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Reconstructing a climate process in both space and time from incomplete instrumental and climate proxy
time series is a problem with clear societal relevance that poses both scientific and statistical challenges.
These challenges, along with the interdisciplinary nature of the reconstruction problem, point to the need for
greater cooperation between the earth science and statistics communities — a sentiment echoed in recent
parliamentary reports.

As a step in this direction, it is prudent to formalize what is meant by the paleoclimate reconstruction
problem using the language and tools of modern statistics. This article considers the challenge of inferring,
with uncertainties, a climate process through space and time from overlapping instrumental and climate
sensitive proxy time series that are assumed to be well dated — an assumption that is likely only reasonable
for certain proxies over at most the last few millennia. Within a unifying, hierarchical space—time modeling
framework for this problem, the modeling assumptions made by a number of published methods can be
understood as special cases, and the distinction between modeling assumptions and analysis or inference
choices becomes more transparent.

The key aims of this article are to 1) establish a unifying modeling and notational framework for the
paleoclimate reconstruction problem that is transparent to both the climate science and statistics commu-
nities; 2) describe how currently favored methods fit within this framework; 3) outline and distinguish
between scientific and statistical challenges; 4) indicate how recent advances in the statistical modeling of
large space—time data sets, as well as advances in statistical computation, can be brought to bear upon the
problem; 5) offer, in broad strokes, some suggestions for model construction and how to perform the
required statistical inference; and 6) identify issues that are important to both the climate science and
applied statistics communities, and encourage greater collaboration between the two.

© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction statistical challenges surrounding the reconstruction of past climate

from incomplete instrumental and proxy data sets, and part of the

This paper is a product of our participation in the 2009—2010
program on “Space—Time Analysis for Environmental Mapping,
Epidemiology and Climate Change”,! organized by the Statistical and
Applied Mathematical Sciences Institute (SAMSI), an NSF sponsored

research center in North Carolina. Our focus at SAMSI was on the
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motivation for writing this piece stems from the various controver-
sies surrounding the interpretation and assimilation of instrumental
and proxy-temperature time series. Much of the controversy points
to the potential benefits of greater collaboration between statisticians
and paleoclimatologists in the analysis and interpretation of climate
data, a sentiment that is echoed in the recent United Kingdom
parliamentary report on the University of East Anglia’s Climate
Research Unit (CRU):

“We cannot help remarking that it is very surprising that research
in an area that depends so heavily on statistical methods has not
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been carried out in close collaboration with professional statisti-
cians. Indeed there would be mutual benefit if there were closer
collaboration and interaction between CRU and a much wider
scientific group outside the relatively small international circle of
temperature specialists. "2

It seems pertinent that a group of statisticians interested in the
climate reconstruction problem, in collaboration with a climate
scientist, present both a formal description of the reconstruction
problem and offer suggestions for how this field can be advanced
via a reasoned use of modern statistics. We will not present a new
reconstruction, or propose, test, or apply a specific analysis model.
Instead, we provide a detailed presentation of hierarchical statis-
tical models and describe how the different levels should be
specified in the context of paleoclimatic reconstructions. More
general reviews of climate reconstructions of the last few millennia
can be found, for example, in the 2006 National Research Council
report on the subject (NRC, 2006), or the Jones et al. (2009) review
in The Holocene. Hughes and Ammann (2009) provide a broad
overview of the state of paleoclimate reconstruction methods, and,
as we do, offer suggestions on how to move forward. This article
builds upon and provides the necessary background to implement
the hierarchical models mentioned in Hughes and Ammann (2009).

Inferring past climate from raw observations of the natural world is
a grand challenge. We focus on one particular aspect of the problem:
given climate sensitive proxy time series that are assumed to be well
dated, how should they be combined along with the instrumental
record to arrive at estimates, with uncertainties, of a climate process
through space and time? We consider the challenges involved in
modeling a space—time process such as annual mean surface
temperature anomalies, as well as the difficulties involved in inferring
such a process from a number of different data sources, all of which are
noisy and incomplete. It is our aim to clearly define the scope of the
problem and the nature of the challenges, identify and describe the
relevant statistical tools and techniques, and indicate how they can be
used in particular applications. In addition, we describe how
numerous published methods fit within the proposed hierarchical
framework. Posing the paleoclimatic reconstruction problem in the
language of modern statistics will help elucidate those areas in which
statisticians have expertise that can be brought to bear upon this
problem, and will encourage greater collaboration between the
climate science and statistics communities.

The assumption that the proxy series are well dated is likely only
reasonable for certain types of proxy over at most the last few
millennia. The treatment of time-uncertain proxy time series is an
active field of research (Haslett et al., 2006a; Auestad et al., 2008;
Haam and Huybers, 2010), and becomes particularly important when
considering proxy archives such as pollen and sea floor sediment cores
that, in contrast with tree rings and ice cores, do not form laminations
with a known frequency. Likewise, raw observations of proxy archives
frequently undergo considerable processing before being put forth as
a climate sensitive time series. For example, raw pollen counts or
percentages are transformed via comparison with modern analogues
(e.g., Haslett et al., 2006b), and some estimate of the biological growth
effect must be removed from individual tree ring series before they are
combined into a climate sensitive site chronology (e.g., Briffa et al.,
1992; Melvin and Briffa, 2008; Schofield, in preparation). Recent
work (e.g., Haslett et al,, 2006b), has focused on forward-model based
approaches to processing raw observations into climate sensitive
series. This article will not focus on either time uncertainty or this
processing of raw proxy observations into climate sensitive series, but

2 Taken from www.uea.ac.uk/mac/comm/media/press/CRUstatements/SAP.

we will provide brief comments on how progress on those problems
can be incorporated into the framework outlined below.

It is important to recognize that we are not the first group of
statisticians to become interested in this problem, and hopefully we
are not the last. There have been numerous time series analyses of
paleorecords in the statistics literature, such as Visser and Molenaar
(1988); West (1997); Harvill and Ray (2006); and Haslett et al.
(2006b). More recently, Li et al. (2010) present a hierarchical model
and apply it to pseudoproxies derived from climate models, while
Brynjarsdéttir and Berliner (2011) reconstruct surface temperatures
using borehole temperature profiles. Likewise, several recent papers
from the climate literature have proposed hierarchical models in the
context of reconstructing past climate. Lee et al. (2008) propose
a state-space or Kalman filter model for inferring large-scale spatial
average temperatures, which we interpret as a hierarchical model
(see Section 8.3). Lee et al. (2008) include estimates of climate forcing
series in the inference model, and the specification of separate
models for the target process and the data. In contrast, Tingley and
Huybers (2010a,b) propose a simple hierarchical statistical model
without forcings to infer a climate field in both space and time. While
there are examples in the published literature of hierarchical models
and Bayesian analysis applied to paleoclimate data (e.g., Haslett et al.,
2006b; Li et al., 2010; Tingley and Huybers, 2010a), what has been
lacking, until know, is a more general argument for and exposition of
Bayesian hierarchical modeling for inferring past climate.

In Section 2, we introduce a representative subset of the data from
Mann et al. (2008a) in order to illustrate the challenges posed by
paleoclimatic and instrumental data, and to motivate the modeling
approach we favor. We then present a general, hierarchical statistical
space—time modeling framework appropriate for the reconstruction
problem in Section 3. The key specifications of this class of models are
the space—time structure of the target climate process, which we
discuss in Section 4, and the relationships between the statistical
processes characterizing the data sources and the target process,
which we describe in Section 5. We then discuss issues regarding the
observations in Section 6, including the influence of observational
errors and the treatment of missing data. Performing inference on
this class of space—time models is non-trivial and can be computa-
tionally intensive, and we provide suggestions on how to overcome
these difficulties in Section 7. Within the hierarchical modeling
framework, a number of published reconstructions methods can be
interpreted as special cases, and thus our approach yields a unifying
framework for paleoclimatic reconstructions. We discuss several
commonly used methods in Section 8, and then close with some
general remarks and discussion in Section 9.

2. A meotivating data set

Mann et al. (2008a) present a reconstruction of hemispheric and
global surface temperatures over the last two millenia using 1209
proxy time series (described in the supplement, Mann et al., 2008b)
and the 5° x 5° gridded surface temperature data product from the
University of East Anglia’s Climatic Research Unit (Brohan et al.,
2006).2 We illustrate a number of challenges posed by paleoclimate
data by considering a subset of this data, geographically restricted to
Northern North America and Greenland, and consisting of only the
instrumental, tree ring density, tree ring width, ice core 30, and
annual lake sediment varve thickness time series (Figs. 1 and 2).

There are a number of climate quantities that a researcher might
wish to reconstruct from a data set of this sort, including time series of

3 The proxy data is available at www.meteo.psu.edu/mann/supplements/
MultiproxyMeans07/, and the instrumental data set at www.cru.uea.ac.uk/cru/
data/temperature/.
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Fig. 1. A subset of the data used in Mann et al. (2008a). Circles indicate the centroids of the grid used to produce the annual, spatially-averaged, temperature anomaly time series
from the instrumental record (Brohan et al., 2006). Numbers indicate the locations of, or the centroids of the regions represented by, the various proxy time series.

large-scale spatial averages of the climate field (e.g., Moberg et al.,
2005; Lee et al., 2008; Mann et al., 2008a; Kaufman et al., 2009), or
the spatial pattern of a climate variable as a function of time
(e.g., Mann et al., 1998; Cook et al., 1999; Luterbacher et al., 2004).
Alternatively, the goal may be to infer an index, such as El Nifio, that
reflects broad aspects of climate (e.g., Emile-Geay et al., submitted for
publication-a, submitted for publication-b). We focus here and below
on the reconstruction of climate processes that can be modeled as
continuous in space and discrete in time — such as annual mean
surface temperatures.

Broadly speaking, the challenges associated with reconstructing
a space—time climate process fall into two categories. First, the
climate system varies on the full spectrum of temporal and spatial
scales, and displays complex spatial, temporal, and spatiotemporal
covariance structures. For example, El Nifio variability has a rich
spatiotemporal signature in the surface temperature anomaly
process, and reconstruction techniques should somehow account for
such phenomena. Second, paleoclimatic reconstructions tend to
combine a variety of different sources of data, each with particular
characteristics. With respect to a representative subset of the Mann
et al. (2008a) data set (see Figs. 1 and 2), we note the following:

o The different data sets likely reflect the target process averaged
over different temporal scales, and likely have different func-
tional relationships with the target process. First order autor-
egressive [AR(1)] fits to each data series reveal that the
distribution of AR(1) coefficients for the instrumental and tree
ring density series are similar, and generally smaller than those
for the tree ring width series (Fig. 3). While the instrumental
observations represent annual averages, the stronger temporal
dependencies of the tree ring width series (Fig. 3) suggest
a longer temporal averaging of the underlying climate process.
Indeed, it is unclear if an AR(1) model is even appropriate for
the tree ring width series. The distribution of the optimal order
of AR(p) fits for the data series, according to the Bayesian
Information Criterion (using the ARfit Matlab package of
Neumaier and Schneider, 2001; Schneider and Neumaier,
2001) is on average about one for the instrumental and tree
ring density series, but about two for the tree ring width
series (Fig. 3). These results indicate that the time series
dependencies are not the same for all data sources. In addition,
the proxies may preferentially reflect the climate during

a subset of the year, such as the growing season (tree-based
proxies), or the season with the most precipitation (ice cores).
While the instrumental and the tree ring density data sets
represent averages over grid boxes, the 3'%0, tree ring width, and
varved lake sediment data sets correspond to observations at
specific spatial locations. Different data types thus represent the
target process on different spatial scales, and the locations of the
proxy time series do not generally correspond to the centroids of
the instrumental grid.

The locations of the proxy data series, particularly the tree ring
width records and the ice core records, are clustered in space.
The number of observations available for each year decreases
rapidly moving back in time (Fig. 2), from the data-dense
instrumental period to less than 20 observations in 1400.

The modeling framework outlined in the following sections
takes into account and reflects these features of the target climate
process, and the instrumental and proxy data sources.

3. Hierarchical statistical models

The paleoclimate reconstruction problem involves inferring
a target, latent* space—time climate process, such as surface
temperature anomalies, conditional on the observed instrumental
and proxy time series and other available covariates. The different
data sources may have different uncertainties and different rela-
tionships with the target climate process, while each data source, as
well as the target process, typically displays spatial and temporal
dependencies. These properties of the data and climate system
motivate a hierarchical statistical approach for the paleoclimate
reconstruction problem.

We construct the probability model for the observations as
a product of conditional distributions, each of which depends on the
different instrumental and proxy observations, and various unob-
served parameters. The unobserved parameters include scalars such
as variance parameters, as well as a number of latent statistical
processes — such as the target space—time climate process and
measurement error-free data processes. Once the data are observed,

4 The term latent is commonly used in statistical models to indicate a quantity
that is unobserved.
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Fig. 2. The number of each type of observation as a function of time, for the subset of the Mann et al. (2008) data set depicted in Fig. 1.

this probability model, f(data|parameters), translates to a “likeli-
hood” function that contains the information in the data about the
unobserved parameters (including the statistical processes). Speci-
fication of the statistical model in this way allows for the construction
of scientifically-driven space—time relationships between different
components of the model (referred to as modeling choices), in
isolation from the analysis choices — the particular tools and tech-
niques used to infer the unknown statistical parameters in the model.
As an example, assuming a linear relationship between two variables
is a modeling assumption, while the decision to use least squares,
method of moments, Bayesian inference, or some other tool to
perform the statistical inference is an analysis choice.

