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Abstract

Animal movement has been the focus on much theoretical and empirical work in

ecology over the last 25 years. By studying the causes and consequences of individual

movement, ecologists have gained greater insight into the behavior of individuals and the

spatial dynamics of populations at increasingly higher levels of organization. In

particular, ecologists have focused on the interaction between individuals and their

environment in an effort to understand future impacts from habitat loss and climate

change. Tools to examine this interaction have included: fractal analysis, first passage

time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space

models. Concurrent with the development of movement models has been an increase in

the sophistication and availability of hierarchical bayesian models. In this review we bring

these two threads together by using hierarchical structures as a framework for reviewing

individual models. We synthesize emerging themes in movement ecology, and propose a

new hierarchical model for animal movement that builds on these emerging themes. This

model moves away from traditional random walks, and instead focuses inference on how

moving animals with complex behavior interact with their landscape and make choices

about its suitability.
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I N T R O D U C T I O N A N D M O T I V A T I O N

Animal movement has been the focus of much theoretical

and empirical work in ecology over the last 25 years in part

because the movement of individuals provides a spatio-

temporal bridge between the individual and the population

(Turchin 1998). By studying the causes and consequences

of individual movement, ecologists have gained greater

insight into spatial dynamics at increasingly higher levels of

organization, i.e., patches, populations, communities, and

meta-communities (Bowler & Benton 2005). Landscape

ecologists have focused on the interaction between

individuals and their environment in an effort to under-

stand future impacts from habitat loss and climate change

(Bowler & Benton 2005). Wildlife telemetry and GIS have

become important conservation and management tools.

Researchers in these fields collect spatial data on move-

ment and on the environment to explore how the

environment controls the movement behavior of animals;

the precise mechanism of this complex interaction is the

object of inference. From these different perspectives three

issues emerge: (1) developing models for realistic move-

ment behavior (Lima & Zollner 1996; Morales & Ellner

2002; Morales et al. 2004; Jonsen et al. 2005); (2) inferring

how the organism-environment interaction influences

movement processes (Morales et al. 2004; Forester et al.

2007); and (3) inferring movement itself, when the

movement data are incomplete or contain substantial error

(Newman 1998; Jonsen et al. 2003). We suggest that

continued progress in movement ecology will require that

these components be subsumed into process-based infer-

ential models, i.e., models that have separate stages for the

data and the process, and the parameters that govern both

(Clark 2005). After reviewing models for animal move-

ment, we describe an approach that accomplishes these

goals.
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To address the issues facing movement ecologists, a

variety of techniques to model movement have been

proposed; these range from mathematical diffusion-based

approaches to likelihood-based statistical approaches. Skel-

lam�s classic work (Skellam 1951) stimulated substantial

interest in understanding spatial dynamics of populations

(Kareiva 1990; Turchin 1991, 1998). Statistical approaches

that focus on the interaction between individuals and their

landscape have included: fractal analysis (Dicke & Burrough

1988; Wiens & Milne 1989; Milne 1991); first passage time

(Fauchald & Tveraa 2003); Lévy flights (Viswanathan et al.

1996); and process-based movement models (Jonsen et al.

2003; Morales et al. 2004).

In this review, we focus on several issues fundamental to

movement ecology. First, we review non-inferential move-

ment models. Because our primary focus is on inferential

process-based models, this section is brief. Next, because we

feel its development can promote further progress, we then

briefly review hierarchical modeling. Third, we review

inferential movement models used to address the three

main questions outlined above. Finally, we discuss a

conceptual model for movement data and processes that

builds on process models now in the literature, while

exploiting some advantages provided by the hierarchical

approach. It includes the organism-environment interaction,

a principle interest of movement ecology. Our goals are

three-fold: (1) to stress the importance and complexity of

movement data; (2) to highlight the techniques used to

account for the vagaries of such data; and (3) to promote an

integral understanding needed for further progress in this

subfield.

M O V E M E N T E C O L O G Y A N D P R O C E S S M O D E L S

To analyze and understand a typical movement path, which

has distinct movement behaviors (Fig. 1), an ecologist is

faced with a potentially confusing variety of models. While

we will focus on inferential models that include data and

process stages, there are many terms applied to non-

inferential models that deserve mention. These include

random walks (RW), fractal analysis, first passage time

(FPT), Lévy flights, and multi-behavioral approaches.

(Random walks and their diffusion approximations have

been used and applied so widely in ecology that even briefly

reviewing them here would be superficial; for a thorough

review see Okubo (1980); Kareiva (1990); Turchin (1998);

Okubo & Levin (2002).) Any of these models could be

applied to the example track shown in Fig. 1. A random

walk model might be fitted to these data with habitat

specific parameters (Morales & Ellner 2002; Ovaskainen

2004). Alternatively, a correlated random walk (CRW) might

provide the best fit for the �migrating� phase of the track

(Fig. 1) (Jonsen et al. 2005). A Lévy flight would pool the

observed moves (Fig. 1) and graphically fit the data to see if

the steps follow Lévy type behavior (Viswanathan et al.

1996). A similar approach would be taken with a multi-

behavioral model (Johnson et al. 2002b). The many different

types of models applied to such data underscore the fact

that movement data often look similar (Fig. 1), and models

that might fit equally well could involve different assump-

tions or, at least, be interpreted in different ways.

Calculating a fractal index D from a movement path

provides a scale-free measure of the structure in the

movement path, or more specifically, a measure of the

tortuosity of the movement path (Dicke & Burrough 1988;

Milne 1991; With 1994). Typically, 1 £ D £ 2, which

corresponds to straight line movement at the lower end,

and Brownian motion at the upper end. Since landscape

ecologists had used fractals to assess spatial structure in

landscapes (Wiens & Milne 1989; Milne 1991), analyzing

movement paths with fractal analysis afforded the user a

way to observe how D in movement tracks is affected by

landscape structure (With 1994). Though these methods

have been critiqued on technical and philosophical grounds

(Turchin 1996), fractal analysis remains widely used in the

movement literature (Fritz et al. 2003; Nams 2005, 2006;

Tremblay et al. 2007) in large part because of the inherent

desire of researchers to relate patterns in movement to

patterns in the environment.

First passage time (FPT) has deep roots in the physics

literature and shares some functional similarity with fractal

analysis. In the analysis one centers a window of radius r on

the origin (or current location) of a random walker and

records how long it takes the walker to leave this circle. This

time is the mean first passage time, which scales in non-

fractal environments as T(r)~r2 (Johnson et al. 1992). Like

the R2
n metric in the diffusion literature (Kareiva &

Shigesada 1983), T(r) allows researchers to see how FPT

scales with increasing r. Similar to fractal analysis a power

law analysis of this scaling behavior suggests a scale-

invariant view of the movement process (Johnson et al.

