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Summary

1. Spatial autocorrelation is an important source of bias in most spatial analyses. We
explored the bias introduced by spatial autocorrelation on the explanatory and predic-
tive power of species’ distribution models, and make recommendations for dealing with
the problem.
2. Analyses were based on the distribution of  two species of  freshwater turtle and
two virtual species with simulated spatial structures within two equally sized areas
located on the Iberian Peninsula. Sequential permutations of environmental variables
were used to generate predictor variables that retained the spatial structure of the original
variables. Univariate models of species’ distributions using generalized linear models
(GLM), generalized additive models (GAM) and classification tree analysis (CTA)
were fitted for each variable permutation. Variation of accuracy measures with spatial
autocorrelation of  the original predictor variables, as measured by Moran’s I, was
analysed and compared between models. The effects of systematic subsampling of the
data set and the inclusion of a contagion term to deal with spatial autocorrelation in
models were assessed with projections made with GLM, as it was with this method that
estimates of significance based on randomizations were obtained.
3. Spatial autocorrelation was shown to represent a serious problem for niche-based
species’ distribution models. Significance values were found to be inflated up to 90-fold.
4. In general, GAM and CTA performed better than GLM, although all three methods
were vulnerable to the effects of spatial autocorrelation.
5. The procedures utilized to reduce the effects of spatial autocorrelation had varying
degrees of success. Subsampling was partially effective in avoiding the inflation effect,
whereas the inclusion of a contagion term fully eliminated or even overcompensated for
this effect. Direct estimation of probability using variable simulations was effective, yet
seemed to show some residual spatial autocorrelation effects.
6. Synthesis and applications. Given the expected inflation in the estimates of signifi-
cance when analysing spatially autocorrelated variables, these need to be adjusted. The
reliability and value of niche-based distribution models for management and other
applied ecology purposes can be improved if  certain techniques and procedures, such as
the null model approach recommended in this study, are implemented during the
model-building process.
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Introduction

Niche-based models are familiar tools used to explain
and predict species’ spatial distributions (Walker 1990;
Pereira & Itami 1991; Austin et al. 1996; Manel et al.
1999). Recently, niche models have received increased
attention, in part because of the need to predict species’
range shifts under future climate-change scenarios
(Guisan & Theurillat 2000; Midgley et al. 2002; Peterson
et al. 2002; Thomas et al. 2004; Thuiller et al. 2005;
Araújo, Thuiller & Pearson 2006). However, there are a
number of unresolved methodological issues requiring
further enquiry. One example is the problem of non-
independence between data used for calibration of
models and that used for validation (Araújo et al. 2005a).
Non-independence is often the result of using spatially
autocorrelated data to calibrate and validate the
models, and one of the consequences is that the per-
ceived ability of  models to make realistic predictions
in space (Randin et al. 2006) and time (Araújo et al.
2005a) may be inflated. This problem may be greater
than previously anticipated, as illustrated by studies
showing high levels of intermodel variability in projec-
tions of  species’ range shifts under climate change
scenarios (Thuiller 2004; Thuiller et al. 2004; Araújo
et al. 2005b; Araújo, Thuiller & Pearson 2006). We have
addressed the biases in model predictions that arise
from using different procedures of model adjustment and
validation under varying levels of spatial dependencies
among predictor and response variables.

Sample size is a crucial parameter in the outcome of
classical hypothesis testing as it determines the neces-
sary degrees of freedom for pattern detection. In spatial
analyses the simple count of sample units is not always an
adequate estimator of effective sample size. For example,
if the values of a variable depend on the distance between
sample points, a set of closely spaced observations
effectively provides less information than the same
number of observations more widely separated in space.
Such spatial dependency between values is termed
spatial autocorrelation (SA; Cliff  & Ord 1973) and its
causes and consequences have been the focus of much
research (Legendre 1993; Koening & Knops 1998;
Lennon 2000; Dale & Fortin 2002; Fortin & Payette
2002; Legendre et al. 2002). SA leads to an overestima-
tion of the effective sample size (leading to pseudorep-
lication), inflating the statistical significance of measured
spatial relationships and consequently increasing the
likelihood of type I errors (false positives). There is a
serious possibility that previous analyses that used
correlative approaches might be flawed because of ‘red
herrings’ generated by SA (Lennon 2000), with both
the estimated predictive power and the choice of
variables being seriously biased. Because of the potential
importance of such biases, many methods have been
developed to help account for SA within models,
including a priori procedures at the level of sampling
design (Harrison 1997; Legendre et al. 2002; Legendre
et al. 2004), modifications at the level of model adjustment