This article will focus on Bayesian inference as the analysis choice.
Given specifications of the prior distribution, 7(parameters), for all
unknowns parameters and the likelihood, f(data|parameters), the
posterior distribution of the unknown parameters given the data is,

(1)

Since the advent of Markov chain Monte Carlo (MCMC) methods in
the 1980s, Bayesian data analysis methods have grown in popu-
larity, mostly due to their ability to easily propagate measures of
uncertainty in complicated scientific problems. There are now
many examples in the earth and climate sciences; see, e.g., Berliner
et al. (2000b); Wikle and Anderson (2003); Tebaldi et al. (2005);
Song et al. (2007); Kopp et al. (2009); Li et al. (2010); Tingley and
Huybers (2010a).

m(parameters|data) « f(data|parameters)m(parameters).

3.1. A general framework for the paleoclimate reconstruction
problem

Let

Y = {Y(s,t):seD, teT} (2)

denote the latent space—time climate process, where D designates
the spatial and 7 the temporal domain of interest. Depending on
the spatial coverage of the reconstruction, the spatial domain D can
be discrete or continuous, usually in two or three dimensions, while
the temporal domain 7 is usually a subset of the integers (for
example, annual averages). For time-uncertain problems, we may
instead consider 7 as a subset of the reals.

In terms of the data sources, we specify a separate model for
each type or class of observation, such as ground-based ther-
mometers, satellite observations, tree ring density observations, ice
core 8180 observations, and so forth. Let

ZIJ = {ZIJ(S,t) :SEDIJ,I'GTIJ} j=1..Np, (3)

denote the Nj different types of instrumental observation, where
Dyj and 7 denote the spatial and temporal domains, respectively,
for the jth instrumental data type. These records need not be
observed at the same set of spatial or temporal scales as the latent
space—time climate process, and indeed each data source may be
observed on a different scale. For example one instrumental record
may be observed annually, whereas another may be recorded daily;

AR(1) coefficient
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Fig. 3. Left panel: box plots of AR(1) coefficients inferred from the instrumental, tree ring density, and tree ring width time series depicted in Figs. 1 and 2. Results are not shown for
the ice core and lake data sets due to the small number of series. Right panel: optimal order of AR(p) fit, according to the Bayesian Information Criterion (analysis performed with
the ARFit Matlab package described in Neumaier and Schneider (2001) and Schneider and Neumaier (2001)).
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another data product may be gridded, compared to one that refers
to exact spatial points. Similarly, let

ZP,k = {ZP,k(S7 t) :SEDPAkthTP,k}vk = 17"'7NP (4)

denote the Np different types of proxy records (for example, the
spatially located tree ring density series, tree ring width series, and ice
core series in Fig. 1), with Dpj and T denoting the spatial and
temporal domains, respectively, for the kth type of proxy observation.

One way to build a statistical model for paleo-reconstruction
would be to write down the distribution of each instrumental,
Z;, and proxy, Zp , data source directly, conditioning on the latent
climate process Y. However, we suggest specifying the relationships
between the various types of observation and the latent climate
field using a two-stage model. To motivate this two-stage modeling
approach, consider a spectrum of pollen counts extracted from
a sample of a lake sediment core. A simple model for the
pollen—climate relationship may state that larger proportions of
pollen from a particular, indicator taxon correspond to warmer
temperatures. In practice, a researcher often extracts a fixed
number of grains, which are then sorted into taxa. Conditional on
the overall count and the latent, true probability of a given grain
belonging to the indicator taxon, the observed count of the indi-
cator taxon follows a binomial distribution (e.g., Ohlwein and Wahl,
2012). The observed counts are thus used to estimate the parameter
of a binomial distribution, and uncertainty is introduced by the
limited sample size and effects such as the preferential degradation
of certain pollen species. In addition, the model relating the bino-
mial parameter to the climate is likely an imperfect representation
of the factors that affect the pollen spectra, in the sense that, given
the actual (as opposed to estimated) parameters of the model, there
remains uncertainty about the state of the climate system. The
same holds true for other proxy types: the model which relates
a standardized site chronology of tree ring widths to climate
contains uncertainty, while measurements errors, the changing
number of trees as a function of time, and uncertainty in the
standardization algorithm all introduce additional uncertainty.

In each case, uncertainty arises from two distinct sources: the
limitations of the model relating the proxy to the climate, and
limitations of the observations, including measurement errors and
finite sample size. While a two-stage model for the data adds
complexity to the modeling framework, it also allows for these two
different sources of uncertainty to be modeled separately from one
another. Models that relate the climate to various data sources are

pollen example, Wp ; would correspond to the true proportions of
various pollen species (as a function of time and space), while Zp ;
would correspond to the measured spectra. Note that the spatial
and temporal domains of the Wp  are somewhat arbitrary, and it
may be useful to specify the spatial domain of the Wy as larger
than those for the corresponding Zp ). For example, setting the
spatial domain of Wp ; to be all locations where the first proxy type
could potentially be measured may be of use in selecting future
sampling sites.

Similarly, let

WLj = {WIJ'(S,I') :SED,j,tETIJ}, ] = 1,...7N[ (6)

denote the N latent, error-free, instrumental processes, each associ-
ated with the corresponding type of instrumental observation, Z; ;. In
the case of the CRU gridded temperature anomaly product (Fig. 1;
Brohan et al.,, 2006), the two-stage model provides flexibility in
modeling the key features of the data, including the spatial averaging
of the underlying temperature field, the spatially and temporally
varying availability of station observations within the grid boxes, and
uncertainties associated with the raw station data (see Section 5).

The likelihood is then defined in terms of a product of the
following:

1. The joint distribution of the latent space—time climate processY;

2. The joint distribution of the error-free instrumental and proxy
processes, {W;;:j = 1..N;j} and {Wp; : k = 1...Np}, condi-
tional on Y;

3. The joint distribution of the instrumental and proxy data, {Z;;}
and {Zp}, conditional on the error-free processes {W;;} and
{Wp} and the climate process Y.

These distributions will also depend on a number of unknown
statistical parameters (such as autoregressive coefficients, spatial
ranges, and measurement error variances) and may also depend on
covariates (such as latitude, longitude, proximity to a coastline, or
spatial maps indicating where trees grow over the globe). To allow
for Bayesian inference, it is necessary to specify a prior distribution
for the unknown statistical parameters, which we label §. We make
the simplifying assumption that the measurement error mecha-
nisms are conditionally independent across data sources, and do
not depend on the climate process Y. The posterior distribution
then follows from Eq. (1):

m(Y, AWy} {Whp;}, O1{Z1;}, {Zpk}) <f (Y1) ({Wi;}, {Wpy }|Y, 0) {l’l’[ hlj(ZIJ}WlJvo)} {ﬁ hp (Zp|Wp . 0) | 7(0). (7
j=1

discussed in Section 5, while issues concerning the observations are
discussed in Section 6. In addition, the two-stage model provides
flexibility in modeling the missing data mechanism (Section 6.3),
and accounting for the fact that inference may be required at one
spatial and temporal scale (for example, annual means of grid box
averages), while observations are on different scales (for example,
seasonal averages at specific locations; see Sections 4.2 and 5.2).

To account for these two different sources of uncertainty, we
introduce and condition upon an intermediate set of space—time
processes. Let

Wp = {Wpy(s,t) : seDpy,teTpyj.k = 1,...,Np, (5)

denote the Np latent, error-free, proxy processes, each associated
with the corresponding proxy data type, Zp. In the context of the

k=1

Techniques such as MCMC sampling can then be used to draw from
the posterior distribution of the latent processes — including the
latent climate process Y, which is the main object of interest — and
unknown statistical parameters, conditional on the data.

The specification of each component of the model will be dis-
cussed in subsequent sections.

4. Modeling the latent space—time climate process

Defining the probability distribution of the space—time climate
process Y = {Y(s,t): te7, seD} is an important step in the
construction of the statistical model, especially with regard to
providing estimates of parameter uncertainty. Usually the chosen
distribution is continuous, but there are some situations where the
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distribution should be discrete (for example, modeling the presence
or absence of seaice). In the continuous case, it is common to assume
that the process is Gaussian, so that the joint distribution at any
combination of spatiotemporal locations is multivariate normal. For
a climate variable such as annual mean surface temperature
anomalies, the Gaussian process assumption is likely reasonable
because of averaging. For other quantities, however, there is strong
evidence against this assumption. For example, distributions of
precipitation are right-skewed, often with elevated levels of zero
precipitation (e.g., Bellone et al., 2000; Berrocal et al., 2008) — in this
case, a cubic root transform may be approximately Gaussian (e.g.,
Stidd,1953; Liet al.,2008). In the modeling of extremes (for example,
maximum temperatures), marginally we expect observations to be
well modeled by the family of generalized extreme value distribu-
tions (e.g., Coles, 2001). Non-Gaussian models necessarily involve
more complicated analysis schemes. While the space—time process
may be non-Gaussian, it is common practice to model the statistical
parameters characterizing the distribution using Gaussian processes
(e.g., Leith and Chandler, 2010) or transformations thereof; counter
examples that use non-Gaussian distributions include Roe and Baker
(2007) and Frame et al. (2005).

For large enough spatial regions and long enough temporal ranges,
itis acknowledged that most space—time climate processes, including
temperature anomalies, are non-stationary in both space and time —
the joint distribution (or more weakly the mean and covariance) at
locations and times (s, t) and (s’,t’) cannot be expressed in terms of
the offset between the locations and time points, (s — s/, t — t’). There
are two common ways that non-stationarities are modeled in practice
(while we demonstrate with Gaussian processes, the same ideas
extend naturally to non-Gaussian processes):

1. The traditional space—time statistical modeling approach (e.g.,
Sahu and Mardia, 2005; Le and Zidek, 2006; Gneiting et al.,
2007) expresses Y as

Y(s,t) = u(s,t) +¢(s,t), seD,teT. (8)
The first term, p = {u(s,t):seD, teT}, captures the
spatially- and temporally-varying mean effects — such as
trends in space and/or time, and dependencies on fully
observed covariates. The mean-zero stochastic process
€ = {e(s,t):seD,te7} then captures the spatially- and
temporally-varying covariance effects of the residuals, usually
based on the simple idea that the covariance between two
spatiotemporal locations decreases as a function of separation in
both space and time. In the simplest models, ¢ may capture all
the non-stationarities in the climate process, so that ¢ may be
specified as a stationary process in space and time.

2. In climate science, it is common to express the multivariate
Gaussian distribution for Y in terms of a reduced number of
spatial basis functions, such as the leading empirical orthogonal
functions (EOFs), canonical correlation patterns, or large-scale
teleconnection signals (e.g., the El Nifio-Southern Oscillation
(ENSO) pattern of variability, or the North Atlantic Oscillation
pattern). Such models generally assume that the climate process
can be well approximated as a time-varying linear combination
of the leading basis functions, while assuming that the basis
functions themselves are stationary-in-time.

A useful strategy in practice is to combine both methods, by
including covariates, basis functions, and a space—time covariance
function. The mean in the decomposition defined by Eq. (8) is first
specified with the aim of capturing any observed non-stationarities
of the climate process. As a constant or simple trend model in space

or time is unlikely to be a good fit, the mean u is often better
modeled as a linear combination of meaningful covariates, which
may include functions of time and space, such as year, month,
latitude, and longitude; more involved functions such as indicators
of land, sea, or coastline; solar, volcanic, and green house gas
forcing time series (e.g., Li et al., 2010); indexes such as ENSO; or
basis functions such as EOFs (e.g., Berliner et al., 2000a). Models for
the mean can also include simple parameterizations of the physics
of the space—time process (e.g., Wikle et al., 2001).

As a simple example suppose that we perform some form of
principal components analysis (using time as a replicate) upon an
empirical estimate of the spatial covariance matrix 3, estimated from
some instrumental data or the output from a general circulation
model collected at m spatial locations sq, ...,Sm. Let {V; : | = 1,...,L}
denote the L leading eigenvectors. In the absence of other effects
(which can be added later), one model for the mean as a function of
space at time p; = (u(Sq,t), ..., i(Sm, )7 is,

L
pe = Y BV, teT. 9)
i=1

This model captures the L spatial effects that account for most of the
variance in Y over space, but does not account for any temporal or
spatiotemporal patterns that may be prominent in the latent
space—time climate process Y. A natural extension would incor-
porate time-varying dependencies, by letting the regression coef-
ficients §; depend on time. In either case, the remaining space—time
dependencies can then be accounted for by using a space—time
covariance function for ¢ that captures the residual dynamics and
interactions observed in space and time.

There is a tradeoff between modeling the mean and modeling the
covariance, and in practical applications it is often not clear what
should be modeled in the mean and what should be modeled in the
covariance. As pointed out in Cressie (1993) “What is one person’s
(spatial) covariance structure may be another person’s mean struc-
ture” (p. 25). An elaborate model for the mean structure may
simplify the covariance specification. In contrast, a rich covariance
model can compensate for a misspecified mean structure, and this is
an important reason for modeling covariances in the first place. For
example, a different but natural way to use the leading EOFs from the
above example would be to set u equal to zero (or some function of
other covariates) and suppose that ¢ = (g¢(sq,t),...,€(Sm, t))T
satisfies,

L
€t~N<0,Z“{IVIV{>, te T, (]0)

=1

where N (-, -) denotes the multivariate normal distribution. Regard-
less of which model is chosen, the selection of the number of EOFs, L,
introduces uncertainty in the specification of the model. Assuming
a model given by Eq. (10) does not preclude the addition of an extra
space—time covariance matrix to model residual space—time
dependencies not captured by the EOFs. Starting simply, in the
absence of other external information, it makes sense to initially
assume that the residual covariance structure is stationary in space
and time. Diagnostic analyses can then indicate whether or not the
analysis warrants the use of a richer class of covariance structures.