1992). Fauchald & Tveraa (2003) extended this analysis by

making the link between FPT and search behavior in order

Area restricted search

Patch departure

Taxis

Patch immigration

Figure 1 Here we depict a cartoon that captures typical movement

behavior, including: area-restricted search, patch-departure, taxis

towards a new location, and patch immigration.
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to directly link these movement patterns to landscape

patterns. Their hypothesis was that organisms with higher

FPT in certain areas would be exhibiting area-restricted

search. After empirically detecting search behavior with FPT

analysis, Fauchald & Tveraa (2003) could then explore

spatial patterns in the environment at these areas of high

search intensity.

In the early 1990�s the statistical physics community

noted how Lévy statistics can be used to study scale

invariant patterns observed in kinetic data (Shlesinger et al.

1993). In an ecological setting, Viswanathan et al. (1996,

1999), were the first researchers to observe and document

Lévy flight patterns in searching organisms. Lévy flights are

the step lengths (measured in time or in geographic distance)

in a movement path and are characterized by a power law

distribution P(l)~l-l, with 1 < l £ 3, where l represents the

step lengths. Lévy flights differ from Gaussian random

walks by the fact that under a power law, longer step lengths

are (much) more probable. The case for Lévy flights has

been called into question recently by Edwards et al. (2007).

Their arguments focus on three problems with the initial

approach of Viswanathan et al. (1996): (1) the lack of a

proper data model for observed flights; (2) low resolution

data collection that led researchers to conclude erroneously

that the albatross were making extremely long flights (when

in fact they were still on land); and (3) a non-likelihood

based approach to model fitting. Once these problems were

addressed, the researchers found no support for flights in

four different datasets being drawn from a power-law

(Edwards et al. 2007), and hence conclude that Lévy flights

are not appropriate for movement data. On the other hand,

Sims et al. (2008), found a good fit between > 1 million

records of marine animal dive data and Lévy flights,

suggesting that the debate over Lévy flights is yet to play

out. Regardless of the outcome of this debate, it is

important to note that researchers have used these models

to try and explain how a Lévy search behavior can be used

efficiently by foraging organisms. It has been argued that

Lévy flight behavior is selected for as it increases search

efficiency (Bartumeus et al. 2005).

This treatment of movement data revisits some issues

that emerged in the study of long distance dispersal (LDD)

and population spread (Okubo & Levin 1989; Kot et al.

1996; Clark et al. 1999). Fat tailed kernels may fit dispersal

data that include rare LDD events, but the extreme behavior

should not be over-interpreted. Power functions used to

account for this extreme behavior are not proper density

functions because they lack finite moments (Clark et al.

1999). The infinite variance of a fat-tailed dispersal kernel

cannot apply to data, and it makes qualitatively unrealistic

predictions (Kot et al. 1996; Clark et al. 2001, 2003). It

makes sense to use a distribution that accounts for

occasional fat-tailed movement behavior (Clark et al.

1999). Power laws provide �…no understanding of the

underlying mechanisms� (Okubo & Levin 1989).

Ecologists increasingly recognize the need for more

realistic treatment of behavior in movement models (Lima

& Zollner 1996). This need comes in part from empirical

work on movement, which highlighted the mismatch

between predictions derived from CRWs and observed

movement paths (Morales & Ellner 2002). Recognizing the

need for a model that fits multiple behavioral modes to

movement data, Johnson et al. (2002b) employed a model

originally developed for the study of foraging or pecking

behavior in zebra finches (Sibly et al. 1990). This model

assumed that behaviors were bouts whose frequency

follows a Poisson process. Johnson et al. (2002b) fit this

model to the frequency of movement rates to determine

whether more than one type of (behavioral) movement

processes existed in the data, e.g., processes with short

and long movements. Despite a recent critique of the

approach (Nams 2006), Johnson et al. (2006) note that

their approach is useful to identify �behavioral scales of

movement.� Johnson et al. (2006) point out that more

research is needed to detect exact ecological mechanisms

that produce the observed movement data.

E M E R G I N G P E R S P E C T I V E S F R O M I N F E R E N T I A L

M O V E M E N T E C O L O G Y

Whereas the preceding process models lack a data stage, the

models reviewed in this section have stages for both the data

and the process. We feel this is a key decomposition,

because it allows the user to infer hidden movement

processes on the basis of incomplete and ⁄ or missing data,

multiple data sets, or both. We begin the section with a brief

overview of hierarchical modeling, which is followed by

a review of how inferential models have been used to:

(1) handle complex behaviors; (2) quantify the organism-

environment interaction; and (3) understand movement

processes in data observed with error.

Hierarchical Bayes for movement data and movement
processes

Advances in hierarchical Bayes (HB) have opened up new

opportunities for inference on biological processes (Gelfand

& Smith 1990; Carlin & Louis 2000; Wikle 2003; Clark 2005,

2007). This inference comes by factoring high dimensional

problems into lower dimensional, conditionally dependent

ones (Berliner 1996; Wikle et al. 1998; Clark 2005).

Movement data come from a variety of different sensors.

Sensors can include ARGOS tags, radio telemetry, GPS tags,

and archival tags, each of which has strengths and

weaknesses and unique error structures. Because of these

error structures, it becomes necessary to separate the data
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from the process. Using simple probability rules, we can

factor the joint probability distribution of random variables

into a series of conditional probability distributions that are

easier to compute. One standard factorization breaks the

joint distribution into three stages: a data stage, a process

stage, and a parameter stage, which yields the following

posterior distribution:

½processjparameters; data�
/ ½datajprocess; parameters�½processjparameters�½parameters�:

Such a factorization works well for movement data for the

following three reasons. First, movement data are typically

recorded with error (Jonsen et al. 2003), and using a data

stage allows us to account for different error structures.

Second, we gain a greater understanding of the processes

that drive movement by incorporating the process stage.

Finally, having a parameter stage allows for uncertainty in

the parameters at all levels of the model. This hierarchical

structure allows for structured complexity (Clark 2005).

Movement is a complex process that depends on many

things. To understand what drives movement at the

individual and population levels, models could accommo-

date up to four elements: (1) a likelihood-based framework

that uses distributions with finite moments; (2) complex

process models; (3) a way to separate biotic and abiotic

forcing, e.g., locomotion vs. advection (a problem that is

especially acute in many marine and aerial systems); and (4)

the multiple behavioral patterns common to movement

data, i.e., spatial memory, site fidelity, directed movement,

etc. (Lima & Zollner 1996; Morales et al. 2004; Jonsen et al.

2005; Armsworth & Roughgarden 2005). With the advent

of modern Bayes we are poised for substantive advance in

how we think about, analyze, and use movement data;

indeed initial forays into this area have been promising

(Jonsen et al. 2003; Morales et al. 2004; Jonsen et al. 2005).