(Keitt et al. 2002; Lichstein et al. 2002) and a posteriori
procedures, such as the use of correction factors, to
improve statistical accuracy of models (Dutilleul 1993;
Legendre et al. 2002).

Niche-based models use several alternative techniques
to summarize relationships between species occurrences
and environmental variation (Guisan & Zimmermann
2000; Segurado & Araújo 2004), usually in the context
of spatial and temporal predictions. Other designations
for this family of models can be found in the literature,
such as habitat models (Guisan & Zimmermann 2000),
species distribution models (Olden, Jackson & Peres-
Neto 2002), bioclimatic envelope models (Pearson &
Dawson 2003) and presence/absence models (Fielding
& Bell 1997). Although authors acknowledge the impor-
tance of SA, they often disregard or minimize the extent
to which the presence of spatially autocorrelated data might
affect the explanatory power and predictive accuracy of
models (i.e. the ability in which models calibrated in
one set represent observations in an independent set;
for discussion see Araújo et al. 2005a; Randin et al.
2006). This could be a serious shortcoming in models
as species’ occurrences tend to be aggregated at most
spatial scales, and the more aggregated species’ occur-
rences are, the more likely it is that environmental variables
will show some explanatory power simply because of the
fact that environmental conditions tend to be more similar
at neighbouring sites. Indeed, the strength of the correlation
between variables has been shown to be increasingly more
pronounced as SA grows stronger, whereas unbiased
correlations are produced when at least one variable
exhibits no SA (Lennon 2000).

Model generalization (e.g. variable selection in stepwise
logistic regression, pruning of classification trees and
stopping rules in artificial neural networks) are common
procedures to avoid overadjustments to calibration
data and are designed to increase the predictive power
of models (Franklin 1998; Pearce & Ferrier 2000; Thuiller
2003). In the case of regression-based techniques this
procedure implies that an assessment of the explana-
tory power of variables is made. The problem is that the
inflation of explanatory power for spatially autocorre-
lated variables makes them, a priori, disproportionately
likely to be selected in the final models. This is made at the
expense of selecting potentially more important varia-
bles with lower SA. Therefore, variable selection procedures
can be an additional source of bias in model fitting.

Patterns of species’ distributions may be spatially
autocorrelated because of contagious population dynamics
and historical factors, but they may also be the result of
spatial structure among environmental predictors (Storch
et al. 2003). In fact, species and the environment may
share spatial structure because of the effect of spatially
structured environmental predictors and non-environmental
contingencies that may or may not be related amongst
them (Borcard, Legendre & Drapeau 1992). If  part of
the spatial structure in the species’ data is shared by the
environmental data, knowing the relative weight of
each item that contributes to the observed spatial structure
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is an important challenge when testing causal hypotheses
to data (Borcard, Legendre & Drapeau 1992; Storch et al.
2003). A common procedure to cancel the effect of spatial
structure of species’ occurrences is to incorporate a
term for SA into the analysis (Smith 1994; Augustin,
Mugglestone & Buckland 1996; Araújo & Williams
2000; Keitt et al. 2002; Segurado & Araújo 2004), usu-
ally a measure of contagion that encompasses the effect
of spatial neighbourhood in the statistical test.