4.1. Assuming separability

In specifying space-time covariances it is important to consider
the interplay between space and time. A space—time process is
separable if the space—time covariance function can be factored
into the product of a purely spatial covariance function and a purely
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temporal covariance function. The issue of space—time separability
is not new to the climate sciences. Hasselmann (1993) and Stouffer
et al. (2000) provide motivation and illustrations of non-
separability in space—time climate processes, while Li et al.
(2009) investigates the space—time covariance structure of the
precipitation field.

Assuming a separable covariance structure simplifies calcula-
tions substantially, while at a potential cost of not encapsulating
significant space—time interactions. In some situations,
space—time predictive performance has been shown to be rela-
tively unaffected by assuming a separable covariance structure
(e.g., Genton, 2007), but to our knowledge the issue of separability
has not been investigated in the context of paleoclimatic recon-
structions. Tingley and Huybers (2010a,b), in the first application of
a space—time process-level model to the temperature reconstruc-
tion problem, specifies a space-time separable model for conve-
nience but does not test if the data support this assumption.

There are a number of statistical tests for separability and other
properties of space-time covariance structures (e.g., Mitchell et al.,
2005; Fuentes, 2006; Li et al., 2007a). In the paleoclimate recon-
struction problem, the space-time sparsity of the data is an obstacle
to testing for separability. Indeed, it could be argued that such data-
sparsity precludes us from assuming a non-separable covariance
model that fits well to the data. One useful exercise would be to
investigate the space-time covariance structure of the climate
process using a climate model as a testbed. Tests for separability
and stationarity could be readily applied to the spatially and
temporally complete model output, and the results would provide
a useful guide for the specification of covariance forms in the
context of the paleoclimate reconstruction problem.

To demonstrate for our application that annual mean surface
temperatures are likely non-separable, we consider the CRU gridded
instrumental data set (Brohan et al., 2006), confined to the region
shown in Fig. 1. The covariance form assumed in Tingley and Huybers
(2010a,b), is separable, and corresponds to an exponential covari-
ance function in space and an AR(1) process in time:

2 ¢\f t|
— ¢
Now suppose that the temporal autocorrelation parameter ¢ varies

over space. Letting ¢(-) denote this spatially varying parameter, the
space-time covariance becomes

Cov(Y(s, 1), Y(s',t')) = ——exp(—plis —s'l]). (11)

2g(s) "

Cov(Y(s,t) Wew(

Y1) = —plls—s'|), t—t'>0,

(12)

and the same form but with s and s’ interchanged for t — t' < 0. As
long as ¢(-) is not constant in space, the covariance function is no
longer separable because it introduces an interaction between
space and time. The left panel of Fig. 4 displays the estimated lag-
one autocorrelation at each grid location — evidence of non-
separability will follow if this autocorrelation varies spatially. An
estimate of the standard error derived using a block bootstrap
(cf. Lahiri, 2003) resampling is shown in the right panel of Fig. 4.°
Taken together, the two panels of Fig. 4 indicate that the

5 To calculate the block bootstrap estimate of the standard error, we split the
time series into blocks of four and resample these blocks to obtain a time series the
same length as the original series. We estimate the lag-one autocorrelation for this
resampled series. Repeating, we calculate the standard deviation of the estimated
autocorrelations over the many resampled series.

autocorrelation varies over space, which implies that the space-
time process is not separable. This result should be considered in
any process model for annual mean surface temperature anomalies,
with the caveats that the proxy data is much sparser than the
instrumental data, and that (as stated above) predictive perfor-
mance is not always affected by incorrectly assuming a separable
covariance form (e.g., Genton, 2007).

4.2. Issues of spatial and temporal support

Care should be taken when specifying the spatial and temporal
support of the latent space-time climate process. For example, the
spatial domain D need not be a simple subset of two- or three-
dimensional space. Statisticians have been active in developing
statistical models for data observed on the globe (see, e.g., Jones,
1963; Das, 2000; Huang et al., 2002; Stein, 2005), and the measure
of distance used in the specification of a spatial covariance function
on a sphere must be chosen carefully. Banerjee (2005) illustrates that
great circle distances can result in invalid (singular) covariance
matrices, and instead suggests the use of chordal distance, the
distance between two locations in R3.

In some settings, it may be of interest to infer the latent climate
process at one level of spatial or temporal averaging (e.g., annual
means averaged over regular spatial grid boxes), despite each data
source having different spatial and temporal supports — see Fig. 3
for evidence that different data sources reflect the climate aver-
aged over different temporal supports. This so-called “change-of-
support” problem will be touched upon below (Section 5.2); see
Gelfand et al. (2001) for a more general discussion.

5. Forward models for climate proxies

We propose linking the instrumental and proxy observations to
the latent space-time climate process via a two level statistical model.
This two level approach dissociates the treatment of issues related to
the observations, such as measurement error and missing data, from
modeling the scientific understanding of how the error-free instru-
mental and proxy processes, {W;} and {Wp}, are causally affected
by the underlying climate process, Y. In this section we discuss
models for the latter, namely defining g({W;}, {Wp,}Y.0) in
Eq. (7). The form of this model is usually called the forward model for
the data processes (e.g., Hughes and Ammann, 2009).

5.1. Forward modeling

Specification of forward models requires an accurate under-
standing of how each data type records information about the latent
climate process. In what follows we make the common and simpli-
fying assumption that the latent instrumental and proxy processes
are conditionally independent, given the latent climate process and
unknown parameters:

g({wl,i}ﬁ{wP,k}!Yv 0) = {ng W1]|Y 0:|

Np
x { 1 gri(We Y, ‘9)} : (13)

k=1

This conditional independence assumption implies that any
correlation between two proxy or instrumental processes, such as
pollen spectra and the CRU temperature anomalies (Brohan et al,,
2006), is the result of a common dependence on the underlying
climate, Y.
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Fig. 4. Left panel: estimates of the first order partial autocorrelation function for the instrumental time series from Fig. 1. Right panel: bootstrap estimates of the standard deviation
of the estimated first order partial autocorrelation. Note that this temporal property varies spatially, indicating that the process is not separable in space and time.

Taken in turn, each latent process, W, ; or Wp, is the dependent
variable and Y is treated as the independent variable. In the special
case of a linear model, this formulation is sometimes called “indi-
rect regression” in the climate literature (e.g., Christiansen et al.,
2009). There is little consistency in terminology, however, as ter
Braak (1995) refers to methods that specify the conditional distri-
bution of the latent climate process given the observations as
“inverse approaches”. As it is the climate that drives the develop-
ment of the proxies (and not vice versa), treating the climate as the
independent variable is the natural modeling choice (Christiansen,
2011a; Tingley and Li, 2011). Bayesian inference then provides
a formalism for inverting the forward model to provide inference
on the target climate process, given the latent data processes.

In what follows we focus on forward models for the latent proxy
processes, but note that a similar approach can be taken for the
latent instrumental processes. In the context of instrumental
temperatures, for example, both GISSTEMP (NASA GISS, Hansen
et al, 2010) and the Climate Research Unit’s products (Brohan
et al., 2006) are constructed by heavily processing raw station
data into monthly grid box averages. These algorithms can be
interpreted in terms of a forward model that describes the gridded
values as a function of the latent (and spatially continuous) space-
time temperature process.

No forward model can perfectly describe the development of any
real proxy as a function of climate, so each is at best an approximation
to the true relationship. As the adequacy of the forward model(s)
directly affects the reconstruction results, it is important to carefully
consider the tradeoff between complexity and feasibility when
choosing a model. For example, Li et al. (2010) specify forward models
that reasonably reflect the temporal averaging associated with each
proxy type, but do not include a spatial component at the process
level. In contrast, Tingley and Huybers (2010a) specify much simpler
forward models, but include a spatial component at the process level.
All currently favored reconstruction methods make use of linear
relationships (see Section 8), and moving away from such assump-
tions is a key area in which reconstruction methodologies may be
improved. The so-called divergence issue (e.g., D'Arrigo et al., 2008),
wherein certain trees at high northern latitudes have demonstrated
a reduced correlation with local temperatures over the past several
decades, is indicative of the complex relationship between climate
and proxy observations, which may be better captured via the
development of realistic forward models.

In general, a forward model for the kth proxy type is a function of
the latent climate space-time process, Y, but must also express the
uncertainty in the relationship between Y and the latent (and
measurement error-free) proxy process. In the simplest case, the
forward model may be a function of the climate process, with
additive errors that are independent of the climate process. The
functional form of the forward model captures the biological or
physical processes through which the formation of the proxy
archive (for example, the wood of a tree or the calcium carbonate of

a coral) is modulated by changes in the climate system, and it is
expected to capture the main features of the response of the proxy
with respect to climate. The stochastic component of the forward
model captures variability in the proxy that is not captured by the
functional dependence on the climate. Common models for the
uncertainty include an additive white noise process or additive time
series processes (e.g., Li et al., 2010 use an AR(2) process). Forward
models that include uncertainty in the timing (or locations) of the
observations are also possible.

While there are many types of proxies (tree-rings variables, pollen
assemblages, borehole temperature profiles, chemical compositions
of ice cores, corals and speleothems, and so forth), each with different
characteristics that must be reflected in distinct forward models, in
the interest of space we discuss three commonly used classes of
proxy.

5.1.1. Forward models for tree rings

Tree growth is a complex biological process, depending non-
linearly on many climate variables, including temperature, amount
of sunlight, and soil moisture parameters; see, for example the
Vagonov-Shasking model of Evans et al. (2006). The feasibility of
incorporating realistic non-linear forward models directly into
a hierarchical climate reconstruction scheme is uncertain, due to
the large number of climate variables these models require as
inputs, and the computational challenges posed by the non-line-
arities. Recently, Tolwinski-Ward et al. (2011) proposed a reduced
form of the Vaganov-Shashkin model which may be more appro-
priate for use within hierarchical climate reconstructions.

Techniques such as the regional curve standardization (e.g., Briffa
et al.,, 1992) are generally applied to tree ring time series to remove
non-climatic growth effects. Such pre-processing steps can be
thought of as models which describe climate as a function of the
observations: a number of mathematical operations are applied to the
observations, and the results are interpreted as indicating climate. A
more logically sound approach would be to incorporate these pro-
cessing steps into the forward model (Schofield, in preparation).

5.1.2. Forward models for pollen

Forward models for pollen that may be of use in the context of
paleoclimatic reconstructions are likewise in various states of
development. Adam and West (1983) proposed an exponential
regression model to estimate the relationship between pollen
assemblage ratios and temperatures. A statistically advanced anal-
ysis of pollen data is presented in Haslett et al. (2006b), which uses
aBayesian analysis to invert a forward model for pollen data in order
to reconstruct pre-historic Irish climate. Guiot et al. (2009) present
an analysis of pollen data dating back to the last glacial maximum,
and use a Bayesian inference technique to invert a vegetation
forward model. More recently, Wahl et al. (2010) have made prog-
ress on a binomial logistic regression model for pollen ratio data,
designed to reflect the “S” shape and [0,1] range of pollen ratios.
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5.1.3. Forward models for borehole temperature profiles

Unlike tree rings and pollen, borehole temperature profiles
measure the results of a purely physical process: heat diffusing
down through an ice sheet or bed rock. Borehole temperature
profiles are measured in the same units as the climate process under
study, and have been used extensively to infer past climate borehole
temperature (see NRC, 2006; Jones et al., 2009, and references
therein). However, the measurement is of a vertical profile of
temperature with respect to depth, while the required quantity is
the time-history of surface temperature. The heat equation (Carslaw
and Jaeger, 1959), subject to some initial and boundary conditions,
describes how surface temperatures diffuse down through the
surface to from a vertical profile, so is thus a natural forward model
for relating the measured quantity to the target climate process.

The pre-observation mean-surface air temperature model
(POM-SAT), discussed in Harris and Chapman (2001) and Harris
(2007) is perhaps the most developed forward model for borehole
temperature, and accounts for the geothermal heating from the
Earth’s core. Li et al. (2010) and Brynjarsdéttir and Berliner (2011)
construct statistical models using POM-SAT; Li et al. (2010) empha-
sizes that the process must mimic the “smooth” appearance of actual
borehole profiles, whereas Brynjarsdéttir and Berliner (2011)
considers multiple boreholes and accounts for possible spatial
dependencies.

5.2. Spatial and temporal misalignment and change-of-support

To set up the reconstruction problem in a logically consistent way,
it is necessary to differentiate between the continuous, unobserved
climate process, and the spatial scales of both the data and the
inference. As an example, the goal might be to infer past tempera-
tures averaged over 5° x 5° grid boxes — the same level of spatial
smoothing as the CRU temperature compilation — using the data
depicted in Fig. 1. Spatially, the CRU data can be thought of as annual
averages over regular grid cells, while the tree ring width time series
have not been aggregated: both the locations and the extent of spatial
averaging varies between the data types (Fig. 1). This is an example of
a spatial change-of-support problem (Banerjee et al., 2004). The same
issue arises with respect to temporal change-of-support, as some
data sources may reflect the climate averaged over only part of a year
(a tree or coral’s growing season) or over several years (pollen counts
from lake sediment samples), while inference may be required at the
annual timescale. Indeed, two measurements derived from the same
proxy archive may have substantially different time series properties,
perhaps indicative of differing degrees of temporal averaging (Fig. 3).
These aspects of the proxy—climate relationship can be encoded by
specifying that each W ; or Wp , process at a particular location s and
time t is a known function of the process Y over a region of space and/
or an interval of time.

