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1 Introduction

Glacial lakes occur in many mountainous areas of the world, such as the European Alps
or the Cordillera Blanca mountain range in north-central Peru. Here we consider those
glacial lakes that were formed during the period of glacier retreat that followed the end of
the Little Ice Age (figure 1). Such lakes are typically up to a kilometre long, hundreds of
metres wide and up to a hundred metres deep and are often dammed on at least one side
by moraine (sediment deposited by a glacier).

Figure 1: Schematic diagram of a glacial lake, taken from Clague and Evans [2]. The
upper (grey) glacier surface is that of a long, thick glacier that would have advanced during
the Little Ice Age. When this period of cool climate ended, glaciers retreated rapidly and
substantially; such a thin, retreating glacier is labelled ‘modern day glacier’. It is during a
period of glacier retreat that a glacial lake is typically formed. The moraine dam is shown
at the right of the picture. If the toe of the retreating glacier (which is often unstable and
heavily crevassed) suddenly deposits a large amount of ice into the lake, a displacement
wave which can overtop the dam is initiated.

Moraine dams fail in two main ways. As glacial lakes are often located in steep alpine
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valleys (where avalanches and rockfalls are common), or beneath the unstable toe of a
retreating glacier, there is the possibility that a large amount of ice or rock may suddenly
fall into the lake. This initiates a displacement wave: one such rock avalanche in Peru
deposited O(106) m3 of rock in glacial lake Safuna Alta, and initiated a displacement wave
estimated to be over 100 m high [8]; more generally, it is estimated that avalanches typically
create displacement waves up to 10 m high [4]. Such a displacement wave can overtop the
moraine dam and erode its downstream face.

In general, however, we have seen experimentally that one such overtopping wave does
not cause the dam to fail. Instead, we observed that some of the initial wave is reflected
back into the lake, leading to the formation of a seiche wave (a standing wave in an enclosed,
or partially enclosed, body of water). Such waves are often observed to occur naturally in
harbours due to tidal influence, for example [13].

The subsequent reflected waves can also overtop the dam, and it is these repeated
overtopping events and associated erosion of the dam that lead to the incision of a channel
on the downstream face of the dam. If such a channel is eroded to a sufficient depth quickly
enough, it becomes a conduit through which the lake can drain; it is this mechanism of lake
drainage that we term ‘catastrophic erosional incision’.

Evidence for more than one overtopping event has been seen in several such drainage
floods [9], and the possibility of a ‘series’ of waves was identified by Costa and Schuster
[4]. The only mention in the literature of a seiche wave in connection with dam failure is
found in Hubbard et al. [8], where examination of a moraine dam after a rockfall-initiated
displacement wave indicated at least ten reflected waves. We show here how the reflected
waves play a crucial role in the failure of the dam.

The other mechanism by which a moraine dam can break is that of gradual overtopping,
whereby the lake water level slowly increases until the water overtops and then breaches
the dam. Such a water level rise can be caused by excessive snowmelt or rainfall: the
moraine which dammed Lake Tempanos in Argentina failed in the 1940s due to meltwater
accompanying a 350 m glacier retreat [16].

Drainage of a glacial lake can release O(106) m3 of water and have a peak discharge of
103–104 m3 s−1 [2]. As the subsequent floodwater moves down valley, it entrains sediment
and can form a debris flow. One such debris flow, initiated by a glacial lake flood in Peru
in 1941, devastated the city of Huaraz, killing over 6000 people [5]. While the majority of
such floods occur in remote, uninhabited valleys, these locations are now often considered
for recreation, tourism and as sites for hydro-electric power stations, for example. Thus
understanding the hazards associated with such a flood is of prime importance.

In this project, there are two main issues we will address. Firstly, we shall consider
the threshold behaviour of the phenomenon - why didn’t the moraine dam break in the
case of Laguna Safuna Alta, despite an initial wave 100 m high and at least ten subsequent
seiche waves? We also consider how to estimate the peak discharge from such a catastrophic
drainage event, as this can be used as a measure of how destructive the resulting flood will
be.
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2 Experiments

We performed a series of experiments over the summer, both as a qualitative exploration
of the phenomenon and to quantify some of the theoretical results outlined in Section 3
below. In all cases we used the experimental setup shown in figure 2: a rectangular glass
tank with length 125 cm, width 20 cm and depth 30 cm. This was open at one end (the
right hand end in figure 2), so that sediment and water could drain from the tank. At the
open end, we built a sediment dam. This dam was approximately 10 cm high and 40 cm
wide at the base and was made using a mould to endeavour to keep the dams uniform in
shape. The tank was then filled with water, and the experiment was left until water had
seeped through the entire dam. A single wave was then initiated at the left hand end of the
tank; this was to simulate the displacement wave initiated by a rockfall or avalanche.

Figure 2: Experimental setup.

Sediment properties

We used four different sediments in the dambreak experiments. These were grit and three
types of sand with different particle size distributions. The properties of these sediments
(when dry) are summarised in Table 1.

Glacial moraine is characterized by a wide range of particle sizes, from fine clays to large
boulders. This sediment is poorly sorted and loosely consolidated; lake drainage typically
occurs by seepage through the dam. Clarke [3] shows an example of moraine from Trapridge
glacier with a bimodal particle size distribution; this is a feature of many moraines. In order
to reproduce such a bimodal particle size distribution, we therefore made two mixtures of
sand and grit. The properties of these mixtures (when dry) are summarised in Table 2.