An alternative procedure to avoid pseudoreplication
is to subsample the original species’ distribution data,
usually by adopting a systematic scheme that constrains
observations to be spaced far enough from each other
(Gates et al. 1994; Brito, Crespo & Paulo 1999; Guisan
& Theurillat 2000). This method has the disadvantage
of not using all the available information and thereby
artificially limiting sample size, a procedure that may
have serious consequences for the predictive performance
of models (Araújo et al. 2005b).

The effect of SA on correlation and linear regression
significance values has been tested elsewhere using
artificially generated variables with known spatial
structures (Lennon 2000). In the context of niche-
based modelling the extent to which SA in the response
and predictor variables influences model performance
is poorly known. In particular, the effect of SA in the
validation data set used to estimate predictive power of
models has never been assessed. In this study the effects
of SA in species’ distribution models were quantified
using a null model approach with test variables gener-
ated from randomizations of spatially structured envi-
ronmental data. First, the overall effect of SA on measures
of model performance was assessed. Secondly, we
explored whether different modelling techniques,
differing in the response functions used, were equally
sensitive to the effect of SA. We also quantified the
effect of spatial autocorrelation in the predictive ability

of covariates entering models of species’ distributions
using both resubstitution and data set partitioning
(Olden, Jackson & Peres-Neto 2002; Araújo et al. 2005a).
Finally, the effectiveness of different approaches to reduce
undesirable effects of SA was evaluated.

Materials and methods



We used the distributions of two species of freshwater
turtles, the Mediterranean pond turtle Mauremys lep-
rosa (Schweiger, 1812) and the European pond turtle
Emys orbicularis (Linnaeus, 1758), in two equally sized
rectangular areas on the Iberian Peninsula (Fig. 1). In
each rectangular area, data on species’ distributions
were located in 66 × 21 universal transverse mercator
(UTM) 10 × 10-km grid cells. The main criteria for
delimitation of the two rectangular areas were to max-
imize (i) the geographical extent of the rectangles and
(ii) the geographical distance between them, in order to
ensure the greatest feasible amount of information
while retaining high levels of spatial independence
between rectangles. Distribution data were compiled
from four different sources: the updated atlas of the
Portuguese herpetofauna (Godinho et al. 1999), the
atlas and Red Data Book of the amphibian and reptiles
of Spain (Keller & Andreu 2002; da Silva 2002), the
UNIBA database (Alentejo’s Biodiversity Database
Unit; www.cea.uevora.pt/umc, 2006) and P. Segurado
(unpublished data). The spatial structure of the two
species’ distributions in the study region is distinct:
E. orbicularis is found in fewer grid cells and it is widely
scattered compared with M. leprosa, which has more
clumped distributions. There are also regional differences
in occupancy patterns: in the western rectangle occur-
rences of M. leprosa are more densely distributed and

Fig. 1. Location of the rectangular areas used in the analysis (10-km linear resolution).
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the occurrences of  E. orbicularis are slightly more
scattered than in the eastern rectangle. Simulated dis-
tributions of two species with distinctive spatial struc-
tures were also generated from the M. leprosa database
creating a random distribution and a clumped distribution.
The random distribution was obtained by randomly
assigning the position of species’ presences, while the
clumped distribution was obtained by joining all species’
presences into a single contiguous block. The species’
distributions, as well as the simulated distributions,
were used as response variables in the analyses.

Environmental data included climatic and topo-
graphic information (Table 1) resampled at the same
grid resolution as the species’ occurrence data. There is
a danger that species might respond indirectly to
topography, which would limit the models’ predictive
powers. However, topographic variables have the
potential to summarize important surrogate predictor
variables, such as habitat availability for freshwater
turtles, that are not captured by the available variables.
For example, both species show a preference for still
and slow-moving water habitats and therefore their
distributions might respond directly to slope. Climate
data included 11 variables compiled from point data
with 10-minute resolution (New, Hulme & Jones 2000).
A randomly generated predictor variable showing
negligible SA was also included in the analyses. The two
rectangular areas did not differ considerably in their
environmental range, although the western rectangle
included a slightly wider gradient range for some variables.