Temporal change-of-support has frequently been discussed in
the climate literature, though often not within the context of
forward models. In certain reconstructions (e.g., Moberg et al.,
2005) the proxies are divided into two classes, which are treated
as reflecting high and low frequency climate variability, respec-
tively. A similar approach is taken in Rutherford et al. (2005), where
the observations are filtered into high and low frequency compo-
nents, each of which is analyzed separately. In the forward-
modeling approach of Li et al. (2010), different proxies are explicitly
modeled as reflecting the target process averaged over different
time scales (see Section 8.2).

We stress that the model for the latent instrumental and proxy
processes, conditional on the climate process, must reflect the
scientific understanding of the spatial and temporal domain of the
climate process that causally affects the development of a proxy,
while f (Y) describes the distribution of the space-time climate

process. Even though a coral or tree ring chronology may be highly
correlated with a climate variable at some distant location or
averaged over a continent or hemisphere, the growth of the
organism is causally influenced by strictly local climate. In such
cases, the latent space-time climate process Y displays long-range
dependencies (“teleconnections”) or is highly correlated in space,
so that the information given by the site chronology at one location
informs Y over a larger region. These are features of the process
level, and should therefore be accounted for in the specification of
f(Y); see Cressie and Tingley (2010) for a discussion of this issue
with respect to borehole temperature profiles.

6. Modeling the observations and other data-level issues

The hierarchical model outlined in Section 3.1 includes two levels
for modeling the data. Models for the latent (and measurement error-
free) instrumental and proxy processes, conditional on the
space-time climate process, account for the fact that proxies such as
borehole temperature profiles or pollen ratios are imperfect records
of the climate (Section 5). This section focuses on models for the
instrumental and proxy observations, conditional on the error-free
instrumental and proxy processes — these “observation models”
need to account for data-level effects such as “measurement error”,
screening or selection effects, and missing data mechanisms.

6.1. Regression dilution and models for measurement error

All observational data sources can be thought of as incorpo-
rating measurement error. For the kth type of proxy data (or
similarly for instrumental data), the simplest measurement error
model is of the form,

ZP.,k(Sv t) = WP,k(S’ t) + EP‘k(sﬂ t)7 (14)

where {ep(s,t)} is a white noise error process, and the relation
applies at those locations s and times t where the kth proxy data
type is observed. Eq. (14) assumes that the measurement error
process is additive white noise that is independent of the corre-
sponding data process, and such assumptions may not be valid in
all cases. Possible identifiability issues with respect to the param-
eters of the {ep (s, t)} process above and parameters of the corre-
sponding forward model, gp  (Wp |Y, 8), can be resolved by placing
an informative prior on the variance of {ep(s,t)}, derived from
knowledge of the actual measurement process (see Section 7.2
below and, for example, Section 2.2.4 of Santner et al., 2008).

A contentious issue in paleoclimate reconstructions concerns
the general underestimation of the temporal variance of the
reconstructed time series (e.g., Christiansen et al., 2009, 2010;
Rutherford et al., 2010). We note that any methodology that
involves predicting instrumental observations from proxy obser-
vations (a regression, as opposed to a linear forward model) using
ordinary least squares will produce this effect: the variance of the
predictions is strictly smaller than the variance of the actual
response, even if the model is correct (see, for example, Fig. 9-1 of
NRC, 2006). This effect is accentuated if the predictor variables (the
proxies) suffer from extensive measurement error, as estimates of
the regression coefficients will then be biased (perhaps severely so)
towards zero — an effect known as regression dilution (e.g., Frost
and Thompson, 2000; Tingley and Huybers, 2010b). The issue of
measurement error is not new to paleoclimatologists, and the
widely-used RegEM algorithm (e.g., Schneider, 2001; Mann et al.,
2007; Christiansen et al.,, 2009, 2010; Rutherford et al., 2010)
involves regularization via either ridge regression or truncated total
least squares, both of which implicitly account for errors in both the
predictor and response variables (see Section 8).
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In the context of climate reconstruction, the calibration interval
(the last 150 years) is generally warmer than times in the past.
Regression dilution thus results in reconstructions of past tempera-
tures that are biased towards warm values. Ammann et al. (2010)
illustrate how measurement errors in the proxies produce biases in
both the variance and the mean value of a reconstruction. Indeed,
Ammann et al. (2010) identify the problem of regression dilution, and
propose a correction, based on the results in Fuller (1987) and Carroll
et al. (2006), that involves minimizing out-of-sample prediction bias
over subsections of the calibration interval. These solutions are more
stable than the total least squares solution, as the latter can poten-
tially over-correct the bias if there is no accurate information on the
error variances for both the predictor and response variables (Carroll
and Ruppert, 1996), which is often the case in paleoclimate recon-
structions. Many issues with respect to regression dilution in the
presence of correlated errors in both predictor and response variables
remain unresolved in Ammann et al. (2010).

An alternative strategy for modeling measurement errors is
afforded by the hierarchical approach proposed above, which can
explicitly model the errors in each type of data and can thus avoid
the attenuation effects of model misspecification. Tingley and
Huybers (2010b) shows that, if the process and data-level models
are correct, individual draws from the posterior (see Section 7)
have, on average, the correct variability, while the variance of the
posterior mean remains attenuated.

6.2. Data quality and screening for correlation over the
instrumental period

The various proxies used to infer past climate are collected from
different sources and combined in different ways — a tree ring
chronology may be based on cores from upwards of 20 trees,
whereas a coral chronology does not usually feature such replica-
tion. The different data sources thus inform the target climate
process with different levels of uncertainty; see NRC (2006) and
Jones et al. (2009) for further discussion of related data issues.

A procedure often referred to as screening or pre-processing
(Osborn and Briffa, 2006; Mann et al., 2008a) is frequently used
to select a subset of proxy time series to be used in a reconstruction
from a potentially much larger candidate pool. As examples, the
supplement to Mann et al. (2008) describes how only those
candidate proxy time series that exhibit a significant correlation
(p < .10) with one of the two closest instrumental time series were
used in the ensuing reconstruction, while McShane and Wyner
(2011) makes use of the Lasso to select a subset of the candidate
proxy series. There are both advantages and disadvantages to such
screening procedures. On the one hand, excluding candidate proxy
series that contain little or no information about the target process
will improve the reconstruction, and this is the main justification
for screening candidate proxies (e.g., Mann et al., 2008a). On the
other hand, such procedures can result in reconstructions with
artificially high levels of skill over the interval used for screening,
and no skill whatsoever elsewhere. This is even more likely in the
context of autocorrelated time series, where it is well known that
the empirical correlation between two independent, autocorre-
lated time series is highly variable and can possibly appear large
(Yule, 1926; McShane and Wyner, 2011). If the candidate pool of
proxies is a sufficiently large number of independent AR(1) series,
then at least some will meet an arbitrarily strict correlation
requirement like that used in Mann et al. (2008a). Of course,
a reconstruction based on such AR(1) series will have no skill
outside of the screening interval. Christiansen and Ljungqvist
(2011) apply a Monte Carlo screening procedure, based on gener-
ating surrogate series with the same autocorrelation properties as
the test proxy series, that reduces the likelihood of including

proxies with little or no predictive power outside of the screening
interval. An alternative approach is to withhold a portion of the
instrumental data which is then used to test or validate the
reconstruction (e.g., NRC, 2006). Without careful testing of signif-
icance, screening candidate proxies according to correlation with
the instrumental records can affect the statistical results of a pale-
oclimatic analysis. For example, Biirger (2007) discuss how the
significance levels presented in Osborn and Briffa (2006) should be
modified to take into account the effects of the screening procedure
used in the study.

A further issue with respect to screening proxies based on
correlation with the instrumental record concerns the assumption
that the relationship between the two is always linear. Within the
forward-modeling framework (Section 5), each data type should be
modeled separately, and appropriate models may be non-linear (e.g.,
Tolwinski-Ward et al., 2011).

6.3. The role of missing data

Answers to the scientific questions that paleoclimatic recon-
structions seek to answer rely on the availability of data sets that are
accurate, long, continuous, and of broad spatial coverage (NRC,
2006). In practice, such data sets are rarely available, and the influ-
ences that the pattern of missing data can have on a reconstruction is
an issue which has begun to receive considerable attention in the
climate literature (e.g., Smerdon et al., 2008; Ammann et al., 2010;
Tingley and Huybers, 2010b). The problem of missing values in
climate related studies is not unique to paleoclimate reconstructions.
Indeed, the missing data problem arises almost immediately in
standard (as opposed to paleo) climate process constructions. For
instance, the post-1850 instrumental temperature record is afflicted
by missing data issues in both space and time, as large swaths of the
globe’s surface (the South Pacific, for example) are under-sampled,
particularly in the early part of the record. In general, direct phys-
ical measurements of climate processes are limited temporally and
spatially, with measurement quality and availability generally
decreasing back in time (NRC, 2006; Emile-Geay et al., submitted for
publication-a, submitted for publication-b).

The concept of missing data has different meaning or interpre-
tations to different end users, and often tends to be context specific.
Missing values in a time series of instrumental records at a given
location could mean lack of data at some point in the time series,
perhaps due to an instrument malfunctioning. On the other hand, it
could also mean that the date from which records began is more
recent as compared to another location. While the missingness in
the latter case is more structural, in the sense that there cannot be
instrumental observations at a particular location before an
instrument is placed there, these two types of missingness can be
treated in a similar manner.

Paleoclimate proxy records likewise suffer from missing data
problems, or simply a lack of availability of long proxy time series.
Some of this problem is structural in the sense that the very nature of
the proxies tends to affect how far they go back. For example, the
length of an ice core record is limited by the physical properties of the
ice sheet or glacier from which it is drilled. It is also well known that
the spatiotemporal pattern of available proxy data is severely skewed
toward land areas, and data availability decreases very rapidly in time
(see Flg. 2 and Mann et al.,, 2008a). The availability of proxy data
mainly over land masses limits our ability to reliably estimate past
climate over the oceans (e.g., Hartmann, 1994), while the decreasing
number of proxy observations generally induces greater uncertainty
for the earlier intervals of paleoclimatic reconstructions (e.g., Mann
et al,, 1998). Similarly, available proxy data sets do not generally
feature broad spatial coverage, which hinders reconstructions at the
regional level, as smaller sample sizes can lead to statistical estimates
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which are strongly dependent on a particular type of proxy (Emile-
Geay et al., submitted for publication-a, submitted for publication-b).

Within the context of paleoclimate reconstructions, missing data
is thus an unavoidable reality. Several commonly used methods,
however, require that the data be “block missing,” with all instru-
mental time series covering the same interval, and likewise for the
proxies. As discussed in Section 8, such methods can involve a pre-
processing step to impute missing values in the data prior to per-
forming the reconstruction. This data infilling can have unintended
consequences on the analysis, as in general, the imputed values
exhibit reduced variability relative to the true, missing values
(Dempster et al,, 1977; Gelman et al., 2003).

We discuss two statistical approaches to the treatment of
missing data that have been proposed or used in the context of
paleoclimate reconstructions.

6.3.1. Imputation based on linear regression

One common interpretation of the paleoclimate reconstruction
problem is to regard instrumental observations of any climate
variables before 1850 (and some after this point) as “missing.” In this
view point, popularized by the RegM algorithm (Schneider, 2001),
the paleoclimate reconstruction endeavor reduces to an imputation
or missing value problem: the goal is to infer the “missing” values in
available instrumental time series prior to 1850. Labeling the
unknown instrumental variables prior to 1850 as “missing values” is
a nomenclature used in the literature (e.g., Schneider, 2001); in
practice, the reconstruction proceeds by calibrating the proxy data
against available instrumental data (post 1850) and then using that
calibration to predict instrumental records prior to 1850.

If there are no missing values in the joint proxy-instrumental
data set, then both the mean of each time series and the covariance
matrix between them can be readily estimated. Likewise, given the
mean and covariance, and the assumption that the data at each time
point is multivariate normal, the missing observations for each
year can be imputed using standard regression expressions. In
the presence of missing values, the simultaneous estimation of the
mean and covariance and the imputations of the missing values is
a non-linear problem with no general closed-form solution. The
Expectation—Maximization (EM) algorithm of Dempster et al. (1977)
is an iterative procedure which overcomes the missing data problem
by first starting with an initial estimate of the mean and covariance
of the incomplete data, and then estimating regression coefficients
that are used to infill the missing values. Once a complete data set is
available, updated estimates of the mean and covariance are calcu-
lated from the complete data. The new estimates are in turn used to
obtain new imputed values and the process is repeated until
convergence. Schneider (2001) proposes several schemes for regu-
larizing the covariance estimation in the Expectation step if the
number of available observations is small; see Section 8 for further
details.

