% pathwise uncertainties for these years lie entirely above those for all years
in the 1400–2004 interval. Note that the statement holds at P . 0.95 because the
test is one sided, as we have prior reason to believe that recent years are warmer
than usual. Uncertainties for temporally smoothed time series are estimated in the
same manner, after first smoothing each ensemble member using a nine-point
Hanning window. Point estimates and uncertainties in the centennial-scale trends
are derived by calculating the trend for each ensemble member at each position of
a sliding 100-year window and then calculating both pointwise and pathwise
uncertainties.

Probability estimates corresponding to specific statements, such as the prob-
ability that western Russian temperatures achieved a maximum in 2010, are
obtained by calculating the proportion of ensemble members for which the state-
ment is true. Performing such an analysis at each location leads to the maps shown
in Fig. 2a. Calculating the fraction of locations for which each year is warmest or
coldest, averaging results across the ensemble members and binning the years by
decades results in the histograms shown Fig. 2b. Figure 2c is derived in the
same manner, but from a 4,000 member ensemble obtained by running
BARCAST in reduced mode using only the ice-core and log-transformed lake-
varve series.

To assess recent extremes, we simulate temperature anomalies and instrument-
like observations over the past 20 years using median parameter values, and in the
latter case additionally record the maxima at each location as well as the five largest
values in both space and time. Distributions of the simulated instrumental quan-
tities are built up by repeating the procedure 10,000 times. When shifting the mean
of these simulations to match that inferred over the past 20 years (Fig. 3), we use
the simple average across the locations, ensemble members, and years within the
1992–2011 interval. Note that this mean differs slightly from the mean of the
spatial average time series because of the spatial weighting inherent in the latter.
Figure 3b shows the single instrumental simulation that is closest to the actual
instrumental observations according to the variance of the site-wise maxima.
Additional results and model diagnostics are available in Supplementary
Information Sections 2 and 3 and a more detailed discussion on inferring extremes
in the presence of uncertainty in Supplementary Information Section 6.
Robustness. To examine the robustness of our results to specific data types, we run
BARCAST in five different reduced mode formulations using the following subsets
of data types: tree-ring densities alone, ice-core series alone, lake-varve series
alone, ice-core and lake-varve series together, and instrumental series alone.
Results of the proxy-only analyses are then compared with each other, to the main
analysis, to the instrumental-only analysis, and to the withheld instrumental
observations. The time series of spatial-average temperature and centennial-scale
slopes, as well as the distribution of extremes for the spatial mean, for centennial

trends in the spatial mean, and as a function of space, are all compared with
each other. For the spatial average, we also consider the correlations and root-
mean-square error between each proxy-only analysis and the instrumental-
only analysis over three different time intervals: 1850–1959, 1850–1994 and
1960–94. In general, we find that the proxy-only analyses provide consistent
inferences with one another and with the instrumental-only predictions, when
accounting for the uncertainties in each analysis (see Supplementary Information
Sections 5.1–5.4).

An important exception is that the predictions from the tree-ring densities alone
do not track the warming seen in all other data sets in the latter half of the twentieth
century, a finding consistent with the so-called divergence problem33,53. To assess
the robustness of our results to this divergence, we re-ran the full analysis
excluding the post-1960 tree-ring-density observations and found no qualitative
change in results (see Supplementary Information Section 4). The primary reason
for consistency between analyses which include and exclude the post-1960 tree-
ring-density observations is that instrumental data are of sufficient quality and
number post-1960 so as to dominate the solution irrespective of the tree-ring
data. It is also the case that the parameterization of the tree-ring-density relation-
ship with temperature is primarily constrained by its relationship with data
before 1960.

To assess the variability in the ensemble of posterior draws, we simulate the
withheld instrumental observations in each proxy-only analysis and examine rank
verification histograms54 for the withheld instrumental observations. To assess the
coverage rates of the credible intervals, we calculate the percentage of the withheld
instrumental observations that fall within the nominal 90% intervals. Results show
that the ensembles of predictions of the withheld instrumental values generally
have about the correct variability, and that the actual coverage rates are generally
within 10% of the nominal rate. An exception is, again, for the tree-ring-density
analysis during the post-1960 interval, where the coverage rate is about 15% too
low and the shape of the rank verification histogram is indicative of a low bias. See
Supplementary Information Section 5.5 for further details.
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