 

The effect of SA was evaluated by generating simulated
patterns with known and fixed spatial structures. There
are two main categories of such pattern generation: (i)
fully synthetic patterns, generated purely from mathe-
matical principles such as the method based on the
inverse discrete Fourier transform (Lennon 2000); and
(ii) patterns generated from real data using restricted
or sequential permutations of real patterns (Fortin &
Jacquez 2000) or using more elaborate approaches such
as the random patterns implemented by Roxburgh &
Chesson (1998) and the patch model proposed by
Watkins & Wilson (1992).

In this study we employed sequential permutations
of environmental variables based on toroidal shifts
(Palmer & Van der Maarel 1995; Fortin & Jacquez 2000;
Dale & Fortin 2002; Fortin & Payette 2002; Storch
et al. 2003) to generate patterns from the original envi-
ronmental variables. With this randomization technique,
coordinates of the original variable are moved by a
common random factor in every geographical direc-
tion; cells that are shifted beyond one side of the range
of real coordinates are moved to the opposite side of
the range. This randomization assures that the main
spatial structure is maintained. This technique is more
straightforward, easier to implement and computa-
tionally more efficient than alternative methods. Its main
drawback is that it can create unrealistic environmental
patterns with abrupt orthogonal lines originated by the

Table 1. Variables included in the analysis, Moran’s I-values for the original variables and mean Moran’s I-values for the 1000
toroidal permutations (SD values inside parentheses)
 

 

Variable

Eastern area Western area

Original 
Moran’s I

Mean 
Moran’s I

Original 
Moran’s I

Mean 
Moran’s I

Mauremys leprosa 0·416 – 0·543 –
Emys orbicularis 0·386 – 0·264 –
Species with clumped distribution 0·959 – 0·975 –
Species with a random distribution −0·016 – 0·009 –
Predictor variables
Altitude, mean (Alt) 0·817 0·764 (0·012) 0·882 0·819 (0·019)
Altitude, minimum (Altmin) 0·843 0·796 (0·013) 0·847 0·775 (0·024)
Altitude, maximum (Altmax) 0·784 0·739 (0·011) 0·889 0·837 (0·015)
Slope, mean (Slope) 0·733 0·729 (0·011) 0·832 0·787 (0·012)
Hill shade, mean (Hill) 0·292 0·284 (0·007) 0·181 0·171 (0·007)
Hill shade, minimum (Hillmin) 0·657 0·658 (0·008) 0·752 0·716 (0·013)
Hill shade, maximum (Hillmax) 0·626 0·623 (0·006) 0·716 0·681 (0·012)
Mean annual temperature (Tann) 0·973 0·943 (0·016) 0·981 0·937 (0·013)
Mean temperature of the coldest month (Mtc) 0·945 0·929 (0·014) 0·971 0·909 (0·015)
Mean temperature of the warmer month (Mtw) 0·987 0·952 (0·016) 0·981 0·943 (0·014)
Mean annual growing degree days (Gdd) 0·975 0·944 (0·017) 0·983 0·938 (0·012)
Mean annual global net radiation (Rann) 0·957 0·906 (0·022) 0·958 0·861 (0·016)
Mean annual evapotranspiration/potential evapotranspiration (A2P) 0·950 0·915 (0·017) 0·975 0·914 (0·011)
Mean annual precipitation sum (Pann) 0·901 0·877 (0·023) 0·968 0·908 (0·023)
Mean winter precipitation sum (Pwin) 0·895 0·890 (0·021) 0·966 0·898 (0·025)
Mean summer precipitation sum (Psum) 0·924 0·879 (0·020) 0·971 0·932 (0·016)
Mean spring precipitation sum (Pspr) 0·916 0·872 (0·018) 0·966 0·914 (0·020)
Mean autumn precipitation sum (Paut) 0·888 0·879 (0·021) 0·968 0·900 (0·024)
Random environment 0·001 0·000 (0·003) −0·018 −0·014 (0·003)
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shifted edges. We assumed that this feature would not
have an effect in the analysis because the existence of
linear edges in species’ distributions is unlikely. As toroidal
shifts can be too liberal (Fortin & Jacquez 2000), an
image reflection and a 180-degree rotation were initially
performed for each variable. This procedure ensured
that even toroids involving only small shifts would dif-
fer substantially from the original pattern, thus making
the pattern simulation more conservative.