The EM-based approach, which jointly models the proxy and
instrumental time series and treats the instrumental records in the
past as a large block of missing data, has several strengths. It is
a general and transparent framework for reconstructing paleo-
climate processes and the computational costs can be substantially
lower than those required for Bayesian inference with a hierarchical
model. There are, however, technical limitations to regularized
variants of the EM algorithm. Providing uncertainty estimates for the
imputations can be a challenge (see, e.g., Schneider, 2001; Tingley
and Huybers, 2010b). In addition, the EM algorithm is a local
search algorithm so is not guaranteed to find the global maximum of
the likelihood. Some of these limitations of the can be circumvented
by exploiting the fact that the bulk of the missing data in paleo-
climatic reconstruction problems generally have a staircase pattern
(Rajaratnam, 2010). In a perfect staircase pattern, each time series

ends at the same time point (say, this year), the time series extend
back to different points in the past, and each time series is complete
(no missing observations between the first and last). Rajaratnam
(2010) demonstrates that if the missing values follows this pattern,
then closed-form expressions for the mean and covariance function
can be calculated analytically. This closed-form approach is much
faster than the EM-approach, ensures that the solution is the global
maximum likelihood estimator, and facilitates the calculation of the
variance of the resulting imputations. Even when the monotone
incomplete pattern assumption is violated, the closed-form
approach can be used to produce an extremely good starting value
for the EM algorithm.

6.3.2. Imputation via space-time modeling

The hierarchical modeling approach developed above provides
a natural framework for imputing missing values. Indeed, under
this formulation, the entire latent space-time climate process, Y, is
unobserved. The forward model and the observation model
describe how each observation relates to Y, while the model for Y
indicates how information about the climate process is shared
across space and time. Depending on the particulars of the analysis,
the missing data process can be modeled in the specification of the
forward model, the observation model, or both. Whereas (Reg)EM
imputes missing values in incomplete instrumental time series, the
specification of a space-time covariance form allows for predictions
of the process at any location — even those where there are no
observations at any time. A reasonable space-time statistical model
allows for appropriate uncertainty quantification in the imputation
of the missing values, and imputations at locations or times many
decorrelation length scales from the nearest observations will
naturally be highly uncertain. In addition, the space-time covari-
ance model can be used to estimate the reduction in uncertainty, as
a function of space and time, given an additional observation with
a known uncertainty. For a detailed description of the differences
between RegEM and a space-time modeling approach, see Tingley
and Huybers (2010b).

6.3.3. Inference in the presence of missing data

While each of these approaches provides a concrete set of tools
for handling missing values, a word of caution is in order. These
methods implicitly assume that the missing data mechanism itself
has not distorted the properties of the observed data. In other
words, there is an implicit assumption that the missing data
mechanism (or more precisely the distribution of the missing data
mechanism) does not depend on the values of the missing obser-
vations. Understanding the mechanisms that lead to missing data is
critical in assessing their influence on statistical inference and the
type of biases that missing data can introduce. The notion “missing
at random” (MAR; Little and Rubin, 2002), sometimes referred to as
“ignorability,” characterizes this problem, and assuming that
observations are MAR allows one to safely ignore the missing data
mechanism. Indeed, in the paleoclimate context the methods
proposed in Schneider (2001), Rajaratnam (2010) and Tingley and
Huybers (2010a) all make the MAR assumption, so will retain
desirable properties of standard statistical estimators only if this
assumption is correct. Violations of the MAR assumption can, in
each case, lead to estimates of the climate process that are biased or
otherwise sub-optimal. Rubin (1976) and Little and Rubin (2002)
provide comprehensive treatments of statistical inference in the
presence of missing values.

Recent work with RegEM by Smerdon et al. (2008) indicates that
the MAR assumption is likely incorrect in the paleoclimate context.
Observations are predominantly missing in the pre-instrumental
period, when temperatures are generally colder than in the data-
dense instrumental period: there is a dependency between the



12 M.P. Tingley et al. / Quaternary Science Reviews 35 (2012) 1-22

probability of data being missing and the value of those missing
observations. A possible solution is to include CO, concentration
(which is also correlated with temperatures) as a covariate in the
process level, as is done in Lee et al. (2008) and Li et al. (2010).

7. Inference and computation

Models such as those described in Sections 3—6 are complicated,
multi-level, and often incorporate non-trivial space-time depen-
dencies. Inference for such models is generally performed via
a Bayesian approach (cf. Gelman et al., 2003; Carlin and Louis, 2009).
Markov chain Monte Carlo (MCMC) is a convenient general-purpose
algorithm for carrying out Bayesian inference and is therefore central
to fitting the kind of hierarchical models we describe in this paper. In
this section we briefly describe MCMC algorithms and some issues
related to prior specification for hierarchical models.

7.1. Markov chain Monte Carlo

Much of what we have described above involves building hier-
archical Bayesian models where inference is based on the posterior
distributions of the parameters. This posterior distribution, as
shown in Eq. (1), is rarely available in closed form. Furthermore,
posterior distributions for hierarchical models are typically multi-
dimensional and complicated. Hence, learning about the properties
of the distributions, for instance the means and variances or a tail
probability, is non-trivial. This is because computing an expectation
requires high-dimensional integration involving the posterior
distribution.

Fortunately, MCMC methods provide a very general recipe for
drawing samples according to a given distribution, and then using
those samples to estimate properties of the distribution. Thus
scientists can routinely obtain estimates of the entire posterior
distribution of interest, including all marginal and joint distribu-
tions, allowing a diverse set of scientific questions to be answered.
As a simple example, if MCMC samples are available from the
posterior distribution of a parameter, say 6, the average of these
samples converges to the true mean of the posterior distribution of
0 as the MCMC sample size increases. MCMC-based inference has
therefore allowed statisticians and modelers in numerous fields to
fit increasingly sophisticated models.

The use of MCMC has become common in many disciplines (see,
for instance, the influential Gilks et al. (1996) or Brooks et al.
(2011)), and there are now a number of statistical software pack-
ages that construct MCMC algorithms when presented with a fully
specified model or a function proportional to the posterior distri-
bution. The software package WinBUGS (Lunn et al., 2000), for
example, provides a framework for fitting a very wide range of
Bayesian models. The algorithms require minimum user interven-
tion in principle, which makes WinBUGS very useful for non-expert
users of MCMC, and its GeoBugs module allows for certain classes
of spatial models to be fit. For some of the more involved space-
time models discussed in this paper, however, WinBUGS may be
slow and sometimes impractical. More recently a number of more
specialized R (Ihaka and Gentleman, 1996) packages have been
developed, for example geoR (Ribeiro and Diggle, 2001) for
maximum likelihood-based inference for spatial data, spBayes
(Finley et al., 2007) for Bayesian inference for an array of Gaussian
process models, and ramps (Smith et al., 2008) for joint linear
models for point-level and aggregated spatial data.

While these software packages are useful for certain models, it is
often the case that MCMC algorithms have to be constructed and
implemented on a case-by-case basis for complicated hierarchical
models. Issues involved in the design of an MCMC algorithm include
finding ways to make the algorithms efficient, determining the

accuracy of estimates based on these algorithms to ensure that the
scientific conclusions are valid, and determining an appropriate
length (sample size) for the MCMC algorithm. The literature in this
area is vast; we point interested reader to Robert and Casella (2004);
Brooks et al. (2011), and references therein. Flegal et al. (2008), for
instance, provides a simple and theoretically-justified approach for
assessing the accuracy of MCMC-based estimates and for using these
estimates to determine MCMC sample size. The level of expertise
required in constructing MCMC algorithms for sophisticated models
is perhaps another reminder that analyses of the kind discussed in
this paper may be done most expediently via long term collabora-
tions between climate scientists and statisticians.

7.2. Choice of prior distributions for Bayesian models

Careful prior specification is an integral part of a Bayesian analysis.
The ideal situation is one where scientific expertise or past infor-
mation provides a reasonable judgment on the distribution of
possible values of a parameter in the model. In our notation, this prior
distribution is denoted by 7(6) where 6 is the vector of parameters.
We note that for simplicity the prior distribution is typically specified
independently for each parameter (each component of 6), though
this is by no means strictly necessary. Translating expertise into
a probability distribution may still be a challenge, although recent
research has led to many successful approaches for formal “prior
elicitation” (see O’Hagan et al., 2006). When formal prior elicitation
proves to be a challenge, more informal approaches for characterizing
expert judgment may be used, and simple parametric forms are
chosen based on domain expertise. In situations where scientific
expertise may be equivocal, the Bayesian approach allows for
multiple analyses based on different priors; the agreement or
differences in results based on these different priors may be of
scientific interest in their own right. In many cases, however, the
parameters may be hard to interpret or there may be a paucity of
reasonable scientific knowledge that can inform prior selection for
them.

When scientific expertise is unavailable or hard to formalize, so-
called “objective” or “reference” priors (see, for instance, Kass and
Wasserman, 1996; Berger, 2006) may be useful. Such priors
purport to be objective in terms of the information they provide
about the parameters. While there are success stories, deriving
these priors can pose serious mathematical challenges in general,
and doing so is often infeasible for complicated multi-stage hier-
archical models, such as those presented in this paper. In practice,
therefore, it is common to rely on so-called “vague” or “uninfor-
mative” prior distributions that have high variance and are there-
fore, at least in a simplified view, largely uninformative about
a parameter. These vague priors, however, can actually be much
more influential than desirable, particularly in the case of variance
parameters (see, for instance Gelman, 2006, and references). Even
when scientific expertise is being used, erroneous or overly confi-
dent expert priors (for example, priors that might be implicitly using
some of the same information or data being analyzed), may have
undue influence on the results of an analysis (cf. Frame et al., 2005).
In fact, in virtually all the cases discussed above, a thorough Bayesian
analysis requires careful study of the effects of various prior speci-
fications on the resulting analysis. “Robust Bayesian inference”
involves studying the sensitivity of results to uncertain inputs, such
as prior specification, model specification, and utility functions (see,
e.g., Box, 1980; Berger, 1994). Prior sensitivity analyses can often be
carried out fairly efficiently via sampling—importance—resampling
(cf. Gelman et al.,, 2003, p. 450), where the samples produced
from a posterior distribution under one prior specification are
simply resampled (with a weighting scheme) to produce the
posterior under a different prior specification. This avoids having to
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construct new MCMC algorithms for each new prior distribution.
Other approximation approaches are also available (cf. Kass et al.,
1989). We note that while prior specification may seem like
a daunting task, there is value in the formalism that comes from
having to explicitly specify prior judgments on parameters and
seeing, based on the posterior distribution, how the data have
informed our understanding of these parameters.

The number of unknown quantities in a hierarchical model for
inferring past climate will almost certainly exceed the number of
observations available to fit the model — recall that the entire target
field is treated as latent, while data availability can be sparse in both
space and time. Modeling the spatial and temporal covariance of
the target field at the process-level ameliorates this issue by
reducing the number of independent unknown parameters. More
generally, provided that the priors are proper (that is, each inte-
grates to one), inference remains well defined even if the number of
independent parameters to be estimated exceeds the number of
independent observations. In this case, the influence of the priors
becomes more apparent, the posterior distributions will display
little learning relative to the priors, and diffuse priors will lead to
diffuse posterior distributions.

7.3. Computational issues posed by large space-time data sets

The dimension of the covariance matrix of a process-based
space-time model for Y is given by the total number of spatio-
temporal locations where observations exist or inference is
required. In the case of a 1000 year paleoclimate reconstruction on
a global 5° by 5° grid, this dimension will be well over one million.
Both maximum likelihood and Bayesian approaches require
repeated evaluations of the likelihood, and thus involve operations
such as the repeated inversion or Choleski factorization of the
covariance matrix — a calculation which scales as n°, where n is the
size of the process vector Y. Computation for such large space-time
data sets can quickly become prohibitively expensive and slow.

Several modeling and computational approaches have been
proposed to allow for fast inference when spatial or spatiotemporal
data sets are large. We briefly list a few of these approaches and
provide references for the interested reader. The methods may be
roughly classified into: (i) approaches that work with the covariance
directly by either exploiting a sparse covariance matrix structure
(see, for instance, the covariance tapering approach in Furrer et al.,
2006; Kaufman et al., 2008) or by using a “reduced-rank” or process
convolutions approach to constructing a covariance (cf. Higdon,
1998; Cressie and Johannesson, 2008), and (ii) inference based on
approximations to the likelihood, including spectral domain
methods. While approaches that fall into category (i) easily allow for
both maximum likelihood and Bayesian approaches, methods that
belong to category (ii) have most often been used in the maximum
likelihood framework (cf. Whittle, 1953; Vecchia, 1988; Caragea,
2003; Stein et al., 2004; Fuentes, 2007). In principle, they may also
be used for Bayesian approaches, but rigorous inference may pose
some challenges since it may be hard to justify studying posterior
distributions based on approximations to likelihoods (it may be the
case that the approximation used does not correspond to a valid
probability model).

7.4. Inference and uncertainty quantification

Inferring a point estimate of the latent climate process Y, along
with an estimate of the associated uncertainty, is a non-trivial task.
That said, many interesting aspects of the space-time process
cannot easily be deduced from a single, point estimate of the
process and an associated uncertainty. There is often interest in
determining the likelihood that particular years or decades were

the warmest (or coldest) in the interval covered by the recon-
struction, and a general interest in understanding the extent to
which recent decades are “extreme” (e.g., Jansen et al., 2007). In
addition, there may be interest in investigating the spatial variance
as a function of time (e.g., Osborn and Briffa, 2006), temporal or
spatial trends in the process, or the likelihood that a particular
interval was warmer or cooler than some measure of the baseline.
There is also considerable interest in understanding the temporal
evolution of the process at different temporal scales, and results are
often presented after smoothing the inferred process through time
(e.g., Jansen et al., 2007). While a point estimate of a quantity like
the temporally smoothed time series of spatial averages can be
derived from the point estimate of the process, estimating the
uncertainty in such a derived quantity can be non-trivial. Finally,
any inference based on conditional expectations or ordinary linear
regression will result in estimates of the process, or the time series
of spatial means, that has a lower temporal variance than the actual
climate process (see Section 6.1).