The sediments and their properties will also be discussed in Section 3 below, where we
consider the erosion of the dam.
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Sediment ρ (103 kg m−3) Porosity Repose Modal particle size (µm)

Caribbean Sand N/A N/A N/A 250
Florida Sand 2.34 0.38 39◦/34◦ 310
Beach Sand 2.34 0.35 40◦/33.5◦ 950

Grit 2.42 0.42 37◦/28◦ 1150

Table 1: Properties of individual sediments when dry. Sediment density was calculated
from the weight of a given sediment volume once the sediment porosity was determined.
Sediment porosity was measured by measuring how much water was absorbed by a given
volume of sediment. The column headed ‘Repose’ shows the angles of repose of the dry
sediment; the first value is the angle of repose associated with tilting a pile of sediment, the
second that associated with creating a conical pile of the sediment. The differing values are
due to the bistability of the system [11]. Modal particle size was estimated from particle
size distributions which were obtained by laser diffraction. Some of the properties of the
Caribbean sand were not determined.

Mixture Composition ρ (103 kg m−3) Porosity Repose

1 Caribbean Sand/Grit 2.38 0.32 38.5◦/33◦

2 Florida Sand/Grit 2.36 0.37 44◦/34◦

Table 2: Properties of sediment mixtures, determined as in Table 1. As the mixtures are
bimodal by design, we have omitted the modal particle size column.

2.1 Results

Here we consider results from qualitative experiments. We first consider the results of
experiments using the individual sediments, some of which are shown in Table 3. We see
that grit alone makes a poor dam - its high porosity means that the lake drains out rapidly,
and thus makes the dam unstable. It is also difficult to incise a channel in the downstream
face because overtopping water simply seeps into the dam rather than eroding it. In contrast,
the sands are, in general, better in terms of ease of channel incision. However, they are also
prone to slumping when wet, indicating that they would make a poor dam; sand dams were
occasionally observed to break before a wave was initiated.

Some of the results for the sediment mixtures are shown in Table 4. Although it is
not clear from this table that dams constructed from the sediment mixtures were easier to
break by catastrophic incision than those made from the individual sediments, they were
qualitatively observed to be better in terms of both initial dam stability and ease of channel
incision. These observations lead to the conclusion that it is perhaps the composition of
moraine that leads such dams to fail via catastrophic erosional incision - the distribution
of particle sizes both increases the dam stability, making the existence of a lake possible,
and allows for easier channel incision. This may explain why the phenomenon is not seen
in other natural dams, such as landslide dams for example.
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Sediment 1 2 3 4

Play Sand 1/9 1/14 2/19 1/12
Beach Sand 2/16 1/19 2/14 2/16

Grit X 1/6 X X

Table 3: Experimental results for the individual sediments. The columns show different
experimental runs. The first number in each column is the number of waves that needed to
be initiated for dambreak. The second number is the total number of waves that overtopped
the dam before incision occurred. The onset of incision is taken to be the point at which
the lake drains independently of the action of the seiche wave. A cross denotes a dam which
did not break.

Mixture 1 2 3 4

1 X 2/28 1/15 1/8
2 1/13 1/5 2/24 1/13

Table 4: Experimental results for the sediment mixtures. The table is laid out as Table 3
above.

3 Theory

In this section, we split the problem in two. Firstly, we model the seiche wave in the
lake using shallow water theory in one dimension. We then use a hydraulic model for the
dambreak itself, before considering a unified theory to explain the interaction between the
seiche wave and the dam.

3.1 Describing the seiche wave

We work in two dimensions, x and z. Water of velocity u = (u(x, z, t), w(x, z, t)) and depth
h(x, t) flows over an erodible bed with elevation ζ(x, t) . We assume that the horizontal
extent of the flow is much greater than its depth; the lake is much longer than it is deep.
In this case, we have that ∂

∂z � ∂
∂x , and thus the continuity equation implies that u � w.

Conservation of vertical momentum then implies that the pressure is hydrostatic to leading
order, and irrotationality that u is independent of z.

We therefore write conservation of mass and horizontal momentum in the following form

ht + (hu)x = 0, (1)

ut + uux = −g(h + ζ)x − D(u, h) + νuxx, (2)

where u is the depth averaged velocity, given by

u =
1

h

∫ h+ζ

ζ
u dz, (3)

and D(u, h) is a drag term which represents frictional effects, with the properties that

166



Figure 3: The co-ordinate system used in the shallow water theory.

∂D
∂u > 0 and ∂D

∂h < 0; drag increases with velocity and decreases with depth. A full derivation
of the shallow water equations may be found in Stoker [18], for example.

In fluvial systems, it is common to use the Chèzy drag law, given by

D(u, h) = cf
u|u|
h

, (4)

where cf is the dimensionless Chèzy drag coefficient. Typically, for a smooth watercourse
such as a glass tank, cf = O(10−3) [1], while for a rough watercourse, such as a rocky alpine
stream, it may be as large as 0.1 [6].

However, this formula is not appropriate to use in the context of our experiments, where
the flow was observed to be laminar. In 1959, Keulegan determined that for a standing wave
in a glass rectangular tank, the drag is primarily accounted for by laminar viscous boundary
layers on the tank walls and base [10]. This theory was later modified to account for the
effects of surface tension and surface contamination [12], but we shall consider these to be
small corrections.

