Terrestrial Organic Carbon Inputs to Marine Sediments
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Significance of Terrestrial Organic Carbon

* Most (ca. 90%) of the OC burial in present-day marine sediments occurs on
continental margins and in deltas.

¢ Because they lie at the land-ocean interface, these depositional environments have
the potential to be strongly influenced by terrestrial organic carbon inputs.

* The flux of POC from land is sufficient to account for all the OC being buried in
marine sediments.

¢ Terrestrial OM is relatively poor in N relative to marine OM, and hence might be
expected to be less susceptible to (re)cycling (reduced respiration) and preferentially
accumulate in marine OC reservoirs.

¢ This doesn't appear to be the case, so what happens to terrestrial OC?

Implications:

¢ Global carbon budgets

* Long-term controls on atmospheric CO, and O,.

« Estimates of export of primary production from surface ocean.

« Inferences of past productivity in the oceans from OC-based sediment records.

« Interpretation of records of terrestrial and marine productivity from marine sediments.




The Global Organic Carbon Cycle (ca. 1950)
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Organic carbon burial in marine sediments
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Important Considerations

Organic compounds synthesized by organisms are subject to biological and
physicochemical processes that alter their chemical composition, and complicate their
recognition and quantification in downstream organic carbon (OC) reservoirs such as
soils and sediments.

This “pre-conditioning” that modifies organic matter prior to burial may influence its
reactivity in the sub-surface (e.g., by physical association or chemical reaction).

The time-scales over which organic matter is processed prior to burial may also vary
substantially, depending on its origin.

As a result, contemporaneously deposited organic material of terrestrial and marine
origin may exhibit a range of ages and reactivities.

In seeking to quantify the proportions of organic matter preserved in the sub-surface
that stem from different sources it is important to find tracer properties that are largely
independent of degradation.

Continental margins contain significant quantities of “pre-aged” organic carbon.




Approaches to quantify OC inputs to marine sediments

Bulk parameters

° Corganic/ Ntotal
« Stable carbon isotopic composition of total organic carbon (8'3Cqc)

Molecular parameters
« Regression of terrestrial biomarker concentrations vs bulk properties (13C, Corg/N)

« Extrapolation to zero marker concentration yields a bulk marine end-member
elemental or isotopic value that can be inserted into isotopic/elemental mass balance.

« Direct use of concentration measurements for biomarkers in “representative” end-
member samples (e.g. plant wax biomarkers in riverine suspended sediments) to
determine extent of dilution by marine OC.

Limitations:
« Typically, only 2 end-members are considered (marine and vascular plant), and
terrestrial end-member biased towards vascular plant inputs.

« Constancy in composition is assumed along transects.

Bulk properties used to quantify terrestrial OC inputs

Corg-/N ratios
e Principle:
— Vascular plant biomass is depleted in nitrogen (mainly comprised of cellulose and lignin),
compared to [protein-rich] marine phytoplankton.
« Limitations:
- Diagenetic influences - proteins are relatively labile, resulting in increased C,,/N ratios with
degradation.
- Impact of microbial processes on C,, /N ratios.

— Inorganic N bound in clays can affect ratio, especially in low TOC sediments.

S3C TOC composition
¢ Principle:
— OC from marine primary production typically enriched in 13C relative to C, vascular plant
carbon.
« Limitations:
— Complications due to mixed inputs of C, and C, higher plant carbon.
— Past and present-day variations in !3C value of marine end-member.
— Potential diagenetic influences due to intermolecular isotopic variations
(e.g. selective preservation of 13C-depleted lipids over 13C-enriched proteins)




Elemental and stable carbon isotopic composition of
size and density fractionated sediments
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%OC vs specific mineral surface area
for river (solid symbols) and delta (open symbols) sediments.
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Biological markers as tracers of terrestrial OC inputs

Compound types

*  Plant waxes (long-chain n-alkanes, n-alcohols, n-alkanoic acids)
* Terpenoids (e.g., abietic acid, retene, taraxerol)

*  Branched and isoprenoid ether lipids

e Lignin phenols

* Cutin

» Tannins, Suberins

Higher plant epicuticular leaf waxes:
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Molecular markers of terrestrial vegetation

Lignin Compositional Parameters

Lignin-derived phenols
« syringyl/guaiacyl ratio (S/V): angiosperm vs. gymnosperm

« cinnamyl/guaiacyl ratio (C/V): leafy vs woody vegetation
« acid/aldehyde ratio (Ad/Al),: extent of lignin degradation

« 313C: Determination of C3 vs C4 vs CAM inputs

Compositional parameters derived from CuO oxidation products
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Stable carbon isotopic analysis of individual lignin-derived phenols
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Example gas chromatogram of waxes
(alkane fraction) from Tobacco leaves

INTENSITY
S

53 55 57 59 61 63 65

RETENTION TIME (min.)

This figure shows a typical gas chromatography trace of a hydrocarbon (alkane) fraction extracted and
purified from a higher plant leaf sample. Note the predominance of long-chain (>C,,) odd-carbon-
numbered n-alkanes (marked with circles) that is highly characteristic of higher plant leaf waxes. The
chain-length distribution of these compounds is indicative of growth temperature.

Molecular markers of terrestrial vegetation

Plant Wax Compositional Parameters
Plant wax n-alkanes/n-alcohols/n-acids

* Carbon Preference Index (CPI) or Odd-over-Even Predominance (OEP)
CPI = 2X0dd C;;-t0-Css/(Zeven Cy-to-Cay + Zeven C,,-t0-Csg)

« Average chain length (ACL)
ACL = (Z[C|] x )/Z[Cj] where:
i is the range of carbon numbers (typically 23-35 for alkanes)
C; is the relative concentration of the alkane containing i carbon atoms.

* 313C: Determination of C3 vs C4 vs CAM inputs

« dD: aridity/water stress
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The Columbia River/Washington margin system
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Lignin phenol contents and isotopic
compositions of Gulf of Mexico sediments
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A novel proxy for terrestrial organic matter in sediments based on
branched and isoprenoid tetraether lipids

E.C. Hopmans et al. / Earth and Planetary Science Letters 224 (2004) 107116
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e

The Branched and Isoprenoid Tetraether (“BIT”) index:

T+ 11 + IT1]

BIT =
[T+ 11+ 1] + [1V]

* Derived from anaerobic soil bacteria
** Derived from derived from non-thermophillic crenarchaeota
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BIT index in soils and sedlments
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Tracers of terrestrial OC supply to marine sediments
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Evidence for minimal terrestrial OC contributions
to marine sediments

Variations in OC:SA and §3C in estuaries (“loss & replacement
hypothesis”.

Low C,/N values for marine sediments.

Enriched §'3C values of marine sedimentary OC relative to terrestrial (C,
0C).

Rapid decrease in lignin phenols and other molecular proxies of terrestrial
organic matter with increasing distance offshore / from river mouth.

Evidence for significant terrestrial OC contributions to
marine sediments

Unknown contributions from 13C-enriched (C,) terrestrial OC sources.

Importance of hydrodynamic processes in differential export terrestrial organic
components.

Old core-top ages for continental margin sediments (topic of separate lecture).

Global influence of small, mountainous rivers.

Arctic ocean under-sampled, yet surrounded by major drainage basins/soil reservoirs.
Widespread distribution of plant wax lipids in ocean sediments.

Greater importance of terrestrial OC in glacial times (low sea-level stand, direct river
discharge to continental slope)?
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Bulk & molecular isotopic compositions of Gulf of Mexico surface sediments
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Fig. 1. Map of the continental United States with river sample sites (Canfield, 1997), and 8'*C values of suspended POM
from those sites, illustrated. The distribution of C4 grasslands (shaded area) is adapted from Coupland (1979).

18



Isotopic compositions of Bengal fan sediments and the emergence of C4 plants

. * . & g
.
L L ]
T ol % ¢
ST % I
@ 10 L
=3
- 12
L ]
14 . L
% [ ] L
L ]
18 . T
20
27 24 21 <18 -15
5'3C of TOC(%)
Rt R
| e

T+ coPLag 118
we

ourcn

g 1, Mg of ot Dndisn sbcomtinent sharwing ouscrop pusers of
St Grmay and semgle bocuieies e bodh palvonsd s s

e

The Himalayan drainage basin is characterized by a
predominance of physical transport over chemical
weathering, and sequestration of OC exported from this
drainage basin is of such a magnitude that it may
account for up to 15% of the global burial flux (Aucour
et al., 2006).

France-Lanord & Derry (1997) have argued that
Himalayan erosion alone exerts a dominant control on
the global C cycle through terrestrial OC export and
burial.

Recent studies indicate that OC export and burial are
extremely efficient in the Himalayan system compared
to other large drainage basins on earth (Galy et al.,
2007).

A substantial fraction of the terrestrial OC exported and
buried by be C4 derived.

Isotopic compositions of Bengal fan sediments and the
emergence of C4 plants
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Fig. 6. §'°C values reg g the average of odd-carb bered HMW alkanes plotted as a function of sample age

for both the paleosol and sediment samples. Dotted line represent the approximate limits of n-alkane 81C values expecied
for C-3 and C-4 plants (see text and Table 14). Paleosol samples with evidence for significant contribution of n-alkanes from

parent materials are not included.
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Importance of tropical small mountainous river systems in
terrigenous OC export to the oceans

Fig.1 Annual discharge of
total organic carbon of major
world rivers to the oceans
(m;g,anjc carbon fluxes are in
10* gC year™; wet tropics are
underlain in dark grey). Data
are from: Telang et al. (1991;
Mackenzie, Yukon, St.
Lawrence, Mississippi); Depe-
tris and Paolini (1991;
Orinoco, Parana); Richey et
al. (1991; Amazon); Martins
and Probst (1991; Zaire,
Niger); Degens et al. (1991;
Nile); Kempe et al. (1991;
Rhine + Elbe, Seine + Loire
4+ Gironde); Telang et al.
(1991; Ob, Yenisei, Lena);
Gan-Wei-Bin et al. (1983;
Yangtze); Subramanian and
Ittekkot (1991; Ganges +

tra + Indus); Bird
et al. (1995; Oceania)

40-70% of the sediment delivered to the oceans is transported by numerous small rivers (Milliman

and Syvitski, 1992).

These systems transport OC that is distinct in composition from the world’s largest and better

studied rivers (Blair et al., 2004).

Milliman et al

Key characteristics of large and small river systems

Large rivers:

Develop on passive margins with extensive floodplains, estuaries and deltaic systems
that serve as efficient “reactors” for remineralization of terrestrial organic matter.

Well-developed soils for (re-)processing of organic matter.
Soil erosion a major source of terrestrial OC.
Gradual (seasonal) variations in fluvial supply

Small Mountainous rivers:

Develop on active margins with steep relief and often narrow continental shelves and

restricted flood plains.

Highly episodic sediment delivery, little time available for storage/oxidation in
intermediate reservoirs prior to export to the ocean.

Erosion of bedrock as well as poorly developed soils (old carbon supply).
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Importance of tropical mountainous river systems in
terrigenous OC export to the oceans

Sediment Load (10° /yr)

Sediment Yield (10° Vkm®/yr)

a b b
ST E R OE ogs TOfFE R g
Basin Area (10° km?) Basin Area (10’ km®)

Fig. 1. Relationship between anoual sediment load (a) and sediment yield (b) and basin area for various southeast Asian and
Indonesian/Papua New Guinean humid (=500 mm y~' run-off), mountain (>1000 m headwater elevation) rivers. Note that the East
Indies rivers (Fly, Purari, Solo, Citamandy, Cimanuk, Cimuntur, Cilutung, Cijolang, and Agno; solid dots) have loads and yields very
near values predicted based solely on southeast Asian river (open circles) algorithms; see text for further discussion. Data from Milliman
and Syvitski (1992), modified by Milli and F {in prep.).
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Figure 7. Downcore profiles of (a) radiogenic
isotopes and (b) elemental ratios determined by XRF
scanning of the gravity core collected from the Eel
River flood deposit. Grey bars indicate probable
flood layers. Preliminary assignment of the 1955 and
1964 flood layers are shown on the figure (Drenzek.
Eglinton and Giosan, unpublished data).
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Terrigenous OC delivery and deposition on the Eel Margin
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Tropical-cyclone-driven erosion of the
terrestrial biosphere from mountains
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Figura 1 Source and concentration of riverine POC during typhoon floods in
2004, Frequent sampling of suspendad load from the LiWu River, Taiwan, in Julian
day time, with hourty water discharge (d, m* s-") during typhoons Mindulle and
Aere (light grey) and precipitation (ppt, in mm h~" multiplied by a constant factor 10)
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Terrestrial OC inputs to the Arctic Ocean

The Arctic Ocean receives proportionately ten times more freshwater input than any other ocean
basin. They also deliver large amounts of organic carbon.

About half of the global inventory of terrestrial organic carbon is stored in the soils of Arctic
watersheds (Dixon, 1994). Much of this carbon is sequestered in permafrost and is inaccessible.
However, permafrost destabilization will make a larger fraction of terrestrial organic carbon
available in the future.

Organic loadings in Arctic rivers are among the highest in the world. Annually, Arctic rivers export
some 20-30 x 102 g of terrigenous DOC along with 4-6 x 10'2g of particulate organic carbon
(POC) to the shelf.

Arctic rivers discharge > 90% of their freshwater during the spring/summer melt (freshet) between
May and July. Episodic delivery analogous to small mountainous rivers. Low temps and rapid
supply decrease opportunity for degradation of terrestrial OC.

Some arctic rivers drain organic-rich sedimentary rocks (e.g., Mackenzie) — additional source of
refractory OC?

In addition to usual particle dispersal mechanisms, ice-rafting can result in long-distance transport
of terrestrial OC.

Riverine delivery and transport of OC (Mackenzie/Beaufort)

Mackenzie River Discharge

m'/s x 1000
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The Mackenzie/Beaufort System

Fig. |. Location map of the Mackenzie Shelf in the Canadian Beaufort Sea showing the various features discussed in the text.
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Fig. 2. Trends in sedimentary %QC (circles) and TOC/TN (triangles)
with water depth from this study (closed symbols) and Goni et al.
(2000) (open symbols), along with %0C and TOC/TN for Mackenzic
River POC samples from Goni et al. (2000),
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Tracers of terrestrial OC supply to marine sediments
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Fig. 1. Ship track and dust sampling sites of BV Mereor cruise M4171 along the West African margin. Phytogeographical
zonation of Africa is taken from White (1983 Med = Medi ion; MST dil th,
transition; d = desen; sd = semidesen; gs = grass savanna: (s = tree savanna: if = rain forest. Major wind systems are
drawn after Kalu (1979}, Tetzlafl and Wolter (1980}, and Samthein et al. (1981). Note that samples D19 and D20 were taken
at almost the same location
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Carbon isotopic composition of dustfall sample off NW Africa

Concn. 813C AMC 14C age
Fractions (gdw basis) (%o) (%o) (yr BP)
Total Organic Carbon 1.02 % -18.93 -149.6 1260 + 40
Black Carbon 0.24 % -15.13 -231.7 2070 £ 35
Plant wax alcohols 12 ug -27.9 -80.8 649 + 143

Eglinton et al., G3, 2002

Summary

« The annual export of terrestrial OC by rivers to the oceans is more than sufficient to
account for all the OC buried in marine sediments.

¢ The majority of OC burial in marine sediments takes place on the continental
margins, particularly in deltaic systems.

« Together, these two observations imply that terrestrial organic matter may comprise a
major fraction of OC buried in marine sediments.

« Nevertheless, a range of evidence indicates that terrestrial organic carbon is
efficiently remineralized before or upon entering the ocean.

« Current estimates for terrestrial OC burial may be incorrect/too low due to:

Inadequate sampling of small [tropical] mountainous river systems
Inadequate characterization of rivers draining into the Arctic Ocean
Variable inputs of C3 and C4 terrestrial vegetation

Compositional transformations attending dispersal of terrestrial organic matter in
the oceans.

« Variations in terrestrial OC burial over glacial/interglacial cycles?
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