

The nucleus consists of <u>neutrons</u> and <u>protons</u> that are collectively referred to as <u>nucleons</u>. We can represent the number of neutrons, protons and electrons in atoms using the well-known chemical symbols of the elements.

Mass Defect & Binding Energy

Because of the Strong Force, the nucleons inside the nucleus are held tightly together. Therefore ENERGY is required to separate the nucleus into its constituent protons and Neutrons. This energy is called the **BINDING ENERGY**.

Einstein's Special Theory of Relativity shows that mass and energy are equivalent via his famous equation $\mathbf{E} = \mathbf{mc}^2$.

In our case, mass should really be written as a change in mass, Δm , which is referred to as a **MASS DEFECT**.

Binding Energy = $\Delta m c^2$

Where c = speed of light (3.0x10⁸ ms⁻¹)

1•6 < E < 2•0			
Chalcophilic	2·0 < 1 Sidero	E < 2·4 philic	Thuss astagonias
Zn ²⁺ 1•6	As ³⁺	2.0	Three categories:
(U ⁴⁺ 1•7)	(P ⁵⁺	2•1)	Lithophilic elements- tend to
(W ⁴⁺ 1•7)	Ru ⁴⁺	2.2	occur with oxygen in oxides;
(Si ⁴⁺ 1•8)	Rh ³⁺	2.2	e.g. Rb, K, Ba, Mg etc.; E <
(Ge ⁴⁺ 1•8)	Pd ²⁺	2•2	1.6 and have an affinity for
Fe ²⁺ 1•8	Os ⁴⁺	2•2	ionic bonding in oxygen [Gr.
Co ²⁺ 1•8	Ir ⁴⁺	2•2	lithos- stone]
Ni ²⁺ 1•8	Pt ²⁺	2•2	
Pb ²⁺ 1•8	Au ⁺	2•4	
Mo ⁴⁺ 1•8			Chalcophilic elements- tend to
Cu ²⁺ 1•9			concentrate in sulfides; e.g.
Ag ⁺ 1•9			Cu, Pb, Zn, Sn, and Ag; 1.6
Sn ⁴⁺ 1•9			< E< 2.0; small differences
Hg ³⁺ 1•9			in electronegativity between
Sb ³⁺ 1•9			these elements and sulfur
Bi ³⁺ 1•9			promote covalent bonding
Re ³⁺ 1•9			(electron sharing) [Gr.
			Khalkos, copper]
	$\begin{array}{rrrr} Zn^{2+} & 1{\text{-}6} \\ (U^{4+} & 1{\text{-}7}) \\ (W^{4+} & 1{\text{-}7}) \\ (S ^{4+} & 1{\text{-}8}) \\ (Ge^{4+} & 1{\text{-}8}) \\ Fe^{2+} & 1{\text{-}8} \\ N ^{2+} & 1{\text{-}8} \\ Mo^{4+} & 1{\text{-}8} \\ Cu^{2+} & 1{\text{-}9} \\ Na^{4+} & 1{\text{-}9} \\ Sn^{4+} & 1{\text{-}9} \\ Sn^{4+} & 1{\text{-}9} \\ Sn^{3+} & 1{\text{-}9} \\ Sh^{3+} & 1{\text{-}9} \\ Ba^{3+} & 1{\text{-}9} \\ Re^{3+} & 1{\text{-}9} \\ Re^{3+} & 1{\text{-}9} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

calares	Heterogeneous accretion	Homogeneous accretion		
accretion temperatures	incandescent, above highest condensation temperatures and failing during accretion; incandescence due to heating during contraction of Solar Nebula under gravity	relatively cold, within the volatile condensation range of Table 5.1		
cause of chemical difference between planets	selective condensation during nebular cooling: hence heterogeneous; lower- temperature condensates are favored by greater distances from nebula center	volatilization during and after accretion due to planetary heating; accreting material for all planets is homogeneous; amount of volatilization increases with size of planet		
eduction of iron to form core material	condenses directly as metal at temperatures greater than for silicates and sulphides of iron	reduction of silicates, etc., effected near the accreting planetary surface during initial heating and volatilization (Eqs 2.1 & 2.2)		
iming of element segregation	pre-accretion followed by readjustments due to post- accretion melting and longer- term changes	post-accretion due to initial heating and melting followed by longer-term changes		
cause of internal planetary neating	initially hot and cooling, but also reheated as in homoge- neous model	release of kinetic energy dur- ing accretion, early short-lived radiogenic heat and long-term, long-lived radiogenic heat		
planetary layering	selective condensation into a layered structure due to temp- erature gradient across the nebula and possible falling temperature during accretion	iron-rich core material be- comes molten near the surface due to initial heating and sinks, leaving a solid silicate mantle		
predicted chemical/density variations between planets, assuming chondritic starting naterials	planets have progressively lower Fe/Si and refractory/ volatile element ratios further away from the Sun; density therefore decreases in this direction	planets have similar total Fe/Si ratios but vary in volatiles and oxidation as a function of plan- etary size; small planets retain more volatiles, are more oxid- ized and have lower densities than larger ones		

			Major planets			
Property	Sun	Jupiter	Saturn	Uranus	Neptune	Pluto
distance from Sun (mean value) (units of 10 ⁶ km)	_	778	1427	2870	4497	5900
(Earth) = 1)	-	5•20	9•54	19•2	30•1	39•4
mass (Earth = 1)	343 000	318	95	14•6	17•2	c.0•002
mean density (water = 1)	1•4	1•3	0•7	1•2	1•7	<1•7
radius (km)	696 000	71 400	60 000	25 900	24 750	1900
year, i.e. period of revolution about axis Sun (Earth years	_	11•9	29•5	84•0	164	248
spin period, i.e. rotation about axis (days)	27	0•40	0•43	-0•89*	0•53	6•4
eccentricity of orbit	_	0•043	0•056	0•047	0•009	0•25
nclination of orbit, with respect to the Earth's (deg)	-	1•3	2•5	0•8	1•8	17•2
Inclination of axis, with respect to axis of Earth's orbit (deg)	7	3	27	82	29	?
number of moons known	_	14	10	5	2	1?
atmosphere, chief constituents	-	H ₂ , He	H ₂ , He	H ₂ , He, CH ₄	H ₂ , He, CH ₄	none?
magnetic field dipole moment \pm (Earth = 1)	3 x 10 ⁶	1•9 x 10 ⁻⁴	2	2	2	2

Minus sign denotes rotation is retrograde, i.e. opposite to majority unclution.
That is orbit is in plane of Earth's equator.
That is, strength of equivalent bar magnet (but some planetary fields are poorly represented by a dipole).