Such modern analytical tools will allow us to accommodate

complexity both in the data and in the process, and will

afford us a quantitatively rigorous understanding of this

multi-scaled, multi-dimensional process.

Scaling up movement behavior

Lima & Zollner (1996) called for a �productive union�
between behavioral ecologists and landscape ecologists.

They argued that though researchers in these two fields

studied similar things, i.e., habitat selection and animal

movement, they did so at vastly different scales. Because

much of the theoretical foundation in ecological diffusion

and movement ecology had been developed using inverte-

brates as study organisms, and because ecologists were

increasingly interested in large scale organism-environment

interactions, Lima & Zollner (1996)argued that we should

develop models with increasing behavioral complexity.

Scale has often been treated spatially (Levin 1992), i.e.,

does the pattern observed at one spatial domain �scale-up� to

the next. Such scaling in pattern and process is a hallmark of

landscape ecology. For movement ecologists, recent devel-

opments have highlighted the importance of �scaling-up�
behavior. In their work on beetle movement, Morales &

Ellner (2002) examined scaling in experimental model

systems (EMS). Though random walk models can success-

fully describe movement data at one scale, they may fail to

accurately predict the data at larger scales. Morales & Ellner

(2002) examined whether �a random walk framework can be

used to translate small-scale, within-patch movement data to

larger scale spread in heterogeneous landscapes.� What they

found was that single mode CRW models fail to capture the

observed spatial spread. A better model fit was achieved by

incorporating increased behavioral complexity into the

movement model. Such behavioral complexity can take

the form of a model that accounts for �state switching� or

one that accounts for �acclimating� (Morales & Ellner 2002).

For example, with a state-switch an organism may switch

from one behavior type (e.g. foraging) to another (e.g.

migrating) (Fig. 1). Their finding has brought about a way of

thinking about movement models that includes not just the

landscape-heterogeniety ⁄ spatial-scale framework, but also

the importance of including more detailed and realistic

behavior into the movement process (Morales et al. 2004;

Jonsen et al. 2005; Patterson et al. 2008).

Ecologists who have incorporated increased behavioral

complexity into movement models have accomplished

several things: (1) they have obtained better fits to

movement data, i.e., for the location and behavioral state

(Blackwell 1997; Jonsen et al. 2005; Blackwell 2003); (2) they

have correlated behaviors with landscape features (Johnson

et al. 2002a,b; Jonsen et al. 2007; Eckert et al. 2008); (3) they

have estimated hidden movement behavior within discrete

habitat patches of different types as well as movement

behavior at boundaries (Morales 2002; Ovaskainen 2004;

Ovaskainen et al. 2008); and (4) they have observed how the

environment can influence within-state movements as well

as switches between behavioral states (Morales et al. 2004;

Forester et al. 2007).

A second key form of scaling comes from using a

hierarchical structure that allows for a probabilistic link from

parameters at the individual level to parameters at the

population level (Carlin & Louis 2000; Clark 2005). This

structure affords one a population level understanding of

particular behaviors by borrowing strength across the

individual datasets (Clark 2005, 2007). For example, Jonsen

et al. (2003) show how a hierarchical structure reduces

uncertainty around specific movement parameters. Morales

et al. (2004) (in their Appendix B) present a hierarchical

analysis of 10 simulated tracks that depicts individual

variation (or �random effects�) within a population. Such
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variation can be seen in the individual and population level

posterior estimates for specific movement parameters

presented by Jonsen et al. (2006) (see their Fig. 3). This

hierarchical treatment allowed them to infer individual

behavior in different movement modes as well as make

population level inference, e.g., turtles travel faster during

day time while on southward migration.

Despite this progress, much work is needed to account

for the types of movement behavior often observed in long-

lived species with spatial memory, learned behavior, social

structure, etc. (Morales et al. 2004; Gautestad & Mysterud

2005; Mueller & Fagan 2008).

Organism-environment interaction

Landscape ecologists and conservation biologists have

focused considerable effort on the interaction between

individuals and their landscapes. Using GIS, one can overlay

a movement track on top of a variety of environmental

covariates, e.g., elevation, habitat, sea surface temperature,

etc., with the goal of visualizing the observed interaction.

This is often a helpful first data exploration step, but

typically we want to learn more about the quantitative nature

of such interactions. Gaining inference is key to a richer

understanding of how the environment controls the

observed spatial behavior of individuals. (In terms of

behavior, one could argue that this section is inextricably

linked with the previous section, as a behavioral state can be

a key determinant of organism-environment interaction.

While we review them separately here, we acknowledge the

importance of such a link, and we take up their synthesis

further in the model section.)

Many recent efforts have quantified the relationship

between movement patterns and landscape patterns.

Ovaskainen (2004) used a diffusion approach to model

movement in heterogeneous landscapes. His model was

comprised of multiple CRWs with habitat-specific para-

meters, boundary behavior, and mortality. A diffusion

coefficient, Di(t), was fitted that varied with time and habitat

type i. The boundary behavior component consisted of a

biased movement toward a specific habitat type. The model

is connected to the data via maximum likelihood and the set

of partial differential equations are solved numerically with a

finite element scheme. Though there was not support for a

habitat-specific Di(t) in the butterfly data, the model provides

a way to estimate these parameters. The model has been

further developed in Ovaskainen et al. (2008) to include a

Bayesian approach in lieu of the MLE approach of

Ovaskainen (2004). This approach yielded separate sex-

and habitat-specific movement rates (in patch vs. in matrix),

whose median was similar, but with a broader range of

diffusion rates of butterflies in the patches (Ovaskainen et al.

2008).

Morales et al. (2004); Forester et al. (2007); Eckert et al.

(2008) all provide examples of how state-space models can

be used to quantify the interaction between the organism

and environment. Unlike the approach of Ovaskainen

(2004) and Ovaskainen et al. (2008), these models specifi-

cally model the dynamics of a time-series of movement

steps. Morales et al. (2004) provide a framework for

incorporating the influence of abiotic structure on move-

ment processes and such hidden states. They assumed fixed

observation error, and explored several models of increasing

complexity. Though Morales et al. (2004) caution that even

these models were probably insufficient to capture the full

behavior of elk, the analysis provided an example linking

likelihood-based movement models of increasing behavioral

sophistication with remotely-sensed landscapes. From an

ecological standpoint, Morales et al. (2004) were able to

quantitatively separate �encamped� vs. �exploratory� move-

ments as well as the habitat preferences among elk in the

encamped state. Such an approach allows us to answer an

ecological question; under what conditions do certain

movement types occur? In lieu of a switching approach,

Forester et al. (2007) accommodate a multi-scale movement

process in the transition equation of the state-space model

by accounting for (1) the immediate response of elk to the

environment and (2) a longer and temporally autocorrelated

index of the behavioral state of the animal. Eckert et al.