To modify Keulegan’s linear theory for our purposes, we note that shallow water theory
can also be used in the boundary layers near the tank walls. Using the same arguments as
above, we write conservation of momentum as

ut = −1

ρ
px + νuzz, (5)

and then, given that pz ≈ 0, we eliminate the hydrostatic pressure to obtain

uzt = νuzzz. (6)

We then pose a time periodic solution of the form u = f(z)eiωt (and consider only the real
part of this solution) to obtain

f = C + A±e±Kz, (7)

where A± and C are constants of integration, and K =

√

ω

2ν
(1 + i). The boundary condi-

tions are

uz → 0, as z → ∞, (8)

u → u0, as z → ∞, (9)

u = 0, z = 0, (10)
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Figure 4: Comparison of the Chèzy and linear drag laws with experiment, where a seiche
(standing) wave was initiated in a rectangular tank. The values used were cf = 0.001,
ν = 1×10−6. We see that the linear drag theory (solid magenta line) is a much better fit to
the data than the nonlinear Chèzy drag law (dashed line). Stars denote the experimental
data.

where u0 is the flow velocity in the main body of fluid outside the boundary layer. The
solution is therefore

u = u0e
iωt(1 − e−Kz), (11)

and the vertical velocity gradient at the base is given by

uz|z=0
= Ku0. (12)

In the shallow water equations for the main flow, we therefore have

ut + uux = −g(h + ζ)x −
√

νω

2

u

h
+ νuxx, (13)

where the drag term is now D(u, h) =
√

νω
2

u
h . We set α =

√

νω
2

; thus α has units of velocity.
We illustrate the difference between the drag laws by comparing them with the results

from a simple laboratory experiment (figure 4), where a standing wave was initiated in a
closed, rectangular glass tank. Figure 4 shows that that the linear drag is a much better fit
to the data than the Chèzy drag; we therefore use linear drag in the theory that is to follow.
However, we note that in a glacial lake where the Reynolds numbers are much higher, it is
likely that the Chèzy formula will be more appropriate.

We consider a lake with mean depth H(x), on which there is a seiche wave of amplitude
η(x, t), such that the total water depth is given by h(x, t) = H(x) + η(x, t). Equations (1)
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and (2) then become

ηt + [(H + η)u]x = 0, (14)

ut + uux = −g(H + η + ζ)x − α
u

h
+ νuxx. (15)

We now nondimensionalise using the following scales

t ∼ 1

ω
, u ∼ U, η ∼ N, H ∼ H0, h ∼ H0, ζ ∼ H0, x ∼ L, (16)

where ω is the frequency of the seiche wave. Equations (14) and (15) become

ωNηt +
UH0

L
[(H + εη)u]x = 0, (17)

ωUut +
U2

L
uux = −gH0

L
(H + εη + ζ)x − α

U

H0

u

H + εη
+ ν

U

L2
uxx, (18)

where ε = N
H0

� 1. To retain a balance in equation (17), we choose U = εωL, and we
assume that (H + ζ)x = 0, i. e. the undisturbed free surface is flat, to obtain,

ηt + (Hu)x = −ε(ηu)x, (19)

ut + βηx = −εuux − εα̂
u

H + εη
+ εν̂uxx, (20)

where the dimensionless parameters are given by

β =
gH0

ω2L2
, α̂ =

α

ωH0

, ν̂ =
ν

ωL2
, (21)

and we have rescaled the drag and viscosity terms with ε; i. e. we have assumed that they
are small.

We now assume that there are a fast and a slow timescale in the problem, such that
∂
∂t = ∂

∂t̂
+ ε ∂

∂T . On dropping the ˆ, equations (19) and (20) become

ηt + (Hu)x = −ε(ηu)x − εηT , (22)

ut + βηx = −εuux − ε
αu

H + εη
+ ενuxx − εuT . (23)

We now pose expansions in the form u ∼ u0 + εu1 + . . . and η ∼ η0 + εη1 + . . .. To leading
order, equations (22) and (23) are

η0t + (Hu0)x = 0, (24)

u0t + βη0x = 0. (25)

Differentiating equation (24) with respect to time and using equation (25), we obtain the
single equation for the wave height, η:

η0tt = β(Hη0x)x. (26)
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In the simple case of a rectangular tank of constant depth H0 and width L, such that the
scaled boundaries are at x = 0 and x = 1, (where we require the velocity to vanish, so
ηx = 0 if we assume time periodic solutions), there are solutions of the form

η = Aeit cos

(

x√
β

)

, (27)

where we require π =
√

β, i. e. ω = π
√

gH0

L . In dimensional terms, the solution for η is

η = Aeiωt cos
(πx

L

)

. (28)

This first approximation to the behaviour of the seiche wave will be used in Section 3.3
below.