The breadth of questions that a researcher might want a recon-
struction to answer points to the need for inference on the full
statistical distribution of the process. A straightforward solution is
to perform the analysis in a way that produces draws or samples of
the space-time process. The two standard methodologies for
producing such samples are bootstrapping and posterior predictive
sampling. Li et al. (2007b) present an analysis of the 14 proxy series
used in Mann et al. (1999) that extend back at least 1000 years, and
use a parametric bootstrap method to produce ensembles of
reconstructions. These ensembles are then used to assess the extent
to which recent temperatures are anomalous in the context of the
previous 1000 years. Alternatively, Bayesian methods like those
presented above, in Tingley and Huybers (2010a) and in McShane
and Wyner (2011), can be used to produce posterior draws of
the space-time climate process (or, in the case of McShane and
Wyner (2011), a time series) conditional on the data and modeling
assumptions. Regardless of the method used to produce them,
ensembles of reconstructions are rich end products that can be used
to answer a vast array of scientific questions. Indeed, ensembles can
be used to produce both a point estimate and an uncertainty for any
function of the target process, and thus can provide insight into
a diverse array of questions, such as the extent to which certain
intervals were extreme, or the evolution of the process on an array
of temporal scales. Both point-wise uncertainty intervals for each
element of a reconstructed time series, and path-wise uncertainty
intervals for entire time series, can likewise be derived from the
ensembles (e.g., McShane and Wyner, 2011).

8. Special cases from the literature

Expressing a number of published methods within the hierar-
chical modeling framework developed above reveals that the
modeling assumptions are often quite similar, while the inference
techniques tend to differ. While it is somewhat difficult to frame
certain of these techniques as hierarchical models, as not all
consider a process level distinct from a data level, we do so to the
extent possible in order to illustrate the modeling assumptions
made by each, to differentiate these assumptions from the tools
used to conduct the inference, and to explore logical shortcomings
which are avoided by hierarchical modeling.

The terms composite plus scale (CPS) and climate field recon-
struction (CFR) are often used to differentiate between recon-
structions of a large-scale spatial mean, and reconstructions of
a space-time process (e.g., Jones et al., 2009). Note that inference on
the spatial mean time series is a natural by-product of successfully
inferring the full space-time process. Several studies (Cressie and
Tingley, 2010; Tingley and Huybers, 2010a,b) have called into
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question the appropriateness of inferring the time series of spatial
averages without considering the spatial covariance of the under-
lying process, as the resulting confidence intervals for the spatial
mean time series can be severely biased. Including a spatial or
space-time covariance function at the process level provides for
internally consistent uncertainty estimation in the presence of
clustered proxy data, by naturally down-weighting the information
from nearby proxies and accounting for the uncertainty introduced
by areas which are not sampled.

CPS can be thought of as a special case of CFR, where the spatial
domain of the target process is a single point, and there is a single
instrumental and a single proxy time series. Note, however, that the
methods used to construct the proxy and instrumental composite
time series may have implicit or explicit spatial elements. For
example, the proxy composite can be formed by weighting the
proxy time series by estimates of the spatial extent represented by
each series (e.g., Esper et al., 2002; Mann and Jones, 2003).

In what follows, we largely consider climate field reconstruction
methods, but include three methods — those of Lee et al. (2008), Li
et al. (2010) and McShane and Wyner (2011) — which, while lacking
a spatial component, have features similar to the hierarchical
modeling framework described in Section 3. The methods are dis-
cussed in order (by our judgement) from most to least hierarchical
and Bayesian, as certain of the less hierarchical methods can then
be presented as special cases. We end the section with a more
general discussion of the weaknesses common to regression-based
eld reconstruction methods, and the advantages of hierarchical
modeling combined with Bayesian inference.

8.1. BARCAST (Tingley and Huybers, 2010a)

BARCAST, described in Tingley and Huybers (2010a), is a hierar-
chical model that infers a spatially and temporally complete climate
process from incomplete proxy and instrumental time series. At the
process level, Y is modeled as a Gaussian process with constant mean
and a space-time covariance structure that is separable, AR(1) in time,
and isotropic, stationary and exponential in space. The covariance
between two spatiotemporal points is thus given by Eq. (11).

At the data level, there is no distinction between measurement
error and the stochastic relationship between Y and the latent data
processes. Following the notation developed in Sections 5 & 6, the
one-stage data-level model involves the specification of
h;1(Z;11Y, 0) for the single instrumental data set, and hp (Zp |Y, 9),
k = 1,...,Np, for each proxy data type. The instrumental observa-
tions are modeled as reflecting the Y process with additive white
noise,

Z1 (OY(0), 07, ~N (Hia (6)-Y (), 0141), (15)

where Hj(t) is a selection matrix the picks out the locations for
which there are instrumental observations at year t, I is the identity
matrix, and O’IZJ is the instrumental measurement error variance.
There is an implicit assumption that the instrumental data process
is free of systemic errors, which could be modeled by including
a specification for both g 1 (WY, ) and h; 1(Z;1|W, 1, 0).

BARCAST is designed to assimilate an arbitrarily large number of
types of proxy data, but specifies an equivalent one-stage data-level
model for each type:

Zpi(O|Y(0),B1 1 Boe 7B ~N (Bosc + B1iHp (D) Y(0), 03 1)
(16)

where the notation follows Eq. (15). As there is no distinct model
for measurement errors, there is no way to disentangle uncertainty

in the assumed linear relationship between the proxy observations
and climate process from the uncertainty inherent in measuring
the proxies.

BARCAST assumes that all measurements are on the same spatial
(and temporal) scale, and that each type of observation reflects the
underlying Y process locally in both space and time — in other words,
there is no spatial or temporal averaging. This approach presents
logical challenges, particularly when the instrumental data set is the
CRU 5° x 5° gridded product (Brohan et al., 2006) — which is best
interpreted as representing temperatures averaged over grid cells. As
Eq. (15) does not involve spatial averaging of Y, the specification for
the instrumental observations implies that the latent process infer-
red in the analysis is actually the spatially averaged climate process,
where the degree of spatial averaging changes as a function of lati-
tude. As discussed in Section 2, some types of proxy data are best
understood as reflecting strictly local information about the under-
lying, unsmoothed Y process; in such a scenario, the analysis scheme
fails to account for the differing spatial supports of the data sources.
Further shortcomings of the underlying model, including the
assumption of independent and identically distributed (iid) errors,
are discussed in Section 4 of Tingley and Huybers (2010a).

The inference used for BARCAST is Bayesian with proper but
weakly informative priors placed on all unknown parameters. The
end result of the analysis is a set of draws from the joint posterior of
the climate process and parameters, conditional on the data and
model assumptions.

8.2. Method of Li et al. (2010)

Li et al. (2010) describe a hierarchical model for inferring the
Northern Hemisphere annual mean temperature time series, and
do not include a spatial component; the process Y thus reduces to
a time series of spatial averages. Li et al. (2010) include as covariates
in the process level estimates of three climate forcing time series:
green house gas concentration G, solar irradiance S, and volcanic
forcing V. Several variants of the model are discussed; we consider
the most general.

The underlying spatial mean time series Y is modeled as an
AR(2) process with the mean term a linear function of the climate
forcings,

Y|0~N(Bo + 818+ 82G + B2V, Zy), (17)

where the covariance matrix =y corresponds to that of an AR(2)
time series (see, e.g., Brockwell and Davis, 2002, p. 91), and the
vector @ consists of the process- and data-level parameters. While
the time series G and S are assumed to be free of error, Li et al.
(2010) include a measurement error process for the observed
volcanic forcing V in terms of the actual series Vo, which we do not
discuss here.

In terms of the data level, Li et al. (2010) assume that there is no
uncertainty in the instrumental mean time series, and thus there is
no forward model or observation model for the instrumental data.
Each of the three different proxy types used by Li et al. (2010) — tree
rings, pollen counts, and boreholes — are assumed to represent the
spatial mean time series averaged over different, known, temporal
scales. As with BARCAST, there is no measurement error model, so
this source of uncertainty is not disentangled from the uncertainty
in the proxy—temperature relationship. Let Zp (i) be the ith time
series of the kth proxy type (k = {1,2,3}). The data level assumptions
for the tree ring and pollen series are,

Zp k(D)|Y, 0~ N (i + BriMy Y, =)

where = is the covariance matrix corresponding to an AR(2)
process, and the averaging matrix My, is assumed to be known for
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each proxy type. Whereas BARCAST assumes that the data-level
regression parameters are COmmon across proxy time series of
a given type, Li et al. (2010) specifies different parameters for all
proxy series. Note, however, that the parameters of each X, are
common for each proxy type, but distinct across proxy types and
from those characterizing =y. As the time series used in Li et al.
(2010) are all of the same length, no selection matrices (the H in
Section 8.1 above) are required. In the case of the borehole series,
the covariance matrix corresponds to Gaussian white noise, and the
averaging matrix is applied to the covariance matrix as well. The
data-level specification for the borehole series is thus,

Zps(i)|Y,0~M3-N (us3; + B3,Y,23). (18)

The inference used in Li et al. (2010) is Bayesian, and the priors
for all unknowns are proper but weakly informative. In particular,
the priors for the AR(2) coefficients are set to ensure that the
various noise sequences are causal (Brockwell and Davis, 2002,
p. 85). Similar to BARCAST, the end product is an ensemble of draws
from the posterior distribution of the spatial mean time series.

8.3. Method of Lee et al. (2008)

The state-space model of Lee et al. (2008) is similar to that of Li
et al. (2010), as both include climate forcings in the process level. In
contrast to Lee et al. (2008), Li et al. (2010) assume AR(1) errors in
the process, a temporally local relationship between a single
proxy composite time series and the spatial mean time series (i.e.
the matrices M in the preceding subsection reduce to identity
matrices), and iid errors in the data level. Lee et al. (2008) perform
the inference using a Kalman filter, with relevant parameters esti-
mated in a separate step via an optimization algorithm.

8.4. LOC (Christiansen, 2011a)

The LOC method of Christiansen (2011a) can be interpreted as
a site-by-site application of a special case of the method described
in Li et al. (2010), or as a special case of BARCAST (Tingley and
Huybers, 2010a). To recover LOC, a number of the parameters in
either Li et al. (2010) or Tingley and Huybers (2010a) are set to zero
and parameters are inferred via maximum likelihood estimation. In
particular, LOC, unlike BARCAST, does not include an explicit model
for the spatial covariance. For further discussion of the links
between LOC and hierarchical modeling, and the advantages of
Bayesian inference in this context, see Christiansen (2011b) and
Tingley and Li (2011).

8.5. Point-to-point regression (Cook et al., 1999)

The point-to-point regression (PPR) methodology was proposed
and used in Cook et al. (1999) to reconstruct gridded Palmer
Drought Severity Index (PDSI) data from tree ring measurements.
While it is difficult to fit into the hierarchical framework developed
in Section 3, aspects of PPR naturally point towards the benefits of
including a process-level model with a parametric spatial covari-
ance form. We provide a cursory description of the methodology
that focuses on the links to the hierarchical modeling framework
developed above, and refer the interested reader to Cook et al.
(1999).

PPR is based on the intuitive notion that inference on the
PDSI time series at a given location should be dominated by
proxy time series that are, in some sense, “close” to that location.
The basic method is to fit a separate regression model to predict
each instrumental PDSI time series from nearby proxy time
series:

Z; = ZpiBi++. (19)

Conforming (to the extent possible) with earlier notation, Z;;
denotes the instrumental PDSI time series at the ith location, Zp;
the matrix composed of the tree ring time series (the sole type of
proxy data) that are used to infer the PDSI at the ith location, B; is
a vector of regression coefficients, and ¢; a vector of error terms.
Inference is then via ordinary least squares regression.

Our interest is in the choice of the (screened) proxy series to
consider as predictors for the PDSI at the ith location. Cook et al.
(1999) consider all proxy time series within a distance
r; = max{r,r;s} of theith grid point, where r is some fixed value and
ri5 is the minimum distance that encloses at least five proxy time
series. We note that r is set to reflect the regional nature of drought
phenomenon and is larger than the grid spacing of the instrumental
PDSI grid (Cook et al., 1999). As a result, a given proxy time series is
used as a predictor for PDSI at multiple spatial locations: information
is shared across space. Within a forward-modeling framework, PPR
thus assumes that the ith proxy time series reflects information about
PDSI on a spatial scale given by r; Trees, however, are influenced
strictly by local climate, and (in our interpretation) the regional
nature of the regressions in Cook et al. (1999) represent a confound-
ing of process- and data-level models within a methodological
framework that only considers the latter. Note also that if the target
PDSI process displays spatial correlation, then information can be
shared spatially to improve estimates of PDSI during the instrumental
period as well.

It is possible to construct a hierarchical model which encodes the
same basic assumptions as PPR, does not confound process and data
levels, and expresses the proxy—PDSI relationship in terms of
a linear forward model. Indeed, such a model can be constructed by
making a number of key alterations to BARCAST. At the process level,
the AR(1) coefficient should be set to zero (PPR does not consider
temporal autocorrelation) and the exponential spatial covariance
replaced with a form like the spherical covariance (e.g., Table 2.1 of
Banerjee et al., 2004), which decays to zero covariance at finite
separation (PPR assumes information is shared only regionally in
space). At the data level, the instrumental error variance should be
set to zero (PPR does not consider errors in the instrumental PDSI
observations), and a separate data-level of the form in Eq. (16)
should be specified for each proxy time series (PDSI performs
a separate regression for each PDSI time series). This hierarchical
formulation of PPR clarifies that the sharing of information through
space is a consequence of the spatial structure of the process, not the
characteristics of the data. In addition, the multi-colinearity
problem that Cook et al. (1999) solve by replacing a matrix of
proxy time series with a smaller matrix of principal components is
avoided, as the proxy—PDSI relationships are specified locally.