Moran’s I statistics was used to estimate general
patterns of spatial dependency of variables. In order to
evaluate the degree to which the original spatial struc-
ture was maintained after randomizations, 1000 toroidal
shifts were run and for each permutation the Moran’s I
was calculated. The distribution of the resulting values
was compared with the Moran’s I-value of the original
variables.

     


Three modelling techniques, differing in their ability
to model complex response shapes, were used to relate
species’ distributions to each of the 1000 toroidal shifts
of the environmental variables: (i) generalized linear
models, (ii) generalized additive models and (iii) clas-
sification tree analysis. Generalized linear models (GLM;
McCullagh & Nelder 1983) are generalizations of the
classical linear regression allowing error distributions
other than the normal distribution; here a binomial
error distribution was assumed (logistic regression).
Generalized additive models (GAM; Hastie & Tibshirani
1990) are semi-parametric forms of  GLM that use
smooth functions instead of  the usual regression
coefficients. GAM were fitted using cubic splines as
the smooth function and assuming a binomial error
distribution. Classification tree analysis (CTA; Clark
& Pregibon 1992) is a non-parametric technique that is
based on recursive partitions of the dimensional space
defined by the predictor variables into groups that are
as homogeneous as possible for the response variable.
We used a recursive algorithm that successively splits
the data into binary branches by choosing the splits
that cause the maximum reduction of  the residual
deviance.

For each permutation, the model classification accu-
racy was measured by calculating the receiver opera-
tional characteristic (ROC) curve and summing the
area under that curve (AUC; Fielding & Bell 1997). The
AUC assesses whether model predictions differ from
that expected by chance, varying from 0·5 (random
classification) to 1 (perfect classification). GLM
performance was also measured using the likelihood
ratio test statistics (LRS; Hosmer & Lemeshow 1989),
which correspond to the reduction of model residual
deviance in relation to null model deviance.

Models were calibrated on both rectangles and model
accuracy was measured using the whole calibration set
(i.e. resubstitution). Accuracy (AUC) of GLM was also

measured by application to the second rectangular area,
which was interpreted as providing an independent
validation. Explanatory power was expressed by meas-
ures of model accuracy using the calibration set, while
predictive power was expressed by measures of model
accuracy using the validation set.

The overall effect of SA was assessed exploring the
relationship between the 95th percentile and the stand-
ard deviation of  measures of  accuracy for each null
pattern set with Moran’s I of  the original predictor
variables. The variation of  the 95th percentile was
analysed because it represents a common threshold in
most statistical hypothesis testing. This parameter is
expected to be inflated by SA.

In GLM, the LRS is assumed to be chi-square
distributed and therefore it is also possible, for each run
of 1000 permutations, to calculate the number of LRS
tests on the calibration set that are found to have values
above the expected number according to a chosen type
I significance level. The ratio between this number
and the expected number of significant tests according
to the significance level (e.g. 50 out of 1000 for P = 0·05)
expresses the type I inflation ratio (Lennon 2000). Here,
a significance level of 0·01 was considered in order to
compare with other results found in the literature.

All data analyses were performed with 5-PLUS 2000
(Statistical Sciences 1999) using the default functions
for model adjustments. Random toroidal shifts were
performed using a modified function from the Splancs
library of 5-PLUS (Rowlingson & Diggle 1993).