Numerical solutions for a given basal topography

It is possible to solve equation (26) numerically for a given basal topography, if we again
assume time periodic solutions. We replace the right hand boundary, previously a vertical
tank wall, by a non-erodible dam of prescribed shape, so that dimensionlessly H = 0 at
x = 1. As this is an eigenvalue problem, we require three boundary conditions. On the
left boundary, x = 0, we require that u = 0. At x = 1 (where H = 0) we require that the
solution is regular. For the case of a uniformly sloping base, an analytic solution may be
found in terms of Bessel functions, such that η ∼ J0(x

1/2) [19]. This analytic solution is
shown in figure 5. We set y = 1 − x, such that close to x = 1,

η ∼ J0[(1 − y)1/2] ∼ 1 + O(1 − y). (29)

To ensure we obtain a regular solution, we therefore require that η = 1 at x = 1. We note
that near x = 1, H ∼ −(1 − x)H ′

∗, where H ′
∗ = H ′|x=1

. Again setting y = 1 − x, we use
equation (26) to write

−ω2η = βH ′
∗
(

yη′
)′

, (30)

which gives, to leading order,
ω2η = βH ′

∗η
′. (31)

The three boundary conditions are therefore

η = 0 on x = 0, (32)

η = 1 on x = 1, (33)

ω2η = βH ′
∗η

′ on x = 1. (34)

Note that if H ′
∗ = 0, the problem is ill-posed, as boundary conditions (33) and (34) then

imply both η = 0 and η = 1 at x = 1. A numerical solution of equation (26) with boundary
conditions (32) – (34) for a dam of Gaussian shape is shown in figure 6.
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Figure 5: Numerical result for a uniformly sloping bed, with initial water depth given by
H(x) = 1−x. The upper solid line is the water surface, the lower line the basal topography.
The dashed line indicates the initial water level.
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Figure 6: Numerical result for a uniformly sloping bed, with initial water depth given by
H(x) = 1− 1.1 exp

(

−(x − 1.05)2/(2 × 0.12)
)

. The upper solid line is the water surface, the
lower line the basal topography. The dashed line indicates the initial water level.

Higher order terms

We consider solutions of equation (26) of the form

(η0, u0) = (N, iU)A(T )eiωt + c.c., (35)
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thus N,U are real. Equations (24), (25) and (26) then become

ωN = −(HU)x, (36)

U = βNx, (37)

−ω2N = β(HNx)x, (38)

with solutions as above. To the next order in ε, we then have

η1t + (Hu1)x = −(η0u0)x − η0T , (39)

u1t + βη1x = −u0u0x − αu0

H
+ νu0xx − u0T . (40)

We now use equation (35) to write equations (39) and (40) in terms of N and U ;

η1t + (Hu1)x = −iA2NUe2iωt − AT Neiωt + c.c. (41)

u1t + βη1x = A2UUxe2iωt − 2AA∗UUx − αiAUeiωt

H
+ iνAUxxe

iωt − iAT Ueiωt + c.c..(42)

We can find particular solutions to remove any terms on the right hand sides of equations
(41) and (42) which are not multiples of eiωt. The remaining parts which are proportional to
eiωt are potentially secular in time, and must therefore be removed in order to find a uniform
asymptotic approximation over the fast time t. Discarding the non-secular inhomogeneous
terms, and assuming that η1 = η1(x)eiωt and u1 = u1(x)eiωt, the system we therefore look
to solve is

iωη1 + (Hu1)x = −AT Neiωt (43)

iωu1 + βη1x = −αiAUeiωt

H
+ iνAUxxeiωt − iAT Ueiωt. (44)

Equations (43) and (44) may be rewritten as

iωη1 + (Hu1)x = I1, (45)

iωu1 + βη1x = I2, (46)

where

I1 = −AT N, (47)

I2 = −αiAU

H
+ iνAUxx − iAT U. (48)

We combine equations (45) and (46) to obtain

ω2η1 + β (Hη1x) = −iωI1 + (HI2)x, (49)

and then integrate equation (49) with respect to x. After integrating by parts and using
the seiche equations (36) and (37), we obtain

∫

1

0

N [−iωI1 + (HI2)x] dx = 0, (50)
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which can be simplified using equations (47) and (48) to give

−2AT

∫ 1

0

ωN2 dx + αA

∫ 1

0

NUx dx + νA

∫ 1

0

N(HUxx)x dx = 0. (51)

This then gives a solution of the form A = A0e
−γT , where γ is evaluated numerically using

equation (51). The calculation can be repeated for dissipative terms given by Chèzy drag
and viscosity, yielding

AT

∫

1

0

ωN2 dx = −νA

∫

1

0

N(HUxx)x dx +
4A|A|cf

π

∫

1

0

N(U |U |)x dx. (52)

Again, the integrals in equation (52) may be evaluated numerically for any given basal
topography H(x), and this allows the relative importance of the dissipative terms to be
quantified.

3.2 Modelling the dambreak

Erosion

The flux of sediment is governed by a (dimensionless) critical value of the Shields stress,
defined by

τ∗ =
u2
∗

RgD
, (53)

where R = ρs−ρl

ρl
is the specific gravity, D is a typical particle diameter and u∗ is the

threshold velocity, which is particular to the sediment and is determined empirically. The
idea is that the fluid flow needs to exceed the threshold velocity in order to exert enough
shear stress at the base to lift particles into suspension and thereby erode the bed.

We follow Parker [20], [21] and use the following empirical, dimensionless erosion law

E(u) =

{
(

u2

u2
∗

− 1
)1.5

for u > u∗,

0 for u < u∗.
(54)

A law of this type captures the two important features of any erosion law: below a certain
threshold, there is no erosion, and for large values of the Shields stress (or velocity, in this
case), erosion has a power law behaviour. The exponent in equation (54) is again empirically
determined and, while not universally agreed upon, it is common to use the value 1.5 [14].

