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Predicting the distribution of Sasquatch
in western North America: anything goes
with ecological niche modelling

J. D. Lozier1*, P. Aniello2 and M. J. Hickerson3

Ecological niche models (ENMs) and species distribution

models have become increasingly popular tools for predicting

the geographic ranges of species and have been important for

conservation (Kremen et al., 2007), for predicting changes in

distribution from past or future climatic events (Hijmans &

Graham, 2006), and for investigating patterns of speciation and

niche divergence (Wiens & Graham, 2005; Carstens & Richards,

2007; Warren et al., 2008). The basic premise of the ENM

approach is to predict the occurrence of species on a landscape

from georeferenced site locality data and sets of spatially explicit

environmental data layers that are assumed to correlate with the

species’ range. In many cases, models are based on researchers’

own collection data and on detailed knowledge of the taxa being

studied, making predictions reasonable depictions of species

occurrences given the current modelling technology. However,

the increasing availability of locality data in online litera-

ture, museum databases and online data portals [e.g. GBIF

(http://data.gbif.org/)] is providing unprecedented access to

biodiversity data and allowing researchers to greatly expand the

deployment of species distribution models and/or ENMs. While

the value of publicly available sample locality data is not

questioned, the consequent introduction of errors in the

accuracy of specimen identity and georeferencing could be

problematic for developing ENMs from public data sources

(Graham et al., 2004; Soberón & Peterson, 2004). Although

georeferencing inaccuracies can be identified in databases from

qualitative or quantitative accuracy thresholds (e.g. http://

manisnet.org/GeorefGuide.html), poor taxonomy and/or

misidentification may be less detectable. This issue may be

particularly problematic, for example, with cryptic species or

subspecies that are morphologically similar but may have very

distinct ecological requirements and geographic distributions,

or for those data sources that contain indirect observations

rather than references only to physical specimens.

In our own attempts at implementing ENMs we have

encountered probable misidentifications in biodiversity

records for a number of species, and expect that many

researchers have had similar issues. To demonstrate the potential

for generating dubious yet visually convincing distributions

from publicly available data we use ENMs to predict the range

not of misidentified cryptic species, but of a crypto-zoological

species – the North American Sasquatch, or Bigfoot. Supposedly,
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ABSTRACT

The availability of user-friendly software and publicly available biodiversity

databases has led to a rapid increase in the use of ecological niche modelling to

predict species distributions. A potential source of error in publicly available data

that may affect the accuracy of ecological niche models (ENMs), and one that is

difficult to correct for, is incorrect (or incomplete) taxonomy. Here we remind

researchers of the need for careful evaluation of database records prior to use in

modelling, especially when the presence of cryptic species is suspected or many

records are based on indirect evidence. To draw attention to this potential

problem, we construct ENMs for the North American Sasquatch (i.e. Bigfoot).

Specifically, we use a large database of georeferenced putative sightings and

footprints for Sasquatch in western North America, demonstrating how con-

vincing environmentally predicted distributions of a taxon’s potential range can

be generated from questionable site-occurrence data. We compare the distribu-

tion of Bigfoot with an ENM for the black bear, Ursus americanus, and suggest

that many sightings of this cryptozoid may be cases of mistaken identity.
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Sasquatch belongs to a large primate lineage descended from the

extinct Asian species Gigantopithicus blacki, but see Milinkovich

et al. (2004) and Coltman & Davis (2005) for phylogenetic

analyses indicating possible membership in the ungulate clade.

Sasquatch is regularly reported in forested lands of western

North America, as well as being considered a significant

indigenous American and western North American folk legend

(Meldrum, 2007), however the existence of this creature has

never been verified with a typed specimen.

We present ENMs for Bigfoot in western North America

based on a repository of (1) putative sightings and auditory

detections (n = 551), and (2) footprint measurements

(n = 95) collected from 1944 to 2005 (Fig. 1). This data set

was taken from a collection of reported Bigfoot encounters

archived by the Bigfoot Field Researchers Organization (BFRO;

http://www.bfro.net/news/google_earth.asp). The reports gen-

erally consisted of a description of the event and where it

occurred. The reports used were filtered to eliminate spurious

points by carefully examining event descriptions prior to

incorporation in the present study. The events were assigned

geographic coordinates by matching descriptions of event

locations to actual locations on USGS quad maps and

commercially available atlases.