8.6. Methods based on multivariate linear regression

A number of commonly used paleoclimatic field reconstruction
methods (see, for example for example Christiansen et al., 2010,
Table 1) are based on very similar multivariate linear regression
models, but make use of different analysis or inference techniques.
Given an (incomplete) matrix of instrumental observations, where
each column corresponds to one time point and each row to one
location, and an (incomplete) matrix of proxy observations, the key
assumption behind this family of methods is that there is a linear
relationship between corresponding columns of the instrumental
and proxy matrices, with additive white noise.

These methods generally do not include a model for the
temporal autocorrelation of the target field, so that the columns of
the instrumental data matrix are assumed to be independent of one
another, and likewise for the proxy data matrix. In addition, spatial
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dependencies are not explicitly modeled via the specification of
a spatial covariance function, but are accounted for in the estimate
of (or approximation to) the data covariance matrices. As no spatial
model is included, this family of methods seeks inference on
a climate process at only those spatial locations where there are
some minimum number of instrumental observations.

The stated advantage of the group of methods discussed in this
section is that they consider all linear relationships between the
observation time series, and can thereby exploit correlations
between distantly separated proxy and instrumental time series
(e.g., Jones et al., 2009). As discussed with respect to PPR, it is our
view that doing so confounds process- and data-level models,
and thus fails to reflect well-established scientific knowledge
about either. If the process displays long-range dependencies
(“teleconnections”), then this information should be included in the
model for Y (see Section 4), while the data level should specify
scientifically plausible relationships between the observations and
the target process.

The basic assumption underlying each of these methods is
that, for each year, the column vector of observations
Z(t)=(Z; ()T, Zp(H)")T, where the subscripts I and P indicate the
instrumental and proxy observations, respectively, is multivariate
normal:

Z(t)|p,2~./\/((;:1’3),(§gl ;’j’;)) (20)

No initial structure is assumed for the mean vector u or covariance
matrix =, each of which has been partitioned into instrumental and
proxy components. If the instrumental observations are assumed to
simply represent the local values of the underlying climate process
(with or without measurement error), then the process-level
assumption, common to all methods discussed in this section, is
that the climate field at each year is an iid realization of a Gaussian
process.

The data level for this class of methods specifies a relationship
between the proxy and instrumental observations (c.f. Sections 5
and 6 which link the observations to the target process), and
takes one of two forms, differentiated above as linear forward
modeling and regression. Within the linear forward-modeling
framework (Section 5), the proxy observations at each year t are
expressed as a linear function of the instrumental observations,

Zp(t) = Bo+BiZi(0) e, ee~N(0.3p), (21)

where g is a vector of intercept terms, 31 a matrix of regression
coefficients, and Zp; = Zpp — Ep,2,7121p. The conditional distribu-
tion of Zp(t) given Z;(t), p, and = from Eq. (20) is,

Zp(0)|, = Zy(0) ~ N (p + Zn i (Zi(6) — ), 2y ). (22)

Linking Egs. (21) and (22), Bo = pp — Zp=p' sy B = =pZj;!, and
the estimation of the regression coefficients thus requires the
inversion of a partition of the sample covariance matrix. This linear
forward-modeling framework formulation, with the proxy observa-
tions on the left hand side of the equation, has also been termed
“indirect regression” (e.g., Christiansen et al., 2010).

The more widely-used treatment in the paleoclimate literature
is a standard regression formulation that predicts the instrumental
observations from the proxy observations,

Zi(t) = Bo + B1Zp(t) + & where et~/\/(0,2”p). (23)

As before, the conditional distribution of Z;(t) given Zp(t) is
multivariate normal, and the estimation of the regression

coefficients involves inverting a partition of the sample covariance
matrix.

The basic issue with these two models [Eqs. (21) and (23)] is that
in practice the problem is often severely underdetermined — the
number of years for which both instrumental and proxy observa-
tions are available is short relative to the number of time series (this
is known as the p >> n problem in statistics, where p is the number
of variables and n the number of observations). As a result, standard
estimates of the covariance matrix = in Eq. (20) are singular and the
inversion required to estimate the regression coefficients in either
Eq. (21) or Eq. (23) does not exist. A related problem can arise if the
number of years of overlap is not much larger than the number of
time series, or if the predictor time series are highly correlated with
one another. In either of these cases, the estimated covariance
matrix is nearly singular, and its inversion unstable to small
perturbations of the observed values. Any inference technique
therefore requires some form of data reduction or regularization in
the estimates of the regression coefficients. In addition, the pattern
of missing data poses challenges as the data time series are
generally of different lengths.

A number of techniques have been used or proposed to solve
these technical difficulties in the context of reconstructing past
climate. The list presented here is not exhaustive, and we do not
discuss all possible variants and combinations of these ideas.

8.6.1. Principal component regression

Either the proxy matrix, the instrumental matrix, or both, is
replaced by the corresponding leading principal components. With
a smaller number of time series, the problem becomes over
determined and standard ordinary least squares regression is
applicable. As an example, the method of Mann et al. (1998)
combines a principal component decomposition of the instru-
mental record with linear forward modeling [Eq. (21)] to relate
each proxy time series to the retained principal components of the
instrumental data (see, e.g., Lee et al., 2008, for a more detailed
presentation). Luterbacher et al. (2004) considers the leading
principal components of both the instrumental and proxy data sets,
and uses the set of retained proxy principal components as
predictors in regression models of the form Eq. (23) to separately
predict each instrumental principal component. Inference in each
case is via ordinary least squares.

The calculation of principal components for a data set (be it
instrumental or proxy) generally requires that all time series cover
the same set of years — that is, all records must be of the same
length with no missing values. This is rarely the case in the context
of paleoclimate reconstructions, and work-around solutions to this
issue include first imputing missing instrumental values over the
last 150 years and then calculating principal components of the
instrumental data set (e.g., Rutherford et al., 2005; Mann et al.,
2007), or the step-wise treatment of the proxy data in Rutherford
et al. (2005).

8.6.2. Principal component regression with Bayesian inference

McShane and Wyner (2011) use the leading ten principal
components of the proxy data matrix to infer the northern hemi-
sphere annual mean temperature time series, which is modeled as
an AR(2) process, and use Bayesian inference to fit the model.
Posterior draws are then used to estimate both point-wise and
path-wise credible intervals for the northern hemisphere mean
temperature time series.

8.6.3. Canonical correlation analysis

This approach to climate reconstruction is discussed in
Christiansen et al. (2009) and Smerdon et al. (2010), and is based on
ideas presented in Barnett and Preisendorfer (1987). Consider an n
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by r matrix of instrumental time series, Z;, and an n by p matrix of
proxy time series, Zp. In the paleoclimate reconstruction context,
this corresponds to r instrumental time series, p proxy time series,
and an n year calibration interval. Canonical correlation analysis
(CCA) proceeds by finding the length r vector C;; and length
p vector Cp; that maximize the correlation between Z;-C;; and
Zp-Cp 1. The vectors € and Cp; are the first pair of canonical spatial
patterns, while the inner products of each with the corresponding
data matrix are the first pair of canonical time series. The second
pair of canonical spatial patterns and time series are calculated in
the same manner as the first, under the additional constraint that
the second pair of canonical time series be orthogonal to the first
pair. Following Barnett and Preisendorfer (1987), Smerdon et al.
(2010) first project the matrices of proxy and instrumental time
series onto the space spanned by the leading principal components,
and then fit a regression model of the form Eq (23) via ordinary
least squares to predict the leading canonical instrumental time
series from the leading canonical proxy time series. Objective
criteria are proposed for calculating the number of proxy and
instrumental principal components to retain in the first step of the
analysis, and the number of canonical time series to retain in the
second.

8.6.4. RegEM (Schneider, 2001)

Discussed in Section 6.3 as a variant of the Expectation-
Maximization algorithm of Dempster et al. (1977), RegEM has been
widely applied to paleoclimate reconstruction problems (e.g.,
Rutherford et al., 2003, 2005; Zhang et al., 2004; Mann et al., 2005;
Steig et al,, 2009). RegM seeks to impute missing instrumental
observations by specifying a regression model of the from Eq. (23)
for each year that features incomplete instrumental data. In order
to estimate the regression coefficients, some form of regularization is
necessary to ensure the existence or stability of the requisite matrix
inverse. Both ridge regression (Hoerl and Kennard, 1970), also known
as Tihkonov regression (Tikhonov and Arsenin, 1977) and truncated
total least squares regression (van Huffel and Vandewalle, 1991;
Fierro et al., 1997) have been used in this context. These two regu-
larized regression techniques are both robust® to the presence of
measurement errors in the predictor variables (Schneider, 2001), so
in that sense RegEM is based on a more general model than the basic
multivariate regression models of Eq. (21) or (23). In practice,
however, the measurement error model is generally not explicitly
specified (contrast with the explicit measurement error in model
Eq. (15)), so we consider these tools as robust inference techniques
rather than methods based on distinct modeling assumptions. As the
two common regularized regressions used in RegEM are robust to
the presence of measurement errors in the response variables,
results should likewise be robust to the regression dilution effect
(see Section 6.1).

Ridge regression involves inflating the diagonal of the correla-
tion matrix of the predictor variables, and thus ensures the exis-
tence and stability of the required matrix inverse (for a Bayesian
interpretation see, for example, Tingley and Huybers, 2010b,
p. 2788). Ridge regression arises as a regularization technique when
the predictor and response variables are subject to homogeneous
errors (Golub et al., 1999; Schneider, 2001).

Truncated total least squares regression proceeds by first
replacing the joint proxy-instrumental covariance matrix with
a reduced-rank representation using only the eigenvectors corre-
sponding to the k largest eigenvalues, where k is less than the
number of predictors, and then using a pseudo-inverse in the

6 A robust estimator or inferential procedure is not unduly sensitive to violations
of modeling assumptions.

estimation of the regression coefficients. If the number of retained
eigenvectors is equal to the number of predictor variables, then the
result is the standard (non-truncated) total least squares solution,
which minimizes the mean-squared orthogonal distance from the
data point to the line of best fit (Golub and van Loan, 1980; van Huffel
and Vandewalle, 1991). Total least squares provides unbiased esti-
mates of the regression coefficients if the predictor and response
vectors each contain iid errors with equal variance (Golub and van
Loan, 1980; Fierro et al., 1997), and a simple modification can
result in unbiased estimates if the ratio of the variances is known.

Some applications of RegM have involved first low band-pass
filtering all data time series, applying a RegEM variant separately
to the low and high frequency components, and then splicing
together the results (e.g., Mann et al., 2005; Rutherford et al., 2005).
While this hybrid RegEM technique has been shown to out perform
non-hybrid implementations of RegEM in practice (see, for example
Schmidt et al., 2011, including the supplementary material), we
note that each of the two band-pass filtered data sets violate, by
construction, the RegEM assumption that observations from
subsequent years are independent of one another. Further research
is required to understand why hybrid RegEM results in skillful
reconstructions, despite the fact that it does not have a sound
theoretical justification.

There continues to be vigorous debate in the literature con-
cerning the best strategy for implementing and regularizing the EM
algorithm in the context of paleoclimate reconstructions (e.g.,
Schneider, 2001; Mann et al.,, 2005, 2007; Rutherford et al., 2005,
2010; Christiansen et al., 2009, 2010). We stress here that this
debate largely concerns inference tools: the fundamental statistical
model in each case is Eq. (23), with the caveat that ridge regression
and truncated total least square are robust to measurement errors
in the predictor variables.

8.7. Multivariate regression methods versus hierarchical modeling

The regression methods for climate field reconstruction dis-
cussed in Section 8.6, and the related PPR (Section 8.5), certainly
have strengths. For example, they are generally easier to implement
and much faster, computationally, than fitting a hierarchical
Bayesian model. Each of the methods provides a disciplined
framework for fitting regressions in a high-dimensional setting
when the problem at hand is often highly ill-posed. Indeed, it is
worthwhile to consider the interconnections between the multi-
variate regression methods.

Regression using the leading principal components of the
predictor variables is similar to ridge regression, in the sense that
both methods differentially weight the principal components of the
matrix of predictor variables. Ridge regression reduces the magni-
tudes of the regression coefficients corresponding to the principal
components, with relatively higher shrinkage for those principal
components corresponding to small eigenvalues. In contrast,
principal component regression truncates the coefficients of the
principal components with smaller variances to zero. Principal
component regression, but not ridge regression, is thus a “sparsity
inducing type” regularization as it truncates many coefficients to
zero (see, e.g., Hastie et al., 2009, for more details). Although
principal component regression sets coefficients to zero, it does not
in general introduce structural zeros or sparsity after translating
back to the original coordinates (unless the original predictors are
orthogonal). It should also be noted that principal components are
not robust to the presence of outliers in the data; indeed, principal
components can be used to screen for such outliers (see, e.g.,
Chapter 10 of Jolliffe, 2002). Both ridge regression and principal
component regression tend to give similar results and principal
component regression inherits some of the attractive features of
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ridge regression — including a bias-variance tradeoff to reduce
mean-squared prediction error.