   


Two methods that address the effects of  SA were
compared using toroidal shifts and the procedures
described above. The first method consisted in subsam-
pling the original data set by eliminating cells in a
systematic manner. All cells with even coordinates were
eliminated from the original data sets. The second
method included the incorporation of an autocovariate
term accounting for the SA of observations. Autolo-
gistic models use contagion as an autocovariate term in
the logistic regression equation. The measure of con-
tagion was based on a two-order neighbourhood as the
weighted average of the number of occupied grid cells
among a set of ka neighbours of a central grid cell ya, so
that:

eqn 1

where the weight given to the grid cell yb is wab = 1/dab,
and dab is the distance between grid cells ya and yb. Two
orders of neighbours, assigning a weight of d = 1 to the
first-order and a weight of d = 2 to the second-order
neighbours, were used. Neighbours in the first order
were the eight adjacent cells touching the central cell
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along the edges and at the corners within a rectangular
grid. The second-order neighbours were the next group
of cells concentric to the first order with 16 grid cells.

These two methods were assessed for their ability to
produce unbiased estimates of the explanatory power
as measured by LRS. The contribution of contagion
terms was removed from the LRS estimates, in order to
assess exclusively the contribution of each variable to
the explanatory power. This assessment was based on
the distribution of M. leprosa only. The predictive
power of models was not assessed using the autologistic
approach because the spatial autocovariate term is a
function of the calibration data and cannot be predicted
for independent validation data.

Finally, corrected univariate variable significances
were estimated for distribution models of M. leprosa and
E. orbicularis. A Monte Carlo simulation approach was
used to compare the AUC computed using the original
predictor variables with the test statistics generated from
1000 toroidal shifts. Significance (probability of rejecting
a true null hypothesis) was defined as the fraction of the
AUC statistics of the 1000 simulated variables that fell
above the AUC statistics of the original variable.

Results

   

Spatial dependency is stronger for M. leprosa than for
E. orbicularis, as shown by the overall SA of variables
measured by the Moran’s I index (Table 1). In the western
rectangle the SA of  M. leprosa occurrence is more
pronounced while that of E. orbicularis is less pronounced
in the western than in the eastern rectangle. Among
environmental variables, the topographical descriptors
are generally less spatially autocorrelated than climatic
variables. Hill shade variables have the lowest Moran’s
I-values. For most environmental variables, with the
exception for mean hill shade and mean temperature of
the warmest month, the western rectangle shows slightly
higher SA values than the eastern rectangle.

The mean Moran’s I-values for each set of 1000 toroidal
shifts of the environmental variables tend to be slightly
lower than the original Moran’s I, probably because of
the effect of the shifted edges, which can slightly disturb
the spatial structure. However, toroidal displacement
did not shift significantly the relative order of SA
between variables. On the other hand, the variability of
values among the 1000 simulations, as measured by the
standard deviation, was reasonably low, representing a
small fraction of the mean values (SD/mean ranging
from 0·010 to 0·042), which means that spatial struc-
ture was maintained among permutations (Table 1).

      


Amongst sets of 1000 toroidal permutations the 95th
percentile of the model accuracy measures increased as

the SA of the predictor variables increased (Fig. 2).
This effect was more pronounced for species’ distribu-
tions that were more spatially autocorrelated and was
eliminated in a simulated random species distribution.
The 95th percentile of the AUC distribution of the 1000
toroidal shifts per variable increased in an approxi-
mately linear fashion with SA for each modelling
approach (Fig. 2). In the western section of the studied
rectangle the variation of  AUC values with SA of
predictor variables was more pronounced than in the
eastern rectangle for M. leprosa and less pronounced for
E. orbicularis (Fig. 2).

There were slight differences on the effect of SA for
GAM and CTA compared with GLM, as shown by
the variation of the 95th percentile of AUC values with
Moran’s I of  the environmental variables (Fig. 2). The
variation of AUC 95th percentiles was less marked for
GAM and CTA than for GLM models; this was par-
ticularly evident for species with more autocorrelated
distributions. This weaker variation was because of the
better performances of GAM and CTA compared with
GLM models for species’ distributions and predictor
variables with reduced SA while showing comparable
performances for those with higher SA (Fig. 2). CTA
tended to perform better than GAM, especially for the
less autocorrelated distributions. These results were
consistent between rectangles.