In fluvial systems, the Exner equation (conservation of sediment) is commonly used to
model the erosion of the dam (which has elevation ζ(x, t)),

(1 − λp)
∂ζ

∂t
+

∂qs

∂x
= 0, (55)

where λp is the sediment porosity and qs is the sediment flux, which is again determined
empirically as a function of the Shields stress.

However, it is also possible to consider the evolution of the dam height to be the net
effect of erosion and deposition,

∂ζ

∂t
= −wE(u) + wsC, (56)
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where the first term on the right hand side of equation (56) represents erosion and the
second represents deposition. w is a sediment-dependent constant with units of velocity, ws

is a particle settling velocity, and C is a depth-averaged volumetric sediment concentration.
Equation (56) must then be supplemented with an equation to describe the evolution of C,
and it is usual to use an advection-diffusion equation, moderated by erosion and deposition,
thus

h(Ct + uCx) = κhCxx + wE(u) − wsC, (57)

where κ is the sediment diffusivity. As a first approximation, we assume there is no depo-
sition; thus we eliminate C and simply use

∂ζ

∂t
= −wE(u). (58)

We calculated w experimentally using equation (58), and performing erosion experiments
where we measured the dam height, ζ (at a fixed point in space as a function of time), and
the flow velocity u. We followed Parker [14] and calculated u∗ using the following empirical
relationship for τ∗

τ∗ = 0.5
[

0.22Re−0.6
p + 0.06 × 10−7.7Re−0.6

p

]

, (59)

where Rep is the particle Reynolds number, defined as

Rep =
(RgD)1/2 D

ν
. (60)

Equation (59) coupled with equation (53) allows estimation of u∗ and thus w. Typical values
for the sediments used experimentally are given in Table 5. It is much more complicated to
estimate sediment parameters for a mixture of sediments, and so this was not attempted.
For calculations involving particle diameter (such as estimation of the particle Reynolds
number), the modal particle size was used.

Sediment Rep τ∗ u∗ (m s−1) w (m s−1)

Play sand 20 0.0198 9 ×10−3 9.6 × 10−9

Beach sand 107 0.0169 1.5 × 10−2 4.7 × 10−8

Grit 147 0.0179 1.7 × 10−2 4.9 × 10−8

Table 5: Empirically and experimentally determined sediment properties.

Hydraulic Control

We now use a hydraulic model coupled with erosion to describe the dambreak. Hydraulic
models are commonly used to describe stratified flows over sills in the ocean, see Pratt [15],
for example. The benefit of using such a model is that at one or more locations in the
system the flow adjusts to a well-defined state; i. e. it is in some sense ‘controlled’ by this
critical point. Here, the location of hydraulic control will be the point at which the dam
height is a maximum.
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Hydraulic control theory also assumes steady flow. From equation (58), we have that
the timescale over which erosion occurs is tE ∼ H

wE0
. Using typical values from Table 5,

u∗ = 1 × 10−2 m s−1 and w = 5 × 10−8 m s−1, and a typical experimental value H = 0.1
m, we estimate that tE ≈ 100 s. This implies that for the dambreak ∂

∂t � 1, and we can
therefore neglect the time derivatives in the shallow water equations (1) and (2). As a first
approximation, we also neglect drag and viscosity (although it is possible to include these
in the description, see Pratt [15], Hogg and Hughes [7]).

We can therefore integrate the equations for conservation of mass and momentum with
respect to x to obtain

q = hu, (61)

1

2
u2 + g(h + ζ) = B, (62)

where q is the constant water flux (with units m2 s−1) and B is the energy, sometimes
referred to as the Bernoulli constant.

We consider the problem of a reservoir of depth H and length L, which must drain over
a dam of maximum height ζm. Here, the subscript m will be used to denote evaluation of
a function at this maximum of ζ; thus um is the flow velocity at the highest point of the
dam. We assume that the dam has finite width, and thus ζ = 0 outside some finite region.
We can therefore use equations (61) and (62) to write

B =
1

2

q2

H2
+ gH ≈ gH, (63)

if we assume that the depth of the reservoir is much greater than the depth of the water
flowing over the dam, i. e. H � h. Using equation (61), we may write the non-integrated
momentum equation in the form

ux =
−gζxu2

u3 − gq
, (64)

and thus for the velocity gradient to be defined at all points in the system, we require that
u3 = gq at the point where ζx = 0; i. e. where ζ = ζm. We therefore obtain

um = (gq)
1

3 , hm =
q

um
=

(

q2

g

)

1

3

. (65)

Note that we can use the expressions in equation (65) to write the Bernoulli constant as

B =
3

2
u2

m + gζm. (66)

Equations (63) and (66) allow us to relate upstream variables to those at the maximum
height of the dam,

gH =
3

2
u2

m + gζm. (67)

To complete the system, we couple equations (61) and (62) with equations describing the
drainage of the lake,

L
dH

dt
= −q, (68)
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and the erosion of the dam,
∂ζ

∂t
= −wE(u). (69)

Nondimensionalisation

We nondimensionalise the system of equations (61), (62), (68) and (69) using the following
scales

u ∼ u0, h ∼ h0, H ∼ H0, ζ ∼ H0, t ∼ t0, q ∼ q0, E ∼ E0. (70)

and thus obtain
(

q0

h0u0

)

q = hu, (71)

1

2

u2
0

gH0

u2 +

(

h0

H0

)

h + ζ = B∗, (72)

(

LH0

q0t0

)

dH

dt
= −q, (73)

(

H0

wt0E0

)

∂ζ

∂t
= −E(u), (74)

where B∗ is the dimensionless Bernoulli constant.
We make the choices q0 = h0u0, and as we are interested in the timescale over which

erosion occurs, we choose t0 = H0

wE0
. Equations (71) – (74) then become

q = hu, (75)

1

2
F 2α2u2 + αh + ζ = B∗, (76)

µ
dH

dt
= −q, (77)

∂ζ

∂t
= −E(u2), (78)

where the dimensionless parameters are the Froude number, F 2 =
u2

0

gH0
, the ratio of the

water height at the dam peak to the reservoir height, α = h0

H0
, and a measure of how

quickly erosion occurs relative to lake drainage, µ = wLE0

q0
. We now make the further

choices h0 = H0 and u0 =
√

gH0, such that α = F 2 = 1.
The dimensionless form of the erosion law (equation (61)) is

E(u) = (u2 − δ3)1.5
+ , (79)

where E0 =

(

u0

u∗

)3

, δ =
u∗
u0

and the subscript + indicates that E = 0 when the quantity in

the brackets is less than zero.
We take typical experimental values: H0 = 0.1 m, w = 5×10−8 m s−1, L = 1 m, u0 = 1

m s−1 and u∗ = 1 × 10−2 m s−1, to obtain

µ = 0.5, δ = 10−2, E0 = 1 × 105. (80)

Again, we estimate t0 = 100 s, which should be both the timescale for erosion and for lake
drainage in our experiments (as µ is O(1)).
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Figure 7: Schematic diagram of the two domains under consideration: a lake of length L
and depth H adjacent to a dam of width σ and height ζ, such that σ � L and, initially,
H ∼ ζm.

3.3 Unified theory: spatially distributed dam

In order to combine the theory of the seiche wave (outlined in Section 3.1) with the hydraulic
model, we consider the following configuration, shown in figure 7: a rectangular lake of
length L and mean level H(t), on which there is a seiche wave of amplitude η(x, t). The
lake is adjacent to a dam of height ζ(x, t) and width σ, where σ � L.

We now revisit the scalings used Sections 3.1 and 3.2. In the lake,

h = H + εη, t ∼ 1

w
∼

√
gH0

L
, x ∼ L, u ∼ ε

√

gH0, (81)

while over the dam,

t ∼ H0

wE0

, x ∼ σ, u ∼
√

gH0. (82)

We impose the condition that the timescale in the lake must be of the same order as that
over the dam. However, we note that velocities in the lake are O(ε) smaller than those over
the dam, which means that the dam ‘sees’ the seiche wave as a gradual change in water
depth, to which it can adjust instantaneously. We also note that x derivatives are much
larger over the dam than in the lake.

We assume that there is a right hand boundary of the lake which lies close to the
edge of the dam, x = xσ−, such that ζ(xσ−, t) = 0. We consider the water height at this
fixed point, given dimensionally by h(xσ−, t) = H(xσ−, t) + η(xσ−, t), and we suppose that
η(xσ−, t) = η(t) satisfies the ordinary differential equation

η̈ + γη̇ + ω2η = 0, (83)

where γ = α
H is the damping coefficient calculated in Section 3.1, and ω(H) is the seiche

frequency. As we assume that the lake is a rectangular basin, we have that ω =
π
√

gH

L
and

thus γ = γ(H).
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Figure 8: Solution of the spatially distributed system in the case of no dambreak, with
initial conditions η0 = 0.03 m, H0 = 0.0825 m, ζ0 = 0.01 m. In the top plot, the upper
(red) line shows the evolution of the maximum height of the dam, ζm, while the lower
(blue) line shows the lake depth, H. We see that in this case there is no dambreak, as the
lake level never exceeds the maximum height of the dam. The top plot shows that after
approximately 42 s, erosion switches off while drainage continues; however, the velocities
attained by the fluid are below the threshold and thus erosion cannot occur. The bottom
graph shows the corresponding decay of the seiche amplitude.

We couple equation (83) with equations (62), (68) and (69); these are four equations for
the four variables η, H, ζ and u. Numerical solutions to this system are shown in figures 8
– 10. We see that by changing the initial water depth, H0, (and thus the initial level of the
lake below the dam), we change from a regime where dambreak is possible to one where it
is not. This motivates the following attempt to identify the parameters in the system which
govern this threshold behaviour.
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Figure 9: Snapshots of the solution in the case of dambreak, with initial conditions η0 = 0.03
m, H0 = 0.09 m, ζ0 = 0.01 m. The upper (red) line is the water level, h; the lower (blue)
line the dam surface, ζ. For all graphs, the x axis is position and the y axis height. The
initial dam elevation is a parabola with endpoints at x = 0 and x = 1. The solution is
shown at time intervals of 200 s, and then at the time when the dam has completely eroded
away (2544 s). Note the steepening of the downstream face of the dam as erosion progresses.
This solution has 50 evenly spaced gridpoints.
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Figure 10: Solution in the case of a dambreak, for initial conditions η0 = 0.03 m, H0 = 0.09
m, ζ0 = 0.01 m (corresponding to figure 9). In the top plot, the (red) line, which is the line
that is initially upper, shows the evolution of the maximum height of the dam, ζm, while
the lower (blue) line shows the lake depth H. This plot shows erosion events, followed by
periods of inactivity when the water level drops below the dam, and neither drainage nor
erosion can occur. After seven such events H > ζm, but drainage is still modulated by the
seiche wave. The bottom graph shows the seiche amplitude. We note that as H becomes
small so must ω, and to compensate for this, the amplitude of the seiche wave must increase.
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3.4 Unified theory: point dam

To understand the governing parameters in the problem, we make a further simplification
and assume that the dam can be approximated by a point, at which ζ = ζm. This reduces
the model to the dimensional system

η̈ + γη̇ + ω2η = 0, (84)

L
dH

dt
= −q = −u3

m

g
, (85)

dζm

dt
= −wE(um), (86)

um =

[

2g

3
(H + η − ζm)

]1/2

. (87)

Equation (87) motivates the definition of a new variable, θ = H + η− ζm. Thus when θ > 0
the height of the water in the lake is greater than the height of the dam, so the lake can
drain over the dam. When θ > θ∗ (corresponding to the threshold velocity for erosion, u∗),
erosion can occur. For θ < 0, the water level is below the dam and neither drainage nor
erosion can occur.

Using this definition of θ, we write equation (87) as

um =

(

2g

3
θ

)1/2

, (88)

and combine equations (84) and (85) to obtain a single ordinary differential equation for θ

θ̇ = wẼ(θ) − Dθ3/2 + η̇, (89)

where D = 1

gL

(

2g
3

)3/2

is a drainage parameter (with units of velocity) and Ẽ(θ) =

E

[

(

2g
3

θ
)1/2

]

. If we consider that H is approximately constant, then we can write the

solution for the seiche wave in the form

η = η0e
−γt sinωt. (90)

In this case, θ can be evaluated as a function of time, as shown in figure 11. We see that
there are time intervals over which drainage can occur; i. e. where θ > 0, and marginally
shorter intervals where θ > θ∗ and erosion can occur. Erosion acts to increase these time
intervals (by decreasing ζm and thus θ), while drainage and damping act to reduce these time
intervals (by decreasing H and η respectively). We therefore see that there is a competition
between erosion, which acts to increase θ, and lake drainage and seiche damping, which act
to decrease θ.

This allows us to identify five parameters in the problem: the initial values θ0 and η0, the
drainage parameter D, the erosion parameter w and the parameter governing the damping
of the seiche wave, γ. We see from figure 11 that decreasing θ0 (the initial difference between
the mean lake level and the dam height) and increasing the initial seiche amplitude η0 will
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Figure 11: Schematic diagram of θ = H + η − ζm as a function of time. When θ > 0,
drainage may occur, and when θ > θ∗, erosion switches on. Initially, η = 0 (from equation
(90)), and thus θ0 is simply (H − ζm)|t=0

. At time t ≈ π
ω , θ ≈ H + η0 − ζm.

both act to increase the intervals over which erosion and drainage can occur, and thus
increase the likelihood of a dam break - which is what one might intuitively expect. To
investigate these parameters further, we use a difference method to crudely approximate
the derivatives in equations (84) – (87). More specifically, if

dy

dt
= f(y, t), (91)

we use a difference scheme (essentially the forward Euler method) to write

yn = yn−1 + ∆tf(yn−1, tn−1), (92)

where ∆t is the time interval over which we consider the change in y. In terms of our model,
we let n be the number of erosion ‘events’ i. e. time intervals over which θ > 0. Then we set
∆t = Tn−1, where Tn−1 is the time interval over which the (n − 1)th erosion event occurs.

Using figure 11, it can be estimated that

Tn−1 =
π

ωn−1

− 2

ωn−1

sin−1

(

ζn−1 − Hn−1

ηn−1

)

, (93)

where ωn−1 =
π
√

gHn−1

L . The system is now

ηn = ηn−1e
− 2πγn

ωn , (94)

Hn = Hn−1 − Tn−1

u3
n−1

gL
, (95)

ζn = ζn−1 − wTn−1E(un−1), (96)

un =

[

2g

3
(Hn + ηn − ζn)

]1/2

. (97)

182



Equations (93)–(97) may be solved numerically. Figure 12 shows a comparison between
results from this model and those of the spatially distributed model outlined in Section 3.3
above. We see that there is agreement between the models, indicating that the simple dis-
cretised model may be sufficient to estimate the critical values of the governing parameters.

We have now answered the question posed initially regarding threshold behaviour of
this system - in the context of this simple model, at least. Understanding such behaviour
is useful in terms of hazard mitigation. For example, many moraine dams in the Cordillera
Blanca are drained by artificial channels [8]. Figure 12 allows an estimate to be made of
how low the lake level should be in order that no reasonably sized wave can break the dam.

We also wish to use our model to estimate the peak discharge of a drainage flood. The
hydraulic model gives the ‘weir formula’ for the discharge,

q =

(

2

3

)3/2

g1/2(H − ζm)3/2, (98)

which is simply obtained from equations (61) and (65). We compare this formulation with
the experimentally determined flux. Figure 13 shows time series of water depth in a lake
which drained by catastrophic erosional incision. The smaller tank width of 5 cm was chosen
to prevent channelization occurring; channels formed in the 20 cm wide tank.