(2008) combined the approach of Jonsen et al. (2005) with

that of Morales et al. (2004) to first filter the sightings, and

then quantitatively determine how oceanographic covariates

influence movement states. Not only were several of these

measured covariates used differently by turtles in different

movement states, Eckert et al. (2008) also found that turtles

of different size classes had different persistence in �fast

swimming� modes. Lastly, Johnson et al. (2008), in a

continuous time CRW model, include a drift term that

allows for inference on movement that is influenced by

ocean currents. From an inferential standpoint the

continuous time formulation allows for precise spatio-

temporal matching between animal locations and environ-

mental covariates.

Moorcroft et al. (1999, 2006) use telemetry data to

parameterize mechanistic home ranges in coyotes. Whereas

traditional home range analysis largely ignores the mecha-

nisms that drive movement, and hence space-use by

animals, Moorcroft�s modeling approach used both a

process stage and a data stage to connect movement data

to the environment. Using a system of coupled partial

differential equations whereby movement is built on two

simple biologically-based rules, Moorcroft et al. (1999)

provided steady-state equilibrium estimates of pack-specific

home ranges. In a later model, Moorcroft et al. (2006)

compare a model where space-use is topographically

restricted to one where space-use is prey-driven, and find
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that the prey-driven model provides a better fit to the data.

This model offers several compelling features: (1) it is

spatially explicit; (2) it is likelihood-based; and (3) the

movement rules are biologically meaningful. The model

offers a snapshot of animal distribution that accounts for

individual movement, pack-level distribution, landscape

features, attraction towards home range, and conspecific

avoidance. While these are not billed as movement models,

the take home message is clear; more focus on the

organism-environment interaction typically yields a better

understanding of space use in animals.

Lastly, non-inferential models have been applied to

movement data to explore the population level consequences

of organism-environment interactions of moving individuals

(Morales et al. 2005; Mueller & Fagan 2008). The modeling

approach here used artificial neural networks and genetic

algorithms (ANN ⁄ GA) to build upon a more traditional

individual based model. Morales et al. (2005) explored how

the same set of movement decisions in different simulated

landscapes led to different emergent movement behavior.

For example, heterogeneous landscapes led to increased

variability in movement. Whereas Morales et al. (2005)

focused more on organism-environment interactions,

Mueller & Fagan (2008) focus on how movements of

individuals in response to the distribution of resources

translates to population level distribution. Mueller & Fagan

(2008) note that this modeling approach can accommodate

three typical types of movement behavior: non-oriented,

oriented, and memory based. Dalziel et al. (2008) extend the

approach of Morales et al. (2005) by combining likelihood

with an ANN ⁄ GA framework to examine the effect of

resources, spatial memory, and distance on elk movements.

Process-based inference in the face of messy data

Proceeding from a simple hierarchical decomposition of the

data, the process, and the parameters, we can ask

increasingly complicated questions about the features

driving movement processes. This theme was first noted

in the ecological movement literature by Jonsen et al. (2003),

who argued that (especially in marine settings) movements

are observed incompletely, infrequently, and with error.

Accounting for this error via a state-space formulation

enables one to probabilistically filter these movement tracks.

It should be noted that state-space models for movement

existed prior to these, but were found primarily in the

statistical literature (Anderson-Sprecher & Ledolter 1991;

West & Harrison 1997; Newman 1998; Sibert & Fournier

2001). Perhaps more importantly, while ecologists� intro-

duction to SSMs comes from the statistical and economet-

rics literature, the field of origin for state-space modeling is

control engineering, e.g., Kalman (1960), or section 2.1.6 in

Hinrichsen & Pritchard (2005).

The strength of a state-space model framework is that it

allows uncertainty in both the process and in the observa-

tion to be accounted for separately in the estimation

process. The model can be thought of as two �time series

running in parallel� (Newman 1998) – one for the process

and one for the observations. For the process model, one

typically assumes the underlying true state x changes over

time, but is hidden from observation, i.e., x is a latent state

variable requiring estimation:

xt ¼ f ðxt�1Þ þ �t ;

where the dynamic state variable (typically) evolves

according to a Markov process with inherent error that al-

lows for stochasticity (sensu Berliner 1996). Here �t denotes

error that is not accounted for by the process model f(x).

The model structure for the observations y also includes an

observation model with error xt :

yt ¼ gðxtÞ þ xt ;

where again we assume a generic observation model g(x).

This framework, though seemingly simple, accommo-

dates a great deal of structure in both the data and the

process (Clark & Bjørnstad 2004; Jonsen et al. 2005;

Patterson et al. 2008). For animal movement data, this

flexibility is key because movement is comprised of multiple

behavioral patterns, and multi-scaled interactions with the

environment (Patterson et al. 2008). The movement data

themselves are typically derived from some telemetry

method (e.g., ARGOS, GPS, light sensing archival tags,

radio tracking) all of which are marked by complicated non-

Gaussian error in the observation (Jonsen et al. 2005; Royer

et al. 2005; Jonsen et al. 2006). State-space models can be

solved numerically with a Kalman filter approach (Newman

1998; Forester et al. 2007). Alternatively, a hierarchical form

allows for more complex relationships.

State-space models have greatly advanced the way we

think about movement ecology (Patterson et al. 2008). True

movement is observed neither continuously, nor with

complete accuracy. A state-space model accounts for this

by making the true movement data conditionally dependent

on the movement process, and the observed data condi-

tionally dependent on the true data. This is especially

important in the marine realm where the quality of locations

returned by satellite or archival tags is often much lower

than on land (Jonsen et al. 2003; Royer et al. 2005).

These models for movement have allowed for inference

that would not be possible under a traditional non-

likelihood based approach. Jonsen et al. (2005) showed

how one can use all the data in a probabilistic framework to

build models that partition movement data (observed with

error) into different behavioral modes. Jonsen et al. (2006)

used hierarchical SSMs to infer varying rates of travel speed

in leatherback turtles as a function of time of year and
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breeding status. Jonsen et al. (2007) linked posterior

estimates of behavioral mode with in situ observations of

diving behavior in leatherback turtles.

While all of these state-space models represent an

advance in our ability to model these types of data, there

is room for improvement (Patterson et al. 2008). Notably,

we see a real need for biologically-based transition processes

that occur at different scales, and that account for biotic and

abiotic interactions on the movement processes. Instead of

filtering or classifying the locations and overlaying them on

the environment (Johnson et al. 2002b; Jonsen et al. 2006),

we propose that such environmental interactions or forces

be estimated as part of the movement processes themselves.

Including forces within the transition equation may help

explain movement behaviors in long lived mammals who

undergo migration, have spatial memory, experience matri-

lineal learning, are attracted to conspecifics, etc. (Morales

et al. 2004).

S Y N T H E S I S A N D F U T U R E D I R E C T I O N S

Though movement data are key to a variety of ecological

processes, there is room for refinement. The models

reviewed here have addressed several different and impor-

tant aspects of these processes. For example, the random

walk ⁄ diffusion framework has told us a great deal about the

spatial dynamics of populations. Findings here have been

key not only to our understanding of the ecology of these

systems, but they have also been instrumental in our

understanding of how populations might respond spatially

to threatened or fragmented landscapes (Kareiva & Wen-

nergren 1995). With the advent of metapopulation biology

and landscape ecology, we saw a resurgence in interest in

spatial processes at the individual level. Researchers in these

fields began to focus on questions of the following form:

How does an organism perceive its landscape? How does

it move through that landscape? What happens to these

processes with fragmentation? Many of the phenomenolog-

ical models (fractal analysis, first passage time, Lévy flights)

address these lines of inquiry. These three families of

models share many similarities in that they examine how

patterns in the movement data correspond to patterns in the

environment, but these models typically do not include

separate data and process stages. As a result, it is easy to see

how different combinations of movements could lead to the

same observed phenomenon. More importantly, though

many of these models arose out of a desire to understand

organism-environment interactions, none of these models

has an ability to test for how landscape features actually

influence the movement process. In addition, though our

technological progress in wildlife telemetry has progressed

considerably since the late 1980�s (Cooke et al. 2004; Godley

et al. 2008) many of these observations are still made with

error (Hays et al. 2001). Accounting for error in the

observations, especially with marine organisms, is critical.

A movement model needs to do several different things

simultaneously. First and foremost it can be grounded in

biology, that is, it uses biological information about

behaviorally-based movement processes as opposed to

simply looking for variance in movement patterns. The

model can accommodate multiple spatial and temporal

scales, and it can inclued the multiple inputs that a moving

individual is constantly evaluating (Dall et al. 2005). It

should be likelihood-based, and could be structured

according to hierarchy. Lastly, the model should be flexible,

adaptable, and useful for prediction.

Hierarchical Bayes represents an advance in our ability to

model movement for the following three reasons: (1) a

traditional HB structure accounts separately for error in the

process and the observations; (2) it offers a full likelihood-

based framework for testing model fit; and (3) it affords the

user the ability to borrow strength across the dataset while

estimating parameters. Clearly state-space models have taken

full advantage of this structure. By employing a hierarchical

structure one can straightforwardly, if not necessarily easily,

conduct inference on movement processes. Without such a

structure, it is difficult to make inference on the movement

process underlying the inherently messy movement data.

Given the emerging questions in movement ecology as

well as the importance of thinking hierarchically, we present

an example model that incorporates advances that many of

previous models. Recall Fig. 1, which depicted a typical

movement path structured by a combination of short moves

in one area and long directed moves towards another area.

These types of paths occur throughout movement ecology,

and ecologists have long applied models to better under-

stand such paths.

To date, most movement models, especially those RW-

based inferential models reviewed here, have modeled the

state of the animal, each of which has particular parameter

distributions (Blackwell 1997; Morales et al. 2004; Jonsen

et al. 2005). In cases where the state is a function of the

environment (Morales et al. 2004; Forester et al. 2007), the

environment has been fixed and typically the movement data

are taken as known. There has been little attempt to model

the state of the map in large part because of algorithmic

challenges. In WinBUGS (Lunn et al. 2000) �sampling� the

environment (e.g., extracting spatially and temporally explicit

values from remotely-sensed covariates) in cases where true

movement observations are unknown, and ⁄ or where the

environment is dynamic (e.g., marine settings) is not

possible. Because of the importance of incorporating biotic

and abiotic forces into the process component of the model,

the model described here addresses both the state of the

moving individual and its response to the state of the map

over which it moves (Fig. 2, 3).
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Like random walk-based movement models, resource

selection functions (RSF) (Manly & McDonald 2002) have

been important in animal ecology. They are useful for

wildlife managers as large-scale predictive tools because they

answer the questions most managers want to know –

namely how likely are we to observe an animal in any given

cell in a landscape? Accordingly, they have earned a well-

deserved place in animal ecology and conservation biology

(Johnson et al. 2004). RSFs are a way to relate observed

habitat selection of individuals to a broader understanding

of habitat suitability across larger spatial and temporal scales

(Manly & McDonald 2002). Many RSF papers use telemetry

data as the input, where visitation is a function of resources.

These visitations, or locations, are typically not treated as

autocorrelated moves. Loarie et al. developed and imple-

mented a temporally explicit RSF for moving pronghorn

(Antilocapra americana) (Fig. 2) (Loarie, S.R., M.J. Suitor, R.S.

Schick, C.J. Loucks, P. Jones, C. Gates, and J.S. Clark,

Natural and artificial barriers to pronghorn movement

choices in the Northern Great Plains, [manuscript a, in prep]).

In this case, the RSF is embedded within the process

equation.

We can further develop this temporally explicit RSF

model by considering multi-state movement paths, i.e., a

resident state with no directional movement; and a state

depicted by movement towards another location (Fig. 1). In

either state, movements are predicated in space and time in

response to habitat suitability, where the response has some

functional form based on environmental covariates. In the

moving state, moves are predicated on the location of the

destination, i.e., taxis, and on environmental covariates

along the path. In this model moves are conditioned upon

two hidden processes: behavior and organism-environment

interaction (Fig. 3).

Formally, the event that an individual i in state m at time

t–1 moves from location j to k at time t is given by:

zijk;t;m ¼ Iðsi;t�1;m ¼ j; si;t;m ¼ kÞ ð1Þ

Here t refers to discrete time intervals; see Johnson et al.

(2008) for a continuous time formulation of state-space

movement model. The indicator function I() is 1 when its

argument is true, and 0 otherwise. Thus, si,t,m = k is the time

specific location k of individual i on the map. It follows that

the observed move zijk,t,m by the individual is from location

si,t-1,m = j to si,t,m = k; s is simply a two dimensional vector

of cartesian coordinates. This movement event has prob-

ability distribution:

Pr½zijk;t;m� ¼ Multinomðzijk;t;mj1; hijk;t�1;mÞ ð2Þ

This says the observed move results when the animal

chooses one location with probability h from a set of

available locations. This set depends on the state-specific

suitability of habitat cells. This probability h describes

suitability h of location k, which varies in time, i.e. the

choice set,

hijk;t�1;m ¼
hjk;t�1;m

PN

k¼1

hjk;t�1;m

: ð3Þ

The relative suitability of location k given that individual i is

in j is a function of covariates, e.g., logit(hjk,t-1,m) = Xjk,t-1Bm.