The 95th percentile of the LRS distribution of GLM
models using variable permutations was more sensitive

Fig. 2. Variation of the 95th percentile of AUC with Moran’s
I of  environmental variables using three modelling techniques
(GLM, GAM and CTA), four distributions (M. leprosa, E.
orbicularis, a simulated distribution with totally clumped
occurrences and a random distribution) and 1000 simulated
surfaces (lines represent linear fits).
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than AUC to the increase of Moran’s I. This parameter
tended to increase in an exponential fashion with SA
(Fig. 3).

      


The effect of the increase in Moran’s I using an inde-
pendent validation data set to evaluate the predictive
power of GLM models was as strong as using the cal-
ibration set. The 95th percentile of deviance also
tended to increase with SA in a linear form (Fig. 4).
This trend was more marked for models of M. leprosa
calibrated in the eastern rectangle and for models of E.
orbicularis calibrated in the western rectangle.

 

Inflation ratio increased with Moran’s I-values (Fig. 5)
of the environmental variables, especially at lower
Moran’s I-values. Thus there was a substantial infla-
tion of the apparent predictive power of analyses using
variables with even a modest amount of SA. Predictor
variable significance could be inflated by a factor up to
90 for the clumped distribution. At higher Moran’s I-
values, inflation ratios tended to stabilize (Fig. 5).
Inflation ratios also increased where species’ distribu-
tions displayed increased SA; indeed, in the absence of
SA in the distribution (Fig. 5, Random distributions)
even highly autocorrelated environments did not cause

inflated predictive power estimates. Overall, the higher
the level of SA in both species’ distributions and envi-
ronmental variables used, the higher the inflation
ratios. Consequently, it was unsurprising to find that
inflation ratios for M. leprosa were more pronounced in
the western rectangle (mean inflation ratio of 75·3 vs.
60·2 for the eastern rectangle) while those for E. orbic-
ularis were more pronounced in the eastern rectangle
(mean inflation ratio of 40·4 vs. 38·3 for the eastern rec-
tangle). The observation that random distributions did
not suffer variations in the inflation ratio supported the
interpretation that it was SA rather than alternative
unmeasured factors that caused inflation of the signif-
icance estimates in the models.

Fig. 3. Relationship between spatial autocorrelation and the
95th percentiles of LRS statistics for GLM, regressing each
simulated surface with presence/absence data of M. leprosa, E.
orbicularis, a simulated distribution with totally clumped
occurrences and a random distribution.

Fig. 4. Model validation: relationship between Moran’s I for
the validation data set and the 95th percentiles of M. leprosa
model’s AUC, for each set of 1000 permutations of the original
variables. Lines represent linear fits. (a) M. leprosa, eastern
rectangle model validated with the western rectangle data set;
(b) M. leprosa, western rectangle model validated with the
eastern rectangle data set; (c) E. orbicularis, eastern rectangle
model validated with the western rectangle data set; (d) E.
orbicularis, western rectangle model validated with the eastern
rectangle data set.

Fig. 5. Variation of the inflation ratio (number of times a
significant test was found in relation to the expected number of
significant tests, according to the significance level adopted, in
this case P < 0·01, with the Moran’s I-values of the original
variables). Dashed lines are spline fits. (a) Eastern rectangle;
(b) western rectangle.
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Comparison of two methods for dealing with SA within
models showed that including an autocovariate term in
the regression was more effective than systematically
subsampling the area (Fig. 6). Indeed, the autologistic
procedure may slightly overcompensate. For example,
in the eastern rectangle there was a slight decrease in
the location measure of the LRS test significances for
an increase of Moran’s I (Fig. 6a). The subsampling
procedure was only partially effective in avoiding the
inflation effect of model performance because of SA.
The increase of LRS test significance with an increase
of Moran’s I was less pronounced using this procedure
(Fig. 6; note that the axes have different ranges).

When surface permutations were used to produce
Monte Carlo significance values of AUC accounting
for SA, no obvious relationship with SