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ABSTRACT4

We examine the efficacy of a novel ensemble data assimilation (DA) technique in climate field5

reconstruction (CFR) of surface temperature. We employ a minimalistic, computationally6

inexpensive DA technique that requires only a static ensemble of climatologically plausible7

states. We perform pseudoproxy experiments with both general circulation model (GCM)8

and 20th Century Reanalysis (20CR) data by reconstructing surface temperature fields from9

a sparse network of noisy pseudoproxies. We compare the DA approach to a conventional10

CFR approach based on Principal Component Analysis (PCA) for experiments on global11

domains. DA outperforms PCA in reconstructing global-mean temperature in all experi-12

ments, and is more consistent across experiments, with a range of time-series correlations of13

0.69–0.94 compared to 0.19–0.87 for the PCA method. DA improvements are even more ev-14

ident in spatial reconstruction skill, especially in sparsely sampled pseudoproxy regions and15

for 20CR experiments. We hypothesize that DA improves spatial reconstructions because16

it relies on coherent, spatially local temperature patterns, which remain robust even when17

glacial states are used to reconstruct non-glacial states and vice versa. These local relation-18

ships, as utilized by DA, appear to be more robust than the orthogonal patterns of variability19

utilized by PCA. Comparing results for GCM and 20CR data indicates that pseudoproxy20

experiments that rely solely on GCM data may give a false impression of reconstruction skill.21
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1. Introduction22

Climate reconstructions seek to extract useful information from noisy and sparse pale-23

oclimate proxy data. These reconstructions usually take one of two forms: broad indices,24

such as global mean surface temperature; and climate fields, such as spatial maps of surface25

temperature. While index reconstructions may yield large-scale information, climate field26

reconstructions (CFRs) offer important spatial details and regional information. Addition-27

ally, it is possible to compute global or hemispheric means from the reconstructed fields,28

though these can sometimes suffer loss of variance (see discussion in Mann et al. (2012)).29

The best way to perform CFRs remains an open question, with no universally superior30

approach (Smerdon et al. 2011). One important way to examine CFR techniques is through31

pseudoproxy experiments (PPEs), which provide a synthetic, controlled testbed (see Smer-32

don (2012) for a review). Based on PPEs, large-scale indices have been shown to be skillfully33

recovered using most of the well-known CFR techniques (Smerdon et al. 2011; Jones et al.34

2009), while skill in reconstructing the climate fields themselves has been much more variable35

(Smerdon et al. 2011).36

In addressing the climate reconstruction problem, data assimilation (DA) has emerged37

as a potentially very useful CFR technique. DA provides a flexible framework for combining38

information from paleoclimate proxies with the dynamical constraints of a climate model.39

The majority of DA approaches utilized thus far can be roughly assigned to four categories:40

pattern nudging (von Storch et al. 2000), ensemble filters (Dirren and Hakim 2005; Huntley41

and Hakim 2010; Pendergrass et al. 2012; Bhend et al. 2012), forcing singular vectors (van der42

Schrier and Barkmeijer 2005), and the selection of ensemble members best matching proxy43

data (Goosse et al. 2006, 2010; Franke et al. 2011; Annan and Hargreaves 2012). Forcing44

singular vectors and the selection of ensemble members have been applied to real proxy45

data using Earth System models of intermediate complexity while pattern nudging has been46

used to prescribe atmospheric circulation anomalies that then give temperature anomalies47

consistent with proxy data (Widmann et al. 2010); each of these approaches give results that48
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are consistent with spatially dense empirical knowledge over Europe (Widmann et al. 2010).49

Ensemble DA provides a particularly compelling approach to paleoclimate reconstruction50

because it allows for spatially and temporally changing statistics that may use proxy data51

more effectively. However, exploiting temporally changing statistics requires forecast models52

with predictability limits longer than the timescale of the proxy data. Branstator et al.53

(2012) demonstrate that up to decadal persistence exists in the North Atlantic in several54

GCMs, yet the location of persistence varies widely by model; how ocean persistence trans-55

lates into atmospheric predictability is also an open question. Moreover, simulating ensem-56

bles using climate models over hundreds, if not thousands, of years presents a tremendous57

computational cost. These realities motivate an “off-line” approach to DA, where back-58

ground ensembles are constructed from existing climate model simulations (e.g., Huntley59

and Hakim 2010), without the need to cycle analyses forward in time with a climate model.60

Traditional “online” DA approaches, such as those used in operational weather forecasting,61

become feasible for climate reconstruction only when it has been demonstrated that fore-62

cast predictability issues have been overcome and when the reconstruction skill significantly63

improves upon a vastly cheaper off-line equivalent.64

Off-line approaches have been advanced by Bhend et al. (2012) and Annan and Hargreaves65

(2012). Bhend et al. (2012) applied the time-average assimilation method of Dirren and66

Hakim (2005) and Huntley and Hakim (2010), based on an ensemble square root filter, while67

Annan and Hargreaves (2012) applied a degenerate particle filter approach, similar to Goosse68

et al. (2006, 2010). Both methods reconstruct a “true” model simulation selected out of their69

ensemble of model simulations, all of which were given identical forcings; additionally, the70

Bhend et al. (2012) simulations were given identical boundary conditions. Both methods71

show positive reconstruction skill, particularly for near-surface temperature over land in the72

Northern Hemisphere. Annan and Hargreaves (2012) note, however, that their ensemble73

tended to “collapse” (a dramatic loss of ensemble variance) even for a very large ensemble74

size, a known limitation of the particle filter approach (Snyder et al. 2008). They also discuss75
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that they obtain little to no forecast skill by using the analysis as the initial conditions to76

generate the following year’s background estimate.77

The off-line approach and experiments reported here differ from previous DA-based cli-78

mate reconstruction papers in the following ways: (1) We use a novel time-averaged algorithm79

that reconstructs the global-mean temperature separately from the temperature field. This80

allows the global-mean surface temperature to be unaffected by covariance localization, ef-81

fectively permitting, rather than suppressing, spatially remote covariance relationships with82

the global mean. This algorithm also has the effect of decreasing variance loss in reconstruc-83

tions of the global mean (a common problem with CFR approaches). (2) We use the same84

background ensemble (or prior) for every reconstruction year; the background ensemble is85

drawn from part of a single climate model simulation or reanalysis data, where ensemble86

members are individual years instead of independent model simulations, as is typically done87

in DA schemes and as used by Bhend et al. (2012). This approach allows for more flex-88

ibility in the sense that it does not require multiple model simulations to generate large89

ensembles, though it could be extended to include many model simulations over many time90

periods or even a collection of different models. Because of how the background ensemble91

is constructed, it will not contain year-specific boundary condition and forcing information92