ENMs were constructed using the maximum entropy niche

modelling approach implemented in the software maxent v3.1

(Phillips et al., 2006), with 80% of the data used in

training and 20% retained as test points. Environmental data

layers were constructed for the 19 BIOCLIM variables (at

5-arcminute resolution) in the WORLDCLIM data set (Hijmans

et al., 2005). To reduce the number of bioclimatic variables in

order to minimize model overfitting, we extracted climate data

for 5000 random points sampled from the geographic extent of

our study and calculated correlations between each variable for

these points. For pairs with a correlation coefficient > |0.80|,

one variable was selected. This resulted in a set of nine

variables: (1) annual mean temperature, (2) mean diurnal

range, (3) isothermality, (4) temperature annual range, (5)

mean temperature of wettest quarter, (6) mean temperature of

driest quarter, (7) precipitation seasonality, (8) precipitation of

warmest quarter, and (9) precipitation of coldest quarter.

maxent appeared to perform well in our analysis, according

to the area under the receiver operating characteristic curve

(AUC) and threshold-based evaluation methods (Phillips

et al., 2006). The ENM had an AUC of 0.983 and strongly

rejected the hypothesis that test points are predicted no better

than by a random prediction for all thresholds implemented in

maxent. No locality points fell outside the predicted distri-

bution, with the exception of a single observation from

Imperial, California. In general, the ENM shows that Bigfoot

should be broadly distributed in western North America, with

a range comprising western North American mountain ranges

such as the Sierra Nevada Mountains, the Cascades, the Blue

Mountains, the southern Selkirk Mountains, and the Coastal

Range of the Pacific Northwest. Based on jackknife analyses for

models including each variable alone, ‘precipitation of the

coldest quarter’ was the bioclimatic variable that contributed

most to the ENM, followed by ‘temperature annual range’,

‘mean temperature of the wettest quarter’, and ‘mean

temperature of the driest quarter’. An ENM produced using

footprint data alone was highly similar to that for all sighting

data (not shown).

It is expected that species distributions are likely to be

altered under global warming, and a number of studies have

used environmental layers derived from climate-change mod-

els to project contemporary distributions into the future using

ENMs (Hijmans & Graham, 2006; Pearson et al., 2006; Loarie

et al., 2008). Despite potential weaknesses in such approaches

(Pearson et al., 2006), we were interested in examining the

potential ramifications of climate change on hypothetical

remnant Sasquatch populations and to predict how the

frequency of sightings might change in the future. We

projected ENMs generated from the WORLDCLIM data onto

bioclimatic layers simulated for a doubling of atmospheric

CO2 (http://www.diva-gis.org/climate.htm). As expected for

montane organisms, the model predicts Bigfoot to abandon

Figure 1 Map of Bigfoot encounters from Washington, Oregon

and California used in the analyses. Points represent visual/audi-

tory detection, and foot symbols represent coordinates where

footprint data were available. Shading indicates topography, with

lighter values representing lower elevations.
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lower altitudes and also to lose habitat in coastal regions

(Fig. 2b, c). However, this loss of habitat should be compen-

sated by a large potential gain in the northern part of the

Sasquatch range and in several other montane areas (e.g.

Arizona, Nevada, Utah), should such areas remain undisturbed

by human activity in the near future (Fig. 2c). Thus, given our

model and available data, we might expect Bigfoot sightings to

increase in frequency in northern latitudes and at higher

elevations over the coming years.

Notably, the predicted distribution of Sasquatch (Fig. 2a)

appears similar to that which might be expected for other large

mammals of western North America, including the American

black bear (Ursus americanus Pallas, 1780), sightings of which

are thought to be sometimes confused as Bigfoot encounters

(Meldrum, 2007). We sampled records of U. americanus from

the same states as considered for Bigfoot (California, Oregon

and Washington) from GBIF. We selected records for which

physical specimens were available, allowing us to reasonably

assume that black bears were not misidentified, and for which

site localities could be georeferenced to a named place at

minimum. Although this level of geographical accuracy may

not be ideal for many ENM applications, it should be sufficient

for our purposes here. We performed maxent runs as

described above (present climate only). The model (Fig. 2d)

performed well according to AUC (both test and training

AUC > 0.98) and all threshold statistics (all P < 10)47).

However, visualizing all black bear records from GBIF reveals

that limiting model training to locations within California,

Oregon and Washington leads to an under-prediction of the

known distribution of U. americanus, particularly in New

Mexico, Colorado, and parts of Canada and Mexico (Fig. 2d).

Although this suggests some methodological limitations for the

distribution models as implemented here, these other locality

points may belong to different subspecies that experience

unique environmental conditions in inland regions relative

to the more coastally distributed specimens used in our

analysis (Larivière, 2001). Our ENM prediction does in fact

appear quite similar to the distributions of the subspecies

U. a. altifrontalis and U. a. californiensis (Larivière, 2001),

supporting this possibility. In any event, for our comparisons

here, any under-prediction should have little consequence

since we expect such limitations to be shared by the Sasquatch

model, given the similar distribution of locality points.