Here Xjk,t-1 describes the landscape covariates of choice k at

time t–1 for an individual located at j, and Bm contains the

state-specific movement parameters for individual covari-

ates, i.e.,

Xjk;t�1Bm ¼ x
1jk;t�1

b1;m þ x2jk;t�1b2;m þ x3jk;t�1b3;m þ . . . :

ð4Þ
Let Lt be the x,y location of the destination patch

centroid, and Bm is a vector of parameters, b1,m , b2,m , etc.,

indexed for each movement state (m = 0,m = 1). Here we

include directionality to a new location Lt as a covariate

(Fig. 4). Imagine that in the �resident� state, the movement

depends on the density of conspecifics, elevation and

distance to a road (Fig. 4). Hence, directionality to Lt is

weak. Now consider the state switch that changes the

importance of the covariates. Distance and direction to the

Figure 2 A movement path for a migrating pronghorn in Alberta,

Canada. The path begins at t = 1 and ends at t = 186. Each

location is 4 h apart. The red areas are estimates of three missing

locations. The arrow from t = 100 to t = 101 illustrates a single

choice. The choice set for this choice includes the 445 pixels

centered on the animal�s location at time t = 100. The background

shows greenness and a river. (Figure from Loarie et al., manuscript

a, in prep.).
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new location Lt may become more important. That is,

when m = 0 the covariates are related to local habitat

suitability, e.g., b1,m = 0 relates to conspecific density,

b2,m = 0 relates to elevation, etc. (Fig. 4). Following the

state switch, (m = 1), the habitat suitability is governed by

a new set of parameters. Advection towards Lt becomes

important and the animal balances taxis with local choices

while moving.

This suite of behaviors covers the classic example of area-

restricted search in a favorable location (m = 0), followed by

taxis towards the next destination (m = 1). More impor-

tantly we now have a direct way to gain inference on these

behaviorally and map-dictated processes and the parameters

that govern them.

The full model summary is as follows:

pðBm;mjzÞ /
Yn

i¼1

YT

t¼1

Multinomðzijk;t;mj1; hijk;t�1;mÞ

�NtðBmj0; r2Þ;
ð5Þ

where z are the observed data, and m is the vector of behav-

ioral states. For the priors we use non-informative truncated

multivariate normals for Bm centered on zero with large var-

iance, r2. Loarie et al. (see Loarie, S.R., R.S. Schick, M.J. Suitor,

C.J. Loucks and J.S. Clark, Environmental constraints on

pronghorn migratory behavior in the Northern Great Plains,

[manuscript b, in prep]) applied this model to explore how

habitat suitability and movement choices differ between the

‘‘resident’’ and ‘‘migrating’’ phase in pronghorn antelope. The

model combines environmental covariates greenness, snow,

Observed 
movement path 

Observed environmental 
covariates 

Observed patch 
centroids (Lt)

Data 

Behavioural 
state 

  True movement 
path 

Habitat 
suitability 

Perceptual 
range 

Process 

Population effects 

Hyperparameters 

Perceptual range: 
Distance kernel 

Individual effects 
Behavioural state: 

Phenology, 
Distance to patch 

Parameters: 
Observation error  

Parameters 

  Habitat suitability: 
Ind./env Interaction 

Figure 3 Following Clark (2005) we diagram the conceptual model in four stages: a data stage, a process stage, a parameter stage, and a

hyperparameter stage. Conceptually we propose making inference on the true (hidden) movement process based on (hidden) habitat

suitability, (hidden) behavioral state, and perceptual range. The data stage consists of the observed path, a set of spatially and temporally

explicit covariates, and inferred patch centroids (the location Lt). Though Lt is taken as known, it could be estimated. The process stage for

the model consists of a true movement path that is based on an estimated behavioral state, a relationship to the dynamic covariates, and an

estimated perceptual range. Finally we have parameters for the data, the process, and a hyperparameter stage that accounts for population

level effects.
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roads, and rivers with direction and distance of movement.

During the migratory phase, results described not only the

rapid northerly movement, but also the increased tendency to

move into snow covered areas and to cross roads than when in

the resident phase. By incorporating dynamic spatial covari-

ates (e.g., greeness, snow cover) Loarie et al. (manuscript b, in

prep) quantified a balance of processes affecting local

movement in combination with migratory dynamics at coarse

scales. For the full development, implementation, and appli-

cation of this model to data, we refer the reader to Loarie et al.

(manuscript b, in prep).

Several key differences emerge in a comparison to a RW-

based process model. Here we explicitly model how the

state, location, and suitability for the individual and the

landscape govern choices the animal makes about moving

from place to place (Fig. 4). That is to say, instead of a

multiple CRW model, which yield posterior estimates of

random movement in different landscape types, here we

model how those landscape types actually influence the

movements (see the boxes for the b’s in Fig. 4). In

comparison to a biased CRW (Marsh & Jones 1988), which

accounts for directed random movement to a location, the

model presented here accounts for the timing of that

influence (i.e., the states), as well as choices along the path

towards Lt (Fig. 4). Of course uncertainty arises in many

places in movement modeling, including the uncertainty in

suitability h. There exists a range of how well we know any

individual covariate. Certain habitat classification maps

derived from a remotely sensed product can propagate

errors in spatial location, reflectance, and the classification

itself. In some cases these errors can be larger than the

errors in animal location. Accounting for this error could be

important, and while it increases the dimensionality of the

model, it can readily be accomplished in the model

proposed above.

One of the primary algorithmic difficulties faced by a

practicing movement ecologist is the interface between the

map and the animal. At each time step the animal samples and

Figure 4 Here we repeat the movement path from Fig. 1 in an effort to highlight the potential results from the conceptual model. Movement

behaviors depicted include: area-restricted search, taxis towards a new location Lt, and area-restricted search at the new location. Consider the

following organism-environment interaction scenario addressed by the model. An animal moves from location sj,t-1 to sk,t; here sk corresponds

to a two dimensional vector of cartesian location coordinates of location k. For visual clarity, we drop the index for individual and state.

These moves are made according to some normalized habitat suitability hjk,t-1, which describes the suitability of the landscape at position k

given that the animal is currently at j. This suitability is comprised of a state-specific vector of covariates Xjk,t-1,m. hjk,t-1 can be based on any

number of covariates; here we depict (1) location of conspecifics x1, (2) elevation x2, and (3) distance to a road x3. Once the animal has

switched movement states, moves are still evaluated based on covariates, but now we explicitly model taxis as a function of direction to Lt

(here taken as known-though it could be estimated). Lastly, the cartoon documents what state-specific posterior estimate of the b�s could look

like (two boxes at right). For example, in the each movement state the animal evaluates suitability that includes elevation. In the resident state

values across a wider range are plausible, while in a moving state, the values are much more constrained.
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monitors its environment and its behavioral state and then

makes movement decisions (Gautestad & Mysterud 2005). In

a Gibbs sampling framework the proposed location must

sample the �map� and this sampling is not straightforward with

the widely used program WinBUGS (Lunn et al. 2000). We

note this because as WinBUGS code for movement models is

increasingly published with the papers (Morales et al. 2004;

Jonsen et al. 2005), it can be relatively easy to apply these

models to movement data. When faced with a dynamic map,

missing data and observation error we can use R, Matlab, or

other computing languages.

Many models (analytical, phenomenological, or statistical)

include efforts to account for difficult components of an

average movement ecology problem. The model presented

here is incrementally more sophisticated. We do believe that

it builds on the strengths of previous models, while offering

an important new component: the response of a moving

individual to a dynamic environment. In addition to

sampling the map, the process component differs from

inferential models that are based on random walks (e.g.,

Blackwell 1997; Jonsen et al. 2005; Morales et al. 2004;

Ovaskainen 2004), including instead a multinomial choice

model. We are interested in how the animal is choosing to

move as a function of the environment and behavioral state.

Rather than basing state-specific moves on random walks

[including correlated random walks, biased correlated

random walks (Marsh & Jones 1988), or multiple random

walks (Morales et al. 2004)], in this model the animal is

actively monitoring the state of the map in addition to its

own internal state and making state-specific choices. One

way to think of this is as a resource selection function

embedded within a movement model. Whereas Moorcroft

& Barnett (2008), used RSF�s embedded within a mecha-

nistic home range model, here we have one embedded

within a movement path. In addition to the model

presented here, others have taken a similar approach. Christ

et al. (2008) have developed a similar RSF-type approach

using a likelihood that is based on a bivariate normal, as

opposed to the multinomial approach used here. Their

model also includes a home range component. From an

inferential standpoint, when fit to telemetry data the model

developed by Christ et al. (2008) outputs a utilization

distribution from posterior estimates of site fidelity and

habitat selection. With such an RSF-type framework, we can

easily propose multiple behaviorally explicit movement

process models complete with switching models, and let

the data be the arbiter of the models. In addition we can

begin to ask behavioral and landscape specific questions

about the organism-environment interaction. For example,

the extension to multiple states, each with a behavioral

and ⁄ or (dynamic) landscape-mediated switch probability is

straightforward. We feel that this framework addresses

many of the key themes for ecological inference in

movement systems, while remaining flexible enough to be

tailored to multiple tagging technologies in both marine and

terrestrial systems.

C O N C L U S I O N S

We have argued that further progress in movement ecology

can focus effort on the movement process itself. Without

separating the data from process, inference is difficult. In

addition, we have argued for the need to understand both the

state of the organism as well as the state of the environment

through which it moves. Clearly it is important to account for

complexity in the data and the process, especially where this

process is in response to the environment. HB offers a

structure that accounts for this complexity by factoring

multidimensional problems into simpler conditionally

dependent ones. We have stressed a need to formulate

biologically-based process models that a) account for multiple

behavior types, b) incorporate what we know about how the

environment drives movement processes, and c) account for

the often messy data we collect on movement. While we have

stressed the need for more biology in the movement process,

we also recognize the importance of a data stage, i.e., a way to

handle observation error. Though tagging technology con-

tinues to improve, certain tag types (e.g., archival tags) have

large observation error that must be accounted for explicitly.

By also accounting for the �map,� we better understand how

the landscape (or seascape) affects individuals.

We believe that implementing the conceptual framework

outlined here will lead to greater ecological insight about

why animals move. Learning more about how multi-scaled

interactions with the environment influence movement will

enhance our understanding of the effects of habitat

fragmentation and loss on population size and structure.

With a better understanding of the movement mechanisms,

we can take advantage of the huge tagging datasets now

available to gain much needed insight into the ecology and

conservation of mobile species.
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Hays, G.C., Åkesson, S., Godley, B.J., Luschi, P. & Santidrian, P.

(2001). The implications of location accuracy for the interpre-

tation of satellite-tracking data. Anim. Behav., 61, 1035–1040.

Hinrichsen, D. & Pritchard, A. (2005). Mathematical Systems Theory I:

Modelling, State Space Analysis, Stability and Robustness. Springer, Heidel-

berg.

Johnson, A.R., Milne, B.T. & Wiens, J.A. (1992). Diffusion in

fractal landscapes: simulations and experimental studies of

Tenebrionid beetle movements. Ecology, 73, 1968–1983.

Johnson, C.J., Parker, K.L., Heard, D.C. & Gillingham, M.P.

(2002a). A multiscale behavioral approach to understanding the

movements of woodland caribou. Ecol. Appl., 12, 1840–1860.

Johnson, C.J., Parker, K.L., Heard, D.C. & Gillingham, M.P.

(2002b). Movement parameters of ungulates and scale-specific

responses to the environment. J. Anim. Ecol., 71, 225–235.

Johnson, C.J., Seip, D.R. & Boyce, M.S. (2004). A quantitative

approach to conservation planning: using resource selection

functions to map the distribution of mountain caribou at mul-

tiple spatial scales. J. Appl. Ecol., 41, 238–251.

Johnson, C.J., Parker, K.L., Heard, D.C. & Gillingham, M.P.

(2006). Unrealistic animal movement rates as behavioural bouts:

a reply. J. Anim. Ecol., 75, 303–308.

Johnson, D.S., London, J.M., Lea, M.-A. & Durban, J. (2008).

Continuous-time correlated random walk model for animal

telemetry data. Ecology, 89, 1208–1215.

Jonsen, I., Myers, R.&Flemming, J.M. (2003). Meta-analysis ofanimal

movement using state-space models. Ecology, 84, 3055–3063.

Jonsen, I., Flemming, J.M. & Myers, R. (2005). Robust state-space

modeling of animal movement data. Ecology, 86, 2874–2880.

Jonsen, I., Myers, R. & James, M. (2006). Robust hierarchical state-

space models reveal diel variation in travel rates of migrating

leatherback turtles. J. Anim. Ecol., 75, 1046–1057.

Jonsen, I., Myers, R. & James, M. (2007). Identifying leatherback

turtle foraging behaviour from satellite telemetry using a

switching state-space model. Mar. Ecol. Prog. Ser., 337, 255–264.

Kalman, R. (1960). A new approach to linear filtering and pre-

diction problems. J. Basic Eng-T ASME, 82, 35–45.

Kareiva, P. (1990). Population dynamics in spatially complex envi-

ronments: theory and data. Philos. T. Roy. Soc. B, 330, 175–190.

Kareiva, P.M. & Shigesada, N. (1983). Analyzing insect movement

as a correlated random walk. Oecologia, 56, 234–238.

Kareiva, P. & Wennergren, U. (1995). Connecting landscape patterns

to ecosystem and population processes. Nature, 373, 299–302.

Kot, M., Lewis, M. & van den Driessche, P. (1996). Dispersal data

and the spread of invading organisms. Ecology, 77, 2027–2042.

Levin, S.A. (1992). The problem of pattern and scale in ecology.

Ecology, 73, 1943–1967.

Review and Synthesis Understanding movement data and processes 1349

� 2008 Blackwell Publishing Ltd/CNRS



Lima, S.L. & Zollner, P.A. (1996). Towards a behavioral ecology of

ecological landscapes. Trends Ecol. Evol., 11, 131–135.

Lunn, D., Thomas, A., Best, N. & Spiegelhalter, D. (2000). Win-

BUGS-A Bayesian modelling framework: concepts, structure,

and extensibility. Stat. Comput., 10, 325–337.

Manly, B. & McDonald, T. (2002). Resource Selection by Animals:

Statistical Design and Analysis for Field Studies. Springer, Dordrecht.

Marsh, L. & Jones, R. (1988). The form and consequences of

random walk movement models. J. Theor. Biol., 133, 113–131.

Milne, B. (1991). Lessons from applying fractal models to land-

scape patterns. In: Quantitative Methods in Landscape Ecology (eds

Turner, M. & Gardner, R.). Springer, New York, pp. 199–235.

Moorcroft, P. & Barnett, A. (2008). Mechanistic home range

models and resource selection analysis: a reconciliation and

unification. Ecology, 89, 1112–1119.

Moorcroft, P., Lewis, M. & Crabtree, R. (1999). Home range

analysis using a mechanistic home range model. Ecology, 80,

1656–1665.

Moorcroft, P., Lewis, M. & Crabtree, R. (2006). Mechanistic home

range models capture spatial patterns and dynamics of coyote

territories in Yellowstone. P Roy. Soc. Lond. B Bio., 273, 1651–1659.

Morales, J. (2002). Behavior at habitat boundaries can produce

leptokurtic movement distributions. Am. Nat., 160, 531–538.

Morales, J. & Ellner, S. (2002). Scaling up animal movements in

heterogeneous landscapes: the importance of behavior. Ecology,

83, 2240–2247.

Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E. & Fryxell,

J.M. (2004). Extracting more out of relocation data: building

movement models as mixtures of random walks. Ecology, 85,

2436–2445.

Morales, J., Fortin, D., Frair, J. & Merrill, E. (2005). Adaptive

models for large herbivore movements in heterogeneous land-

scapes. Landscape Ecol., 20, 301–316.

Mueller, T. & Fagan, W.F. (2008). Search and navigation in

dynamic environments – from individual behaviors to popula-

tion distributions. Oikos, 117, 654–664.

Nams, V. (2005). Using animal movement paths to measure

response to spatial scale. Oecologia, 143, 179–188.

Nams, V. (2006). Improving accuracy and precision in estimating

fractal dimension of animal movement paths. Acta Biotheor., 54,

1–11.

Newman, K. (1998). State-space modeling of animal movement and

mortality with application to salmon. Biometrics, 54, 1290–1314.

Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical

models. Springer-Verlag, Berlin.

Okubo, A. & Levin, S. (1989). A theoretical framework for data

analysis of wind dispersal of seeds and pollen. Ecology, 70, 329–338.

Okubo, A. & Levin, S. eds. (2002). Diffusion and Ecological Problems,

2nd edn. Springer, New York.

Ovaskainen, O. (2004). Habitat-specific movement parameters

estimated using mark-recapture data and a diffusion model.

Ecology, 85, 242–257.

Ovaskainen, O., Rekola, H., Meyke, E. & Arjas, E. (2008). Bayesian

methods for analyzing movements in heterogeneous landscapes

from mark-recapture data. Ecology, 89, 542–554.

Patterson, T., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthi-

opoulos, J. (2008). State-space models of individual animal

movement. Trends Ecol. Evol., 23, 87–94.

Royer, F., Fromentin, J.M. & Gaspar, P. (2005). A state-space

model to derive bluefin tuna movement and habitat from

archival tags. Oikos, 109, 473–484.

Shlesinger, M., Zaslavsky, G. & Klafter, J. (1993). Strange kinetics.

Nature, 31, 37.

Sibert, J. & Fournier, D. (2001). Possible models for combining

tracking data with conventional tagging data. In: Electronic Tagging

and Tracking in Marine Fisheries (eds Sibert, J. & Nielsen, J.).

Kluwer Academic Publishers, The Netherlands, pp. 443–456.

Sibly, R., Nott, H. & Fletcher, D. (1990). Splitting behaviour into

bouts. Anim. Behav., 39, 63–69.

Sims, D., Southall, E., Humphries, N., Hays, G., Bradshaw, C.,

Pitchford, J. et al. (2008). Scaling laws of marine predator search

behaviour. Nature, 451, 1098–1102.

Skellam, J.G. (1951). Random dispersal in theoretical populations.

Biometrika, 38, 196–218.

Tremblay, Y., Roberts, A. & Costa, D. (2007). Fractal landscape

method: an alternative approach to measuring area-restricted

searching behavior. J. Exp. Biol., 210, 935.

Turchin, P. (1991). Translating foraging movements in heteroge-

neous environments into the spatial distribution of foragers.

Ecology, 72, 1253–1266.

Turchin, P. (1996). Fractal analyses of animal movement: a critique.

Ecology, 77, 2086–2090.

Turchin, P. (1998). Quantitative Analysis of Movement: Measuring and

Modeling Population Redistribution in Animals and Plants. Sinauer

Associates, Sunderland.

Viswanathan, G., Afanasyev, V., Buldyrev, S., Murphy, E., Prince,

P. & Stanley, H. (1996). Levy flight search patterns of wandering

albatrosses. Nature, 381, 413–415.

Viswanathan, G., Buldyrev, S., Havlin, S., da Luz, M., Raposo, E. &

Stanley, H. (1999). Optimizing the success of random searches.

Nature, 401, 911–914.

West, M. & Harrison, J. (1997). Bayesian Forecasting and Dynamic

Models. Springer Verlag, New York, NY.

Wiens, J. & Milne, B. (1989). Scaling of ‘‘landscapes’’ in landscape

ecology, or, landscape ecology from a beetle�s perspective.

Landscape Ecol., 3, 87–96.

Wikle, C.K. (2003). Hierarchical bayesian models for predicting the

spread of ecological processes. Ecology, 84, 1382–1394.

Wikle, C., Berliner, L. & Cressie, N. (1998). Hierarchical Bayesian

space-time models. Environ. Ecol. Stat., 5, 117–154.

With, K. (1994). Using fractal analysis to assess how species per-

ceive landscape structure. Landscape Ecol., 9, 25–36.

Editor, John Fryxell

Manuscript received 8 July 2008

First decision made 8 August 2008

Manuscript accepted 30 August 2008

1350 R. S. Schick et al. Review and Synthesis

� 2008 Blackwell Publishing Ltd/CNRS