We used the data from figure 13 to estimate the maximum value of dH
dt . Using a value

L = 1 m, we were then able to estimate the maximum value of q using equation (77). This
value was then multiplied by the width of the lake. To use the weir formula, we estimated
the maximum value of H − ζm during the experiment. We then multiplied this value by the
width of the channel (5 cm in both cases, as the channel which formed in the 20 cm wide
tank also had approximately this width).

Thus we obtain, for the narrow tank,

Qdata = 1 × 10−4 m3s−1, Qweir = 1 × 10−4 m3s−1.

while for the wide tank,

Qdata = 4 × 10−4 m3s−1, Qweir = 1 × 10−3 m3s−1.

We see that the predictions agree in the case of the narrow tank, but there is an overesti-
mation of the peak discharge by the weir formula in the case of the wide tank. This may
be due to our approximation of the channel as a breach of constant width.

We can compare the weir formula with empirically derived estimates of the peak dis-
charge. Clague and Evans [2], for example, give

Q ∼ Q0(λ)
(

gd5
)1/2

, λ =
kV

(gd7)1/2
,

where d is the breach depth, k is the rate (speed) of breach growth and V is the lake
volume. We see that, in the case of a square breach, the weir formula would also have a
d5/2 dependence, indicating that a simple hydraulic model may capture some elements of
the flood well. However, the dynamics of the channel are missing from the model, and will
undoubtedly play an important role.
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Figure 12: Comparison of the discretised point dam model with the spatially distributed
model. We fix all parameters and vary only the initial wave amplitude η0 and the initial
distance between the mean water level in the lake and the dam, (H − ζm) |t=0. Above
the upper (black) line we are in the physically unrealistic regime where η0 is too small to
overtop the dam: in this case, catastrophic incision will never occur. The lower (magenta)
line indicates the results from the difference model: above this line, there is no dam break.
This makes physical sense, as it implies that decreasing η0 makes it more difficult to break
the dam, while increasing the initial lake level makes it easier. On top of this are plotted
results from the spatially distributed model: (red) stars indicate parameter values where
incision occurred; (black) circles where it did not. We see that there is agreement between
the models, although more numerical simulations using the spatially distributed model
should be performed.
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Figure 13: Time series of H(t)+η(t) for experiments performed in a 5 cm wide tank (upper
blue stars) and a 20 cm wide tank (lower magenta stars). The initial fluctuations in the
data are due to the seiche wave.
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4 Conclusions and future work

In this project, we have formulated and solved a one dimensional model to try and under-
stand the breaking of a moraine dam by a mechanism which we term catastrophic erosional
incision. We have seen that, experimentally, dissipation of the seiche is accounted for by
linear drag and that the dambreak can be described using a hydraulic model. On joining
these two simple theories together, we are able to make some rough estimates of the thresh-
old behaviour of the phenomenon. These estimates agree qualitatively with experimental
results.

Experimentally, we have confirmed the applicability of a linear damping law for the
seiche wave. We have seen that the bimodal particle size distribution of moraine may
explain why moraine dams are prone to fail in such a spectacular fashion: the combination
of large boulders and fine sands makes the dam stable, but the loose consolidation means
that it is also easily eroded. We have also compared a theoretical formulation of the peak
discharge with experiment.

However, there is much future work to be done. The first step would be to include
deposition in the model, as this is observed to occur experimentally. For example, as the
dam erodes in the numerical simulation (figure 9), the downstream face of the dam steepens.
However, experimentally the downstream face is much shallower, and the dam never erodes
away completely: a dam of constant, shallow downstream slope (and approximately one
quarter of the original height) remains. This final shape can perhaps be explained by
the effects of deposition. Modelling this would involve either using the Exner formulation
or incorporating the depth-averaged volumetric sediment into the model as described in
Section 3.2.

Improvements could also be made in the description of the interaction between the seiche
wave and the dam. We can use numerical methods, such as those described in Section 3.1,
to allow for a more realistic basal topography. The seiche mode for such a topography, as
shown in figure 6, can be coupled with a ‘runup’ law [19] to describe how far the seiche
wave moves up the dam, and thus allow for a better coupling of the one dimensional seiche
theory with the hydraulic model.

The next important step is to add an extra spatial dimension to the model in order to
study the channelization instability and understand the channel dynamics. Even a basic
understanding of the channel dynamics would allow for a better estimate of the peak dis-
charge to be made. Figure 14 shows an experiment when four channels formed initially on
the downstream face of the dam; two of these channels were incised to a sufficient depth
to drain the lake, and did so simultaneously. It is therefore clear understanding the chan-
nelization process is key to understanding these catastrophic drainage events. Comparison
can be made with the channelization instability of a flowing sheet over an erodible bed
(Smith-Bretherton model, [17]), whereby a thicker layer of water acts to increase erosion,
and thus deepen a channel. It should be noted, however, that in its original form such a
model is mathematically ill-posed.

Finally, there is scope for more experimental exploration of some of the ideas here - a
test of the results in figure 12, for example, where more accurate measurements than those
obtained in our experiments would be required. Experiments could also be useful in helping
to understand the channel dynamics.
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Figure 14: Photograph from laboratory experiments, flow is from top to bottom. Here two
channels (one on the far left, one on the far right) are draining the lake (located at the top
of the picture) simultaneously. Four channels formed initially on the downstream face of
the dam.
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