(which act to constrain ensemble variance), nor does it allow for the forward propogation93

of information in time. (3) We compare our results directly with a standard CFR approach94

based on Principal Component Analysis (PCA). This PCA approach uses an optimized re-95

gression technique known as “truncated total least squares” (TTLS), which has been shown96

to be robust in a pseudoproxy framework (Mann et al. 2007). (4) We provide analyses (i.e,97

reconstructions) of only surface temperature so as to directly compare the DA and PCA98

approaches. In principle DA can provide analyses of the full system state, which consti-99

tutes all model variables at all levels and grid cells, but this is not required in the off-line100

approach. Consequently, this minimalistic DA approach is computationally inexpensive and101

can be extended to other fields and variables. (5) We also perform DA and PCA pseudo-102

4



proxy reconstructions with 20th Century Reanalysis (20CR) (Compo et al. 2011) and a Last103

Glacial Maximum climate model simulation, which tests the robustness of the algorithms104

and of pseudoproxy experiments in general.105

In Sections 2 and 3 we review the DA and PCA techniques and the details of our method-106

ology. Section 4 gives results for global PPEs using data from the 20th Century Reanalysis107

(20CR) project and from the CCSM 4.0 model (CCSM4). Robustness tests in section 4108

include using PPE results for reconstructions of pre-industrial climate given LGM data for109

the background ensemble (for DA) and for the calibration period (for PCA), as well as tests110

of differently chosen time periods and red-noise pseudoproxies. In Section 5 we draw con-111

clusions and discuss the benefits of DA in addition to discussing the issue of data choice in112

PPEs (GCM vs. Reanalysis).113

2. Mathematical Background114

a. PCA-Based Reconstruction115

Here we outline the chief features of the PCA-based reconstruction technique used for116

comparison with DA. We follow the essential aspects of the method outlined in Mann et al.117

(1998), except that the Truncated Total Least Squares (TTLS) method is used for the118

regression of PCs with proxies, described below1. We take as given a field of climate data (in119

our case annual-mean surface temperature) over a calibration period, which we denote Tc,120

and also proxy data over the calibration and reconstruction periods, denoted as Tpc and Tpr121

respectively. Tc is an m× n matrix where m is the spatial domain and n the time domain,122

Tpc is an n× q matrix where q is the number of proxies, and Tpr is an r× q matrix where r123

is the number of reconstruction years. We remove the time mean2 at each grid point of Tc,124

1We used T. Schneider’s implemenation available at http://www.gps.caltech.edu/~tapio/software.

html, with the default truncation parameter, which we found to give the best results.
2In our analysis we do not standardize Tc so that we can more easily compare the results with our DA

approach. We tested the effects of standardization on the PCA-based approach, and in the pseudoproxy
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which we then denote as T′c, and area-weight T′c by
√

cos(latitude) yielding T̃′c. A singular125

value decomposition of T̃′c gives126

T̃′c = UcΣcV
T
c (1)

where Uc are the EOFs, Σc are the singular values (SVs), Vc are the PCs, and VT
c denotes127

the transpose of Vc. Preisendorfer’s Rule N (as discussed in Wilks 2006, p. 485) is used to128

determine the number, p, of significant PCs to retain. The following regression equation is129

solved using TTLS130

Tpc = Vcβ (2)

for matrix β, which consists of p×1 coefficient vectors found for each of the q proxies. During131

the reconstruction period we solve the regression equation132

Tpr = Vrβ (3)

for Vr (using TTLS) which is an r × q matrix of the reconstructed PCs. The reconstructed133

climate field T̃′r is then found via134

T̃′r = UcΣcV
T
r , (4)

where Σc and Uc are assumed to remain constant through both the calibration and recon-135

struction periods.136

As discussed in Jones et al. (2009), several of the most prominent CFR techniques share137

equations (1) and (4) as key steps in their reconstruction processes. In Section 4 we discuss138

some of the potential pitfalls inherent in assuming that the EOFs and SVs remain constant139

in time.140

b. DA-Based Reconstruction141

Here we briefly review the background mathematics of our DA approach to CFR, and142

leave the details to the Appendix. We also compare the mathematics of DA with the PCA-143

experiments no differences of consequence were found.

6



based method discussed in Section 2a. Data assimilation typically handles observations (or144

“pseudoproxies” in this paper) by either filtering, which proceeds sequentially at discrete145

times, or smoothing, which proceeds over time intervals. The paleoclimate reconstruction146

problem, however, tends to blur this distinction due to the integrated nature of many proxies,147

and the treatment of time-averaged observations in DA has been discussed in Dirren and148

Hakim (2005), Huntley and Hakim (2010), and Pendergrass et al. (2012). In either filtering149

or smoothing, an essential element of DA is the notion of a background, or prior, estimate of150

the observations. In weather forecasting, the prior comes from a short-term forecast based151

on an earlier analysis, but this need not always be the case. In a climate context, the152

prior could be a climate forecast based on a reconstructed state at an earlier time, which if153

the simulation interval is long enough, amounts to using randomly selected states from the154

model climate. DA applies weights to the two estimates of the true value of the state, the155

observations and the prior estimate, to arrive at a posterior, or analysis state. Assuming156

Gaussian-distributed errors, the classical solution is given by the “update equation” for the157

Kalman filter (Kalnay 2003):158

xa = xb + K[y −H(xb)] , (5)

where xb is the prior (“background”) estimate of the state vector and xa is the posterior159

(“analysis”) state vector. Observations (pseudoproxies) are contained in vector y. The true160

value of the observations are estimated by the prior through H(xb), which is, in general,161

a nonlinear vector-valued observation operator that maps xb from the state space to the162

observation space. For example, tree-ring width may be estimated from grid-point values of163

temperature and moisture in the prior. The difference between the observations and the prior164

estimate of the observations, y−H(xb), is called the innovation. The innovation represents165

the new information in the observations not known already from the prior. Matrix K, the166

Kalman gain, weights the innovation and transforms the innovation into state space,167

K = BHT[HBHT + R]−1 , (6)
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where B is the error covariance matrix for the prior and R is the error covariance matrix168

for the observations. Matrix H represents a linearization of H about the prior estimate. For169

the off-line approach used here, both B and R are constant, though in general they may be170

time-dependent. Since B = 〈xbx
T
b 〉, where angle brackets denote an expectation, we note171

that BHT can be written as 〈xb(Hxb)
T〉 and HBHT can be written as 〈Hxb(Hxb)

T〉, and172

K = cov(xb,Hxb)[cov(Hxb,Hxb) + R]−1 (7)

where cov represents a covariance expectation. Thus, the numerator of K “spreads” the173

information contained in observations through the covariance between the prior and the174

prior-estimated observations. Comparing (6) and (7) also reveals that HBHT represents the175

error covariance matrix of the prior-estimated observations, which is directly comparable176

to R. From (5) and (7) we see that the change in the posterior over the prior, xa − xb,177

is determined by linear regression of the prior on the innovation. New information in the178

observations is spread from the observation locations to the state variables through the179

covariance between these quantities. For high-dimensional problems such as weather and180

climate estimation, the prior error covariance is typically known only through an ensemble181

estimate, which is subject to sampling error.182

c. Comparison of DA- and PCA-Based Reconstructions183

A superficial comparison of the DA method to the PCA method described previously184

suggests that they are closely related, since both represent linear-regression solutions to the185

estimation problem. An essential difference between the methods concerns the use of the186

prior in the DA method: the innovation is the independent variable for the DA method,187

whereas for the PCA method the observations or proxies are the independent variable. As a188

result, in the present context where we consider a “calibration” period, the calibration data189

is used differently by the two methods. For the DA method, it is assumed that errors in190

the prior and the observations are uncorrelated, so that the covariance between the prior191
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estimate and the innovation is given by192

〈xb(y −Hxb)
T〉 = BHT. (8)

Therefore, in the DA reconstruction method, the observational or proxy data during the cali-193

bration period plays no “training” role in the calculation: DA does not use Tpc. Errors in the194

observations contribute “noise” to the calculation through the known error-covariance ma-195

trix R. For the PCA method, the observational data during the calibration period is crucial,196

providing the relationship between the dependent variables, the PCs, and the observations;197

errors in the observations do not explicitly enter the calculation. The PCA truncation of PCs198

adds an additional approximation since it affects the relationship between locations and the199

observations. For situations where temperatures at a location covaries strongly with a proxy200

observation, but happens to fall on a node of all retained principal components, the PCA201

method yields a zero reconstruction. We emphasize that a difficulty with the DA method202

concerns the operator H, which may not be well known for some proxies.203

3. Methods204

a. Data Sources and Treatment205

In this study we use surface temperature data from “The Twentieth Century Reanalysis206

Project” (20CR; Compo et al. (2011)).3 We also use surface temperature output from the207

“Last Millennium run” (covering 850-1850), the “Last Millennium Extension” simulation208

(covering 1850-2005), a “Last Glacial Maximum” (LGM) simulation, and a pre-industrial209

control simulation all from the CCSM 4.0 model (CCSM4).4 Both “Millennium” CCSM4210

data sets are from forced runs. Note that we only use the surface temperature data from211

these existing simulations, and not the models that produced the data.212

3Data provided by NOAA and available at http://www.esrl.noaa.gov/psd/
4Available at http://www.earthsystemgrid.org/
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For both the DA-based and PCA-based reconstructions we utilize the full resolution of213

the 20CR and CCSM4 datasets and do not interpolate the data onto coarser grids as has214

been done in some other pseudoproxy experiments. For the PCA-based reconstruction, we215

do not detrend the data since detrending is known to significantly reduce variance in the data216

set and adversely affect reconstruction skill (Wahl et al. 2006). Global-mean temperature is217

computed by area-weighting.218

b. Pseudoproxy network and proxy noise219

We choose pseudoproxy locations based the collation of 1209 proxies published in Mann220

et al. (2008); the number of proxies as a function of time rapidly decreases in time from this221

value. For global reconstructions shown in Section 4, we select locations for pseudoproxies222

where there are continuous records dating back to at least 1300. This choice is somewhat223

arbitrary but does not significantly affect the results we discuss in this paper. We select224

this network for several reasons: (1) The full network of 1209 proxy locations greatly over-225

represents global proxy network density over time periods longer than a few hundred years.226

(2) Reconstructions with real proxy data must screen proxy records for quality assurance227

purposes which diminishes the total number actually used (e.g., Mann et al. 2008). (3) While228

more sparse than the full proxy network, our choice of network still maintains global coverage229

and the general geographical features of the full network. (4) This reconstruction interval230

starts near the beginning of the so-called European “Little Ice Age,” a possibly significant231

climatic feature.232

We construct two types of pseudoproxies by adding either white or red noise to the233

annual-mean temperature time-series at the locations discussed in the previous paragraph.234

Proxy locations are interpolated onto model grid points and we remove duplicates where235

closely spaced proxies interpolate onto the same grid point. Because the 20CR and CCSM4236

data sets have different resolutions (which we retain) they differ in some proxy locations after237

interpolation: for the global reconstructions, 20CR has 78 pseudoproxies, while CCSM4 has238
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88. These differences do not substantially change the geographical coverage of the proxy239

network.240

To construct the white noise pseudoproxies, we add to the annual-mean grid point tem-241

perature series Gaussian white noise with a signal-to-noise ratio (SNR) of 0.5, where SNR242

is defined as243

SNR =

√
var(X)

var(N)
(9)

where X is the grid-point temperature series and N is the additive noise series, and var is244

the variance. SNR values of 0.5 are considered to be consistent with real proxy noise levels245

(Smerdon 2012) and so we use this value throughout. Red noise with a given SNR is defined246

by247

Nr(i) = aNr(i− 1) + snε(i)
√

1− a2 (10)

where Nr is a red noise time series with index i, a is the lag-one autocorrelation, sn =248 √
var(N) is the desired standard deviation of the noise, and ε is a random number drawn249

from a standardized normal distribution. Similar to the white noise pseudoproxies, those with250

red noise are constructed by adding red noise to annual-mean grid point temperature series.251

For a typical multiproxy network, Mann et al. (2007) estimate a mean autocorrelation of a =252

0.32 to be a conservative (i.e., “redder” than in reality) value. We use this autocorrelation253

value in our red-noise pseudoproxy tests (see Table 3). For both the DA and PCA approaches,254

we compute var(X) from the calibration period data. Bootstrap error estimates are derived255

by performing each reconstruction 30 times for both DA and PCA. For each reconstruction256

we generate different random noise signals which are added to the grid-point temperature257

series to create the pseudoproxies. Every reconstruction figure shows the mean of the 30258

reconstructions and 1 standard deviation about this mean for the figures showing global259

mean temperature.260
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c. DA Implementation261

For the DA-based approach, we solve the state “update equation” (5) for an analysis262

ensemble based upon a background ensemble, pseudoproxies, ensemble estimates of the ob-263

servations, and error estimates for the background ensemble and the observations. The264

procedure, as detailed in the Appendix, follows Huntley and Hakim (2010), but with the265

important generalization that the global-mean temperature is solved separately from the266

spatial fields, which allows covariance localization to be applied only to the spatially varying267

part of the field.268

We begin with a background ensemble that is identical to the data given to PCA during269

the calibration period: the annually averaged global surface temperature fields Tc described270

in Section 2a. These fields are derived from part of a single model simulation or reanalysis271

data set, where ensemble members are the annually averaged surface temperature fields272

over the chosen calibration period (such as over the years 1880-1980). This background273

ensemble is the same for each year of the reconstruction. This approach differs from most274

online DA approaches that use the previous time’s analysis ensemble as the background275

ensemble for the current time. We note that in general background ensembles may be drawn276

from any collection of reasonable states and need not be composed of an ensemble of model277

simulations; in Bayesian terminology this can be referred to as a “non-informative prior” that278

is constrained to climatologically plausible states. This approach allows for more flexibility279

in the sense that it does not require multiple model runs to generate large ensembles, though280

it could be trivially extended to include many model runs over many time periods or even281

a collection of different models. Because of how the background ensemble is constructed, it282

does not contain year-specific boundary condition and forcing information, but does contain283

the spatial covariance relationships among fields associated with forcing variability. We284

also note that even though the background ensemble for each reconstruction is composed of285

consecutive years of some model run, the ensemble members are linearly independent for all286

reconstructions shown in this paper.287
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For the DA approach, the observations or pseudoproxies are identical to those given the288

PCA technique, Tpr; they are the white or red noise-added time series at the pseudoproxy289

locations during the reconstruction time period. Ensemble estimates of the proxies and290

background error estimates are derived directly from the background ensemble. Observation291

error estimates are derived through the signal-to-noise equation (9) using an assumed signal-292

to-noise ratio and data during the calibration period (see Appendix for details).293

Assimilation is performed one year at a time by serially processing the observations one294

at a time (a standard technique based on Houtekamer and Mitchell (2001) and discussed in295

Whitaker and Hamill (2002) and Tippett et al. (2003)), yielding an annual-mean, ensemble-296

mean analysis, which is the climate field reconstruction for that year, as well as an estimate297

of the ensemble-mean, annual-mean, global-mean surface temperature; the analysis ensemble298

mean state is analogous to T̃′r in (4) in the PCA method. The off-line nature of the DA299

approach means that a climate model is not needed to integrate from analyses to future300

times, which results in a tremendous computational cost savings. We provide analyses of301

only surface temperature so that the comparison between DA- and PCA-based methods is302

direct. In principle, DA can provide analyses for up to the full system state, which constitutes303

all model variables at all levels and grid cells.304

4. Reconstructions305

a. Results306

In this section we focus on four global surface temperature reconstructions that we com-307

pare with the actual GCM/Reanalysis output during the reconstruction period. The first is308

a millennial-scale reconstruction using CCSM4 model output (which includes estimates of309

solar and volcanic forcing), with a calibration period from 1881-1980 and a reconstruction310

period from 1300-1880. The second and third reconstructions are centennial-scale, with cali-311

brations over 1956-2005 and reconstructions over 1871-1955. The second reconstruction uses312
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data from 20CR and the third uses data from CCSM4. The reason for this smaller time-313

frame is because the 20CR data only extends to 1871. The fourth reconstruction uses a 100314

year CCSM4 Last Glacial Maximum simulation for the calibration period and 100 years of a315

CCSM4 pre-industrial control simulation for the reconstruction period; this reconstruction316

seeks to test the sensitivity of the results when the calibration and reconstruction climate317

differ significantly. Sensitivity to the white-noise pseudoproxy approximation and chosen318

time period is addressed by another set of experiments that use red noise and different time319

periods for calibration and reconstruction.320

Figs. 1 and 2 show the reconstruction skill for the CCSM4 data for the period 1300-1880.321

For global-mean temperature, DA slightly outperforms PCA, with a time-series correlation322

of 0.92 compared to 0.87, respectively. Improvement of DA over PCA is more evident in323

spatial reconstruction skill as measured by the reconstruction–truth time-series correlation324

at each point (Fig. 2a,b) and by the “coefficient of efficiency” (CE) metric (Fig. 2c,d). The325

CE metric for a data series comparison of length N is defined by (Nash and Sutcliffe 1970)326

CE = 1−

N∑
i=1

(xi − x̂i)2

N∑
i=1

(xi − x)2

, (11)

where x is the “true” time series, x is the true time series mean, and x̂ is the reconstructed327

time series. CE has the range −∞ < CE ≤ 1, where CE = 1 corresponds to a perfect match328

and CE < 0 indicates that the error variance is greater than the true time series variance329

(in all CE figures we show only the range −1 ≤ CE ≤ 1). The DA approach reconstructs330

temperature with higher correlations in Asia, Greenland, and Europe as well as around lone331

pseudoproxies, such as those in the Southern Hemisphere, near New Zealand, Tasmania,332

Chile, and South Africa (Fig. 2a,b). The CE maps show positive skill for DA throughout333

most of the Northern Hemisphere while PCA has positive skill mainly around the dense334

North American pseudoproxy network (Fig. 2c,d).335

The results in Figs. 1 and 2 are generally consistent with reconstructions we performed336
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using other CMIP5 GCM data sets. For example, reconstructions based on data from the337

NASA GISS and MPI-ESM climate models over millennial time scales yield results roughly338

similar to those shown in Figs. 1 and 2 (not shown). We present results with CCSM4339

for brevity and because the DA reconstruction showed similar skill across models while the340

PCA-based approach performed best with CCSM4; hence, the differences in skill between341

the DA and PCA reconstructions shown in Figs. 1 and 2 represent a rough lower bound on342

the differences between the DA and PCA reconstructions in the CIMP5 models we tested.343

The second reconstruction uses 20CR and has a calibration (background ensemble) period344

for PCA (DA) of 1956–2005 and a reconstruction period of 1871–1955. The global-mean time345

series is reconstructed with a correlation of 0.69 for DA as compared to 0.19 for PCA (Fig. 3).346

Fig. 4 shows that for 20CR reconstructions, the DA method also has much higher skill in347

reconstructing regional temperature compared to the PCA method. Fig. 4 also shows that348

both DA and PCA are able to skillfully reconstruct temperatures over North America, where349

the proxy network is most dense, while only DA has high skill around most of the remaining350

pseudoproxies. Interestingly, in comparing Fig. 1 and 3, we see that neither PCA or DA is351

able to reproduce the global-mean temperature in the 20CR data as well as for the CCSM4352

data.353

As a check against our choice of proxy network, we performed a reconstruction for each354

method using 20CR where we increased the number of pseudoproxies to 278, corresponding355

to a network from the Mann et al. (2008) proxy collation that would extend back to the year356

1600. We find the same general results for PCA as shown in Figs. 3 and 4: slightly improved,357

yet still low correlation with the global-mean temperature (r = 0.49) and areas of higher358

correlation (r > 0.35) and positive CE values only in the densest pseudoproxy networks in359

Europe and North America (not shown). For DA however, spatial r and CE values in most360

locations improved and the reconstructed global-mean temperature correlation increases to361

r = 0.78 (not shown).362

The third reconstruction is over the same time frame as the second except we use CCSM4363
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data (Figs. 5 and 6). Comparing Fig. 3 with Fig. 5 for global-mean temperature shows364

that both methods are sensitive to the data source (i.e., GCM vs. reanalysis data)5. The365

source of the difference between the reconstructions with 20CR and CCSM4 could be due366

to several effects that will be discussed in the next section, but one clear difference is that367

20CR is constrained by observations whereas CCSM4 is not. Comparing the spatial skill of368

both methods in Figs. 4 and 6 reveals that DA again outperforms PCA and that the PCA369

results are more dataset dependent than those for DA.370

The fourth reconstruction seeks to test the approach in a situation with no trend in the371

underlying data (no global warming signal) and very different training and target climates372

for the reconstruction. Here we take as our DA background ensemble and the PCA cali-373

bration data a 100 year CCSM4 run of the Last Glacial Maximum (LGM) and reconstruct374

100 years of a CCSM4 pre-industrial control run. Pseudoproxy locations are the same as in375

the previous CCSM4 reconstructions. We note that this is not intended as a realistic cli-376

mate reconstruction scenario (e.g., the calibration/reconstruction periods are reversed from377

a typical setting and the proxy network is not consistent with proxy availability during378

the LGM), but rather a markedly different scenario intended to explore the robustness and379

range of applicability of the reconstruction techniques. Figs. 7 and 8 show the global-mean380

temperature reconstructions and the spatial-performance maps, respectively. These results381

show that the DA reconstructions give robust results, consistent with previously shown re-382

constructions, despite the radically different calibration and reconstruction states. The PCA383

results are less robust and show a global mean temperature reconstruction that has much384

reduced variance compared with the true variance.385

Fig. 9 summarizes the spatial maps of r and CE in box-and-whisker plots. The distri-386

butions of the DA reconstructions are statistically significant improvements over the PCA387

reconstructions (via t-tests at the 95% level), with the largest improvement in the case of388

5Note that the global-mean trends in these portions of the 20CR and CCSM4 data sets are slightly

different.
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the 20CR reconstruction shown in Fig. 4. Table 1 summarizes the mean and median values389

of each spatial map.390

As a check against our choice of time frames, we perform reconstructions similar to391

the four previously shown, but with different or approximately “reversed” calibration–392

reconstruction periods while keeping everything else the same (see Table 2). As a coun-393

terpoint to the first reconstruction, we choose a calibration period of 1781-1880, to avoid394

calibration with a global warming signal, and reconstruct from 1300-1780. In juxtaposition395

to the remaining three reconstructions, we reverse the calibration and reconstruction periods396

while adjusting two of them to keep each period the same size as the original; for example,397

the second reconstruction shown in Figs. 3 and 4 uses a 50 year calibration period from398

1956–2005 and an 85 year reconstruction period from 1871–1955, while the “reversed” re-399

construction uses a 50 year calibration period from 1871–1920 and an 85 year reconstruction400

period from 1921–2005. A comparison of Table 2 with Table 1 reveals generally consistent401

results for both DA and PCA methods: DA always improves upon PCA and usually by402

similar magnitudes as those shown in Figs. 1–8 and Table 1. We also perform the same403

reconstructions as shown in Figs. 1–8, except with red noise pseudoproxies and find similar404

results compared to the white noise pseudoproxies (cf. Table 3 and Table 1), though PCA405

tends to increase the global mean correlation and tends to decrease the spatial mean CE406

values in some red noise reconstructions.407

b. Discussion and Analysis408

Many of the most common CFR methods rely on the assumption of constant EOFs and409

singular values (SVs) throughout the reconstruction and calibration periods, as in (4), and410

discussed in Jones et al. (2009). Investigating the 20CR and CCSM4 data sets, we find that411

for both the 20CR and CCSM4 data, the surface temperature EOFs and SVs change over412

time: the EOFs and SVs of the calibration period are different from the reconstruction period413

(Fig. 10, EOFs not shown). The 20CR data also has a broader SV spectrum compared414
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to CCSM4 during the calibration period in that more EOFs are required to explain the415

same amount of variance. The variance explained, Λ, is related to the SVs (or “amplitude416

explained”), Σ, by the relationship Λ = Σ2/n, where n is the size of the sampling dimension,417

in our case time. Given Λ from Σ, the cumulative variance explained is determined. Fig. 10418

shows that 20CR has a shallower SV spectrum compared to CCSM4 during the calibration419

period, so that a given amount of variability is spread over a larger number of patterns in420

20CR.421

We now speculate on the reasons for consistent spatial skill in DA relative to the less422

consistent spatial skill of PCA. The discussion of the PCA and DA techniques in Section423

2 suggests that, through K, DA depends on local spatial correlations remaining consistent424

through time; this contrasts with PCA which relies upon stationary EOFs and SVs as well425

as consistent proxy-PC relationships through time. As discussed in the previous paragraph426

and shown in Fig. 10, the EOFs and SVs change in time. We consider it likely that several427

factors lead to PCA’s poor spatial reconstruction in Fig. 4b, including the fact that the428

SV spectrum of 20CR is flatter in the calibration period than for CCSM4. It may also be429

that nature (at least as reflected in 20CR) has less spatially coherent variability than the430

climate model, helping to explain (i) a modest reduction in the skill of the reconstructed431

20CR temperature compared to that of the reconstructed GCM temperature using the DA432

method, and (ii) the poor skill of the 20CR temperature reconstruction (locally and in the433

global average) using the PCA method. Given the potentially changing nature of the basis434

upon which PCA is founded, we argue that the local grid-point correlations exploited by435

the DA technique may offer a more reliable basis for reconstructions, particularly for spatial436

reconstructions. We also emphasize that in light of the fact that pseudoproxy experiments to437

date have almost exclusively relied on GCM data, our results suggest that these experiments438

may give a false impression of reconstruction skill.439
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5. Conclusions440

The main purpose of this paper was to evaluate a data assimilation (DA) approach441

for climate field reconstructions (CFRs), and to compare the results with a standard ap-442

proach based on principal component analysis (PCA). Using several pseudoproxy experi-443

ments (PPEs), we have shown that DA consistently outperforms PCA in reconstructions of444

both the global-mean temperature and regional patterns, although differences are especially445

evident in the spatial fidelity of the reconstructions. Relative to the PCA method, the DA446

method improves GCM temperature reconstructions around isolated pseudoproxies and in447

several sparsely sampled regions; DA also has much higher correlations and coefficient of448

efficiency values in most geographical regions when reconstructing 20CR temperatures.449

DA does not involve any form of PCA and is thus able to avoid several assumptions450

inherent in many PCA-based CFR techniques: that empirical orthogonal functions (EOFs)451

and singular values remain roughly constant through time; that principal components (PCs)452

are well correlated with proxy time series trough time; and that standard selection criteria can453

consistently be applied across reconstruction scenarios. We attribute the consistency of the454

DA spatial reconstructions to the fact that DA relies on local temperature correlations, which455

are more robust to the assumption of stationarity than are EOFs. Moreover, we conclude456

that these spatial relationships are insensitive to details in the choice of background ensemble,457

as demonstrated by the high skill of the reconstructions of a pre-industrial simulation using458

background ensemble data from a simulation of the Last Glacial Maximum.459

The results of this paper show that a novel off-line DA technique provides both robust spa-460

tial reconstructions in addition to global means. The approach is straightforward to extend461

to real proxy data and can easily handle practical challenges in the climate reconstruction462

problem such as missing values, time averaged proxies, and error estimates. Additionally,463

our experiments show that reanalysis data appears to differ from model simulated data in464

ways that impact the skill of reconstruction techniques. This suggests that PPEs that rely465
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solely on GCM data may give a false impression of reconstruction skill.466
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APPENDIX475

476

DA Implementation477

Our DA method and equations are defined in section a, followed by a description of the478

numerical algorithm in section b.479

a. Data assimilation method and equations480

State updates for the Kalman filter are determined by (5) and (6), which are approx-481

imated here by an ensemble square root technique applied to time averages (Dirren and482

Hakim 2005; Huntley and Hakim 2010). Here we extend this technique to handle the global-483

mean average separately from deviations from this average by augmenting the state vector484

x (here composed of annual mean surface temperatures drawn from a portion of a GCM485

or reanalysis run) with the global-mean; we denote the augmented vector by z. As will be486

described further, this is done so that the global-mean surface temperature is not affected by487

covariance localization. Following Huntley and Hakim (2010), we can use z in the Kalman488

filter equations as long as the global mean and the deviations from this mean—the rest of489

the state vector—do not signifcantly co-vary.490

Following Whitaker and Hamill (2002), the update equation is split into an ensemble491

mean update (denoted by an overbar) and an update of the perturbations from the ensemble492

mean (denoted by a prime):493

za = zb + K(y − ye) , (A1)
494

z′a = z′b − K̃y′e . (A2)

The analysis and background ensemble-mean states, za and zb, are column vectors of di-495

mension m × 1; we include only annually averaged surface temperatures in z, with the496
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global-mean removed and placed at the end of the state vector, so that m in this particular497

instance is the number of grid points plus one. The analysis and background perturbations498

from the ensemble mean, z′a and z′b, are of dimension m × n where n is the ensemble size.499

Observations (proxy data) are given in y as a p× 1 vector where p is the number of obser-500

vations, and ye = Hxb are observation estimates from the prior; ye is the ensemble-mean501

value, of dimension p× 1, and y′e are deviates from the mean, of dimension p× n.502

We solve (A1) and (A2) by processing the observations serially, one at a time (Houtekamer503

and Mitchell 2001), for computational expedience. In this case, at a single grid point, K504

simplifies (cf. 7) to the scalar505

K =
cov(z′b, y

′
e)

var(y′e) + r
(A3)

where the covariance and variance estimates apply over the ensemble, and r is the error506

variance for the observation. For our pseudoproxy experiments we determine r for each507

observation location through the signal-to-noise (SNR) equation, (9): after assuming a fixed508

value of SNR (here SNR = 0.5; see discussion in Section 3b), we compute var(X) for each509

location during the calibration time period, and then solve for r = var(N). In addition to510

the ensemble-mean update, the ensemble perturbations are updated by (A2), where511

K̃ =

(
1 +

√
r

var(y′e) + r

)−1
K, (A4)

and var(y′e) applies over the ensemble. The process repeats for each observation, with ye512

determined each time from the updated ensemble.513

Once za and z′a are computed, we compare the results of DA with the true climate514

fields by adding the global-mean value, the last entry in the column vector za, back into515

the rest of za so that we recover xa (of dimension m − 1), which is the annually averaged516

surface temperatures at all grid points. The last entry of za is the global-mean temperature517

reconstruction.518

We note that in order to compare DA and PCA, we let xb (from which we derive zb)519

be the annually averaged climate field temperatures during the calibration period, the same520
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as Tc discussed in Section 2a; we do not use an ensemble of climate models to produce xb,521

but rather the annually averaged fields of surface temperatures from a single climate model522

simulation (or reanalysis) for the ensemble members. For the off-line approach presented523

here, xb (and thereby zb) is numerically identical for each reconstruction year. Also, the524

observations or pseudoproxies y are the same noise-added pseudoproxy time series used for525

the PCA reconstructions, Tpr in (3).526

To control spurious long-distance correlations due to sampling error, we use a localization527

function (Gaspari and Cohn 1999) applied to the gain, K, with a length scale of 12,000 km528

during the update step. We determine this localization length by finding a minimum in529

mean error variance and a “smooth” analysis field, so that no “edges” of the localization530

mask are discernible. For the reconstructions, the mean error variance is a smooth function531

of localization radius with a wide range of values (from about 4,000 km to about 16,000 km)532

that were very near (within ∼ 0.01◦C2) the minimum mean error variance. We do not apply533

localization to the global-mean value.534

b. Algorithm Sketch535

For each reconstruction year we perform the following steps:536

i. Construct xb, then zb from xb, and the annual pseudoproxy vector y537

ii. Find the error r from (9) for each pseudoproxy.538

iii. Split zb into an ensemble mean and perturbations from this mean:

zb = zb + z′b

iv. For each pseudoproxy:539

(a) Compute ye = Hxb540
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(b) Split up ye into an ensemble mean and perturbations from this mean

ye = ye + y′e

(c) Compute K from (A3).541

(d) Apply the localization function, if desired, to K except for the last entry (the542

global-mean value)543

(e) Compute K̃ from (A4)544

(f) At each grid point, update the analysis ensemble-mean and perturbations from

this mean

za = zb +K(yi − ye)

z′a = z′b − K̃y′e

(g) Use za and z′a as zb and z′b respectively for the next observation545

v. The full analysis ensemble may be recovered through

za = za + z′a

where the column vector za is added to each column vector of z′a546

vi. After each year’s pseudoproxies have been assimilated, we add the last column entry547

of za to the rest of za to recover xa, the reconstructed temperature field for that year.548

We also use the last column entry of za as the reconstructed global-mean temperature549

for that year.550
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List of Tables618

1 Summary statistics for Figs. 1–8. The correlation of the reconstructed global619

mean temperature with the actual is rgmt, shown at the top of Figs. 1, 3,620

5, and 7. Both r and CE are the mean values of the spatial r and CE maps621

shown in Figs. 2, 4, 6, and 8. Both r̃ and C̃E are the median values of the622

spatial r and CE maps and also correspond to those center values indicated in623

the box-and-whisker plots, Fig. 9. The CCSM4 data types refer to the runs624

Last Millennium (LM), Last Millennium Extension (LM Ext.), Last Glacial625

Maximum (LGM), and pre-industrial control (PI). 28626

2 Summary statistics for reconstructions with different or reversed calibration627

and reconstruction periods, cf. Figs. 1–8 and Table 1. Variables and data628

types are the same as those defined in Table 1. 29629

3 Summary statistics for reconstructions that are akin to those shown in Figs.630

1–8, except with red noise pseudoproxies (as defined and discussed in Section631

3b). Variables and data types are the same as those defined in Table 1. 30632
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Table 1. Summary statistics for Figs. 1–8. The correlation of the reconstructed global
mean temperature with the actual is rgmt, shown at the top of Figs. 1, 3, 5, and 7. Both
r and CE are the mean values of the spatial r and CE maps shown in Figs. 2, 4, 6, and 8.
Both r̃ and C̃E are the median values of the spatial r and CE maps and also correspond to
those center values indicated in the box-and-whisker plots, Fig. 9. The CCSM4 data types
refer to the runs Last Millennium (LM), Last Millennium Extension (LM Ext.), Last Glacial
Maximum (LGM), and pre-industrial control (PI).

Figs. Method Data Type rgmt r r̃ CE C̃E

1 & 2 DA CCSM4 LM 0.92 0.36 0.38 0.13 0.12

1 & 2 PCA CCSM4 LM 0.87 0.26 0.27 -0.023 -0.028

3 & 4 DA 20CR 0.69 0.29 0.29 0.054 0.046

3 & 4 PCA 20CR 0.19 0.090 0.076 -0.46 -0.36

5 & 6 DA CCSM4 LM Ext. 0.94 0.38 0.37 0.14 0.11

5 & 6 PCA CCSM4 LM Ext. 0.71 0.26 0.26 -0.015 -0.024

7 & 8 DA CCSM4 LGM & PI 0.85 0.27 0.30 0.091 0.070

7 & 8 PCA CCSM4 LGM & PI 0.78 0.15 0.12 -0.094 -0.068
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Table 2. Summary statistics for reconstructions with different or reversed calibration and
reconstruction periods, cf. Figs. 1–8 and Table 1. Variables and data types are the same as
those defined in Table 1.

Method Data Type Cal. (yrs) Recon. (yrs) rgmt r CE

DA CCSM4 LM 1781–1880 1300–1780 0.92 0.34 0.14

PCA CCSM4 LM 1781–1880 1300–1780 0.85 0.26 -0.0039

DA 20CR 1871–1920 1921–2005 0.86 0.48 0.21

PCA 20CR 1871–1920 1921–2005 0.65 0.076 -0.21

DA CCSM4 LM Ext. 1871–1920 1921–2005 0.92 0.51 0.25

PCA CCSM4 LM Ext. 1871–1920 1921–2005 0.87 0.26 0.030

DA CCSM4 LGM & PI 100 of PI 100 of LGM 0.69 0.25 0.065

PCA CCSM4 LGM & PI 100 of PI 100 of LGM 0.57 0.13 -0.18

30



Table 3. Summary statistics for reconstructions that are akin to those shown in Figs. 1–8,
except with red noise pseudoproxies (as defined and discussed in Section 3b). Variables and
data types are the same as those defined in Table 1.

Method Data Type rgmt r CE

DA CCSM4 LM 0.91 0.36 0.13

PCA CCSM4 LM 0.85 0.24 -0.26

DA 20CR 0.69 0.29 0.057

PCA 20CR 0.40 0.095 -0.75

DA CCSM4 LM Ext. 0.92 0.38 0.14

PCA CCSM4 LM Ext. 0.80 0.26 -0.043

DA CCSM4 LGM & PI 0.84 0.27 0.092

PCA CCSM4 LGM & PI 0.53 0.11 -0.22
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List of Figures633

1 Global-mean temperature anomaly reconstructions of the (a) DA and (b) PCA634

techniques using CCSM4. Solid black lines are the mean reconstruction out of635

30, dash-dotted lines are the actual model mean temperature. Gray shading636

is 1 standard deviation of the reconstructions. The calibration period is 1881-637

1980 and the reconstruction period is 1300-1880. The correlation coefficient,638

r, is noted at the top of each figure along with the number of PCs used for639

the PCA-based reconstruction. The anomalies are shown with respect to the640

reconstruction mean. 33641

2 Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of642

efficiency, (c) and (d), corresponding to the reconstructions shown in Fig. 1643

(calibration period: 1881-1980, reconstruction period: 1300-1880), for (a) DA644

and (b) PCA. These maps show the correlation and coefficient of efficiency645

between each grid point temperature series of the mean reconstruction (mean646

of 30) and each actual grid point temperature series. Empty black boxes are647

centered over pseudoproxy locations and stippling indicates correlations that648

are not significant at the 95% level. 34649

3 Global-mean temperature anomaly reconstructions of the (a) DA and (b)650

PCA techniques using 20CR. The calibration period is 1956-2005 and the651

reconstruction period is 1871-1955. 35652

4 Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of653

efficiency, (c) and (d), corresponding to the reconstructions shown in Fig. 3654

(calibration period: 1956-2005, reconstruction period: 1871-1955), for (a) DA655

and (b) PCA. For (a) and (b), stippling indicates correlations that are not656

significant at the 95% level. The lower bound of CE values shown are cut off657

at CE = −1. 36658
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5 Global-mean temperature anomaly reconstructions using (a) DA and (b) PCA659

techniques with CCSM4 over the same calibration and reconstruction periods660

as in Figs. 3 and 4 (calibration period: 1956-2005, reconstruction period:661

1871-1955). 37662

6 Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of663

efficiency, (c) and (d), corresponding to the reconstructions shown in Fig.664

5 with CCSM4, (calibration period: 1956-2005, reconstruction period: 1871-665

1955). For (a) and (b), stippling indicates correlations that are not significant666

at the 95% level. 38667

7 Global-mean temperature anomaly reconstructions using (a) DA and (b) PCA668

techniques with 100 years of CCSM4 LGM data for the calibration period and669

100 years of a CCSM4 pre-industrial control run for the reconstruction period. 39670

8 Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of671

efficiency, (c) and (d), corresponding to the reconstructions shown in Fig. 7.672

For (a) and (b), stippling indicates correlations that are not significant at the673

95% level. The lower bound of CE values shown are cut off at CE = −1. 40674

9 Box-and-whisker plots (for clarity, outliers are not shown) of each of the spa-675

tial reconstruction figures, for (a) correlation coefficient (r) maps and (b)676

coefficient of efficiency (CE) maps. Labels refer to DA or PCA techniques677

and the figure number of the data that the box-and-whisker plots represent.678

All DA-PCA distribution pairs are statistically distinct according to t-tests679

for each DA-PCA comparison. 41680

10 Cumulative variance explained (CVE) of the retained EOFs for 20CR and681

CCSM4 during both the (a) calibration and (b) reconstruction periods shown682

in Figs. 3–6 (calibration period: 1956-2005, reconstruction period: 1871-683

1955). With 20CR we retain 12 PCs and with CCSM4 we retain 10 PCs; the684

CVE values are normalized by the total variance explained. 42685
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Fig. 1. Global-mean temperature anomaly reconstructions of the (a) DA and (b) PCA
techniques using CCSM4. Solid black lines are the mean reconstruction out of 30, dash-
dotted lines are the actual model mean temperature. Gray shading is 1 standard deviation
of the reconstructions. The calibration period is 1881-1980 and the reconstruction period
is 1300-1880. The correlation coefficient, r, is noted at the top of each figure along with
the number of PCs used for the PCA-based reconstruction. The anomalies are shown with
respect to the reconstruction mean.
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Fig. 2. Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of efficiency,
(c) and (d), corresponding to the reconstructions shown in Fig. 1 (calibration period: 1881-
1980, reconstruction period: 1300-1880), for (a) DA and (b) PCA. These maps show the
correlation and coefficient of efficiency between each grid point temperature series of the
mean reconstruction (mean of 30) and each actual grid point temperature series. Empty
black boxes are centered over pseudoproxy locations and stippling indicates correlations
that are not significant at the 95% level.
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Fig. 3. Global-mean temperature anomaly reconstructions of the (a) DA and (b) PCA
techniques using 20CR. The calibration period is 1956-2005 and the reconstruction period
is 1871-1955.
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Fig. 4. Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of efficiency,
(c) and (d), corresponding to the reconstructions shown in Fig. 3 (calibration period: 1956-
2005, reconstruction period: 1871-1955), for (a) DA and (b) PCA. For (a) and (b), stippling
indicates correlations that are not significant at the 95% level. The lower bound of CE values
shown are cut off at CE = −1.
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Fig. 5. Global-mean temperature anomaly reconstructions using (a) DA and (b) PCA
techniques with CCSM4 over the same calibration and reconstruction periods as in Figs. 3
and 4 (calibration period: 1956-2005, reconstruction period: 1871-1955).
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Fig. 6. Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of efficiency,
(c) and (d), corresponding to the reconstructions shown in Fig. 5 with CCSM4, (calibration
period: 1956-2005, reconstruction period: 1871-1955). For (a) and (b), stippling indicates
correlations that are not significant at the 95% level.
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Fig. 7. Global-mean temperature anomaly reconstructions using (a) DA and (b) PCA
techniques with 100 years of CCSM4 LGM data for the calibration period and 100 years of
a CCSM4 pre-industrial control run for the reconstruction period.
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Fig. 8. Spatial maps of correlation coefficient, (a) and (b), as well as coefficient of efficiency,
(c) and (d), corresponding to the reconstructions shown in Fig. 7. For (a) and (b), stippling
indicates correlations that are not significant at the 95% level. The lower bound of CE values
shown are cut off at CE = −1.
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Fig. 9. Box-and-whisker plots (for clarity, outliers are not shown) of each of the spatial
reconstruction figures, for (a) correlation coefficient (r) maps and (b) coefficient of efficiency
(CE) maps. Labels refer to DA or PCA techniques and the figure number of the data that
the box-and-whisker plots represent. All DA-PCA distribution pairs are statistically distinct
according to t-tests for each DA-PCA comparison.
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Fig. 10. Cumulative variance explained (CVE) of the retained EOFs for 20CR and CCSM4
during both the (a) calibration and (b) reconstruction periods shown in Figs. 3–6 (calibration
period: 1956-2005, reconstruction period: 1871-1955). With 20CR we retain 12 PCs and with
CCSM4 we retain 10 PCs; the CVE values are normalized by the total variance explained.
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