The general similarities between distributions of the two

‘species’ are clear (Fig. 2a, d), despite the much smaller

number of available black bear coordinates. Furthermore, the

exact same bioclimatic variables (see above) contributed most

to the ENM when evaluated using maxent’s variable jack-

knifing procedure. We used the I-statistic (Warren et al., 2008)

to quantify the degree of similarity between the two ENMs

(a) (b)

(d)(c)

Figure 2 Predicted distributions of Bigfoot

constructed from all available encounter

data using maxent (a) for the present

climate and (b) under a possible climate-

change scenario involving a doubling of

atmospheric CO2 levels. Results are presented

for logistic probabilities of occurrence rang-

ing continuously from low (white) to high

(black). Differences between (a) and (b) are

shown in (c), with whiter values reflecting a

decline in logistic probability of occurrence

under climate change, darker values reflecting

a gain, and grey reflecting no change. A

predicted distribution of Ursus americanus in

western North America under a present-day

climate is also shown (d). White points

indicate sampling localities in California,

Oregon and Washington taken from GBIF

(n = 113 for training, 28 for testing; compare

with Fig. 1) used for the maxent model with

shading as in (a) and (b); black points indi-

cate additional known records not included

in the model.

Ecological niche modelling with public data
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using the program ENMTools. The observed value of

I = 0.849 indeed indicates a high degree of overlap, and falls

well within the null distribution generated from maxent runs

for 100 randomizations of Bigfoot and black bear coordinates

(Fig. 3; P < observed = 0.32). Thus, the two ‘species’ do not

demonstrate significant niche differentiation with respect to

the selected bioclimatic variables. Although it is possible that

Sasquatch and U. americanus share such remarkably similar

bioclimatic requirements, we nonetheless suspect that many

Bigfoot sightings are, in fact, of black bears.

CONCLUSIONS

We were stimulated to write this piece as a tongue-in-cheek

response to the increasing prevalence of ENMs in the literature

and in papers presented at professional meetings. As in any

rapidly developing field with the promise of exciting applica-

tions, there is the potential for the empirical acceptance of new

approaches to outpace conceptual understanding. The point of

this paper has been to point out how very sensible-looking,

well-performing (based on AUC and threshold tests) ENMs

can be constructed from questionable observation data. The

fact that a model can be fit to any random assemblage of

locality points is, of course, not surprising, but in cases where

the distribution of these points appears to be organized,

records may be less carefully scrutinized for errors. For

instance, the Sasquatch sightings shown in Fig. 1 occur in areas

where we might expect to observe such an organism based on

preconceived notions, but we may be seriously biasing our

inference of the distribution if many (or all) of the records

represent misidentified black bear sightings. Although beyond

the scope of this piece, it would be interesting for future

theoretical studies to explore the effects of including mis-

identified specimens on ENMs, either using simulations or

empirical data from closely related species.

We stress that our aim here is not to disparage the value

of literature records or public specimen databases, or to

discourage the use of species distribution modelling, but

rather to encourage careful scrutiny of specimen records

prior to their use in ENMs. Wherever feasible we recommend

that researchers should attempt to access specimens with

suspect records in order to check their validity prior to

application in ENMs. In addition, determinations made by

taxonomic experts might be favoured over those by unrec-

ognized individuals, all other information being equal. The

addition of uncertainty codes like those used for georefer-

encing would greatly assist users in filtering databases by

taxonomic accuracy. Finally, as museums begin to develop

databases of collections, all effort should be made to ensure

taxonomic accuracy prior to releasing information to the

public and to update these databases as new research

accumulates for difficult species groups (Graham et al.,

2004; Soberón & Peterson, 2004; Chapman, 2005). Together,

all of these recommendations suggest that as specimen data

increasingly become easily available, the need for well-trained

taxonomists and systematists has never been greater.

Finally, because our aim was to keep this commentary

light-hearted, we have not addressed many other potential

sources of error in ENMs that have been discussed in the

literature. A number of recent papers have dealt with the

issues of environmental variable selection, modelling meth-

ods, model evaluation, projecting models into the past and

future, biotic interactions, and the important consideration

of potential versus realized distributions/niches, and we refer

readers to these excellent resources (e.g. Soberón & Peterson,

2004, 2005; Araújo & Guisan, 2006; Pearson et al., 2006;

Peterson, 2006; Araújo & Luoto, 2007; Guisan et al., 2007;

Jiménez-Valverde et al., 2008; Phillips & Dudı́k, 2008).

Although our possible underestimate of the known black

bear distribution demonstrates that such methodological

limitations may sometimes be problematic when occurrence

data are limited to a subset of a species’ range, we believe

that ENMs will remain important tools for understanding

the spatial distributions of biodiversity. We simply urge

researchers to take care in evaluating the suitability of data

sets prior to their use in such distribution modelling

approaches.
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Figure 3 A null distribution of the ecological niche model

(ENM) overlap statistic I created from maxent runs for 100

randomizations of localities between Bigfoot and black bear (Ursus

americanus) data sets. The arrow shows the I value observed

(0.849) for the actual data sets for maxent runs using all locality

points (i.e. no test points).
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