Regression based on CCA shares many of the properties of
principal component regression, but uses a different algorithm for
data reduction. The key difference is that principal component
regression treats the predictor and response variables separately,
whereas CCA is based on the cross-correlation between the
response and predictor variables. Thus CCA is more applicable in
scenarios which require data reduction on both the response and
predictor variables. In particular, by performing data reduction
based on the relation between the response and predictor data sets,
CCA is a natural choice in a regression context (Mardia et al., 1979).

There are a number of weaknesses shared by these commonly
used regression-based field reconstruction methods, many of
which are avoided by the hierarchical models proposed in Section 3
combined with Bayesian inference.

8.7.1. Biases

Each of these methods produces biased estimates of the
regression coefficients, even if the underlying model is correct. This
cannot be viewed as a major shortcoming, however, given that
allowing a small amount of bias can result is substantial reductions
in the mean-squared error (e.g., Hoerl and Kennard, 1970). In
addition, similar biases can result from using Bayesian inference,
where prior distributions provide regularization. The advantage of
Bayesian inference is the transparency which results from consid-
ering prior specification as part of model construction: the extent of
regularization is clearly stated, while conjugate priors can often be
interpreted in terms of an equivalent number of additional obser-
vations with certain properties (see, for example, Gelman et al.,
2003, p. 51).

8.7.2. Treatment of missing data

With the exception of the RegEM variants, the regression-based
methods are only readily applicable to data sets that are block
missing — that is, all proxy time series are of the same length, with
no missing values, and likewise for the instrumental data set.
Various work-around solutions to this problem, such as an initial
application of RegEM to impute the missing values in the instru-
mental data, severely complicate the propagation of uncertainties.
The hierarchical modeling framework, in contrast, is amenable to
changing patterns of missing data (see Section 8.1 and Tingley and
Huybers, 2010a).

8.7.3. Conflation of data and process

By considering all linear relationships between proxy and instru-
mental time series, regardless of geographical location, the methods
discussed in Section 8.6 confound the process-level model with the
data-level model. We stress that doing so deeply violates scientific
understanding of the data and climate system. A tree may be
predictive of climate at a distant location, but a tree is causally
impacted by strictly local climate. It is the climate system itself that
displays long-range dependencies. PPR (Section 8.5 Cook et al., 1999)
accounts for the regional nature of drought variability by allowing
tree ring chronologies to act as predictors of PDSI over a some user
defined distance, and likewise confounds the data model with the
climate process. Inference models with distinct process and data
levels more appropriately reflect scientific understanding of the
observations, the climate system, and the relationship between the
two.

8.7.4. Temporal and spatial covariance modeling

The methods described in Section 8.6, as generally imple-
mented, do not consider temporal structure in the data time series,
nor do the geographical coordinates of the time series enter into the

calculations. While various alternatives to least squares regression
have been employed in paleoclimate research to account for
temporal structure, such as the Cochrane—Orcutt algorithm used in
Thejll and Schmith (2005) and the “prewhitening” procedure used
in Cook et al. (1999), these approaches lack the flexibility and
transparency of assumptions which are the hallmarks of hierar-
chical modeling. In terms of spatial structure, results from methods
discussed in Section 8.6 are unchanged if the locations of the data
time series are randomized prior to the analysis, and then
unscrambled afterwards.

In contrast, the process level of a hierarchical model can explicitly
model both temporal and spatial structure in the target climate
process. By specifying a parametric spatiotemporal process level
(Section 4), hierarchical models allow for imputation of the field at
any location and for forecasting to times for which there are no
observations (compare with Lee et al., 2008), while the estimated
process-level parameters inform the distance and time over which
such imputations are reasonably well constrained (compare with
Cook et al., 1999). In addition, the data level accounts for the different
temporal and spatial supports of the various data sets, so that the
differing spatial and temporal covariance structures of the data sets
can be accounted for, conditional on the covariance structure of the
climate process itself (see Fig. 3 and Sections 4.2 & 5.2).

8.7.5. Uncertainty estimates

The natural end product of any multivariate linear regression-
based method is a point estimate and uncertainty measure for each
missing observation. This information cannot be readily used to
quantify the uncertainty for non-linear functions of the inferred
climate process, such as the probability that one interval featured
higher values of the climate field than another, a greater rates of
change, or higher variability. Bayesian inference results in a number
of posterior draws of the climate field (conditional on the data and
modeling assumptions), and such ensemble-based reconstructions
are more appropriate for both characterizing natural variability and
assessing the extent to which recent climate is anomalous with
respect to that of the past. Bayesian inference is certainly not the only
option for producing ensembles — as an example, Li et al. (2007b)
produce- an ensemble using frequentist inference combined with
a bootstrap.

8.7.6. Relative performance

Finally, there is no consensus as to which of the regression-
based reconstruction methods discussed in Section 8.6 performs
best in a global context (e.g., Lee et al., 2008; Christiansen et al.,
2009, 2010; Rutherford et al., 2010; Emile-Geay et al., submitted
for publication-a, submitted for publication-b). Each method
requires the specification or estimation of one or more parameters
that determine the strength of the regularization (e.g., the number
of principal components to retain in principal component regres-
sion, or the ridge parameter in ridge-regularized RegEM), and the
choice of regularization parameter(s) is not always clear. Much of
the debate over the relative merits of these regularized regression
methods concerns the details of the regularization scheme rather
than the underlying model choices (e.g., Christiansen et al., 2009,
2010; Rutherford et al., 2010; Emile-Geay et al., submitted for
publication-a, submitted for publication-b).

Hierarchical models allow for the inclusion of more scientific
knowledge about both the data and underlying process, and require
that the modeling assumptions at both of these level be clearly
stated. Bayesian data analysis then provides a logically sound
framework for performing the inference. It is our hope that a more
wide-spread adoption of this approach by the paleoclimate
community will produce more substantive research into the
underlying science.
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9. Discussion

Reconstructing past climate through space and time is a difficult
endeavor. Harnessing the scientific understanding of both the
climate system and the various proxies together with the tools of
modern statistical science has the potential to substantially
increase our understanding of past climate. Statisticians require
scientific knowledge in order to construct models that are properly
tailored to the particular characteristics of the paleoclimate
reconstruction problem. Scientists, in turn, can benefit from the
careful and efficient treatment of uncertainty offered by statisti-
cians. By describing the paleoclimate reconstruction in terms of
hierarchical statistical models, and indicating the tools available for
building and fitting such models, we hope to spark greater collab-
orations between the climate and statistical sciences.

Hierarchical statistical modeling offers a logically consistent
framework for tackling the paleoclimate reconstruction problem,
and there are a number of advantages to this framework. The multi-
level construction clarifies that the relationship between the data
and the target process is distinct from the covariance structure of
the process. Likewise, a focus on model construction clarifies the
distinction between model assumptions and the techniques used to
perform the inference. By compartmentalizing the reconstruction
problem, hierarchical models allow each component of the model
to be constructed independently of the others. As an example,
scientifically realistic forward models can be developed for the
commonly used proxy types independently of one another and of
the model that describes the space-time structure of the target
climate process. Spatial and temporal misalignment (Fig. 1) and
change-of-support (Fig. 3), as well as the missing data mechanism,
can be modeled in the level of the model that makes most sense
given the particular analysis — either as part of the forward model
(Section 5) or at the data level (Section 6). A secondary advantage of
the hierarchical approach is that different components of the model
can be separately tested before they are incorporated into the
hierarchy (e.g., Craigmile et al., 2009), which may be especially
useful when incorporating multiple proxy processes.

Hierarchical models provide a cohesive framework for propa-
gating uncertainty through an analysis. However, these models
only account for known uncertainties and like all statistical tech-
niques, can yield poor results if the analysis model is misspecified.
Model checking and validation is an important part of any statis-
tical analysis, which was not covered in this article; see Gelman
et al. (2003) for a discussion of these issues in a Bayesian context.
Draper (1995) discusses how to assess and propagate model
uncertainty.

Pseudoproxy experiments have been employed extensively in
the paleoclimate literature (e.g., Gonzalez-Rouco et al., 2003; von
Storch et al, 2004; Hegerl et al., 2007; Mann et al, 2007;
Christiansen et al., 2009; Li et al, 2010; Smerdon et al., 2010;
Christiansen and Ljungqvist, 2011). These experiments generally
proceed by sub-sampling and corrupting the output from a climate
model, using this limited data set to infer some quantity (the
temperature field, for example), and then comparing results and
uncertainty estimates to the original model output. The results of
such experiments are useful in assessing the appropriateness of the
uncertainty estimates derived from a reconstruction method, and
exploring if the statistical model underlying that method is
appropriate. As an example, to the extent that the climate model
and pseudoproxies are realistic representations of the actual
climate system and proxy data, differences between the actual and
nominal coverage rates of uncertainty intervals for the estimates of
the withheld climate model data could indicate that the statistical
model used to infer these withheld values is not well specified (e.g.,
Li et al,, 2010; Tingley and Huybers, 2010b).

The modeling formalism developed in the preceding sections is
intentionally general, and we have gone to some length to detail just
how rich the modeling choices can be. The price for such compli-
cated models is paid in terms of the effort required to perform the
inference, and we have discussed various (newer) methodological
developments that may be necessary to do so. Simple space-time
separable models can in certain scenarios result in excellent
predictive inferences, even in cases where the underlying process is
very much non-separable (e.g., Genton, 2007) — as is likely the case
for climate variables (see Fig. 4). In general, fitting a more involved
model will require inference on additional process-level parameters,
and with a fixed amount of data, the uncertainty associated with the
inference on these parameters will increase. Determining the level of
complexity required at each level of the hierarchical model in order
to optimally infer past climate from proxy data is an open question,
which we will explore in future work.

The framework presented here can be readily applied to the
reconstruction of multivariate climate processes, such as the joint
temperature-precipitation process. The key challenges are, as in the
univariate case, the specification of the joint space-time covariance
structure of the multivariate process — which may be very compli-
cated — and the conditional distribution of the data types given the
multivariate process. While the univariate and multivariate recon-
struction problems are formally equivalent, the latter is both more
challenging and more scientifically defensible. At the process level, it
becomes necessary to account for the interaction between the
processes in both space and time. At the data level, forward models
can then reflect the scientific knowledge that many natural proxies
(tree, coral, and pollen observations, for example) are influenced by
more than one climate variable.

More generally, we note that specific model construction choices
should reflect the specific scientific question under investigation. For
example, if the goal is to understand the relationship between the
temperature field and estimates of green house gas, solar, and
volcanic forcings, then the time series of estimated forcings should
be included in the hierarchy. Inference on the process-level param-
eters that describe the connection between the forcings and the
climate then provide estimates of the sensitivity of the climate
system to changes in those forcings. Note that withholding the
forcings and comparing them to an independent reconstruction
prevents the consistent propagation of errors in the estimate of the
link between the two. Alternatively, there may be scientific interest
in which of two well-characterized and understood spatial patterns
was likely dominant as a function of time — for example, if the
proxies indicate that the temperature field for a particular year was
more indicative of La Nifia or El Nifio like conditions. In this case,
a process-level model that includes a mean structure similar to the
form of Eq. (9), but which allows for a time dependent switching
between two known spatial patterns, may be appropriate:

Me = 6tv1 + (1 - ﬁt)v27 6(6 {07 1}

Inference on the time series of §; then indicates which pattern was
likely to have been dominant for each year.

Determining the extent to which climate during the post-
industrial era is anomalous or extreme, either in value or rate of
change, with respect to climate over the last thousand (or more)
years is often a goal of paleoclimate reconstructions. Answering
these question requires that both the proxy data and the methods
used to reconstruct past climate accurately capture the tail behavior
of the probability distribution of climate. Modeling the tail behavior
of both the instrumental and proxy data using the generalized
extreme value distribution (e.g., Coles, 2001) can potentially
determine the extent to which the proxies capture climate
extremes, and the extent to which the distribution of climate

te7. (24)
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extremes has changed through time. This is an active area of
research — see Mannshardt-Shamseldin et al. (submitted for
publication), which considers the extremal behavior of proxy
series directly and explores possible distributional shifts in the
extremes of proxy observations as a function of time and space.

Over the last decade, a vast amount of intellectual capital has been
spent on developing, testing, and comparing reconstruction methods
that share a common statistical model, but differ in the tools used to
conduct the inference. The literature on this topic is too vast to cite in
its entirety. We simply note that from 1998 (Mann et al., 1998) to 2009
(Christiansen et al., 2009) all methods proposed, studied, or used to
reconstruct the surface temperature process (as opposed to some
large-scale spatial average) from annually resolved proxy data fall
under the umbrella of the regression-based models discussed in
Section 8.6. Devoting similar resources to the development of
scientifically richer models has the potential to vastly improve our
understanding of past climate and address numerous societally
relevant questions. It is our hope that the next decade will witness
a rich debate in the paleoclimate literature over scientifically moti-
vated forward models, and how to best model the target climate
process at the process level.

There is much that climate science can learn from statistical
science. In this article we have only skimmed the surface of the
possible models and modeling strategies that can be employed.
Space-time statistical modeling is currently an active area of research,
with clear applications to the analysis of climate data in general and
the reconstruction problem in particular. In turn, there is much that
statisticians can learn from climate scientists with regards to both the
instrumental and proxy observations, and the structure and charac-
teristics of climate processes. We hope that this article both encour-
ages and facilitates future collaborations between these two
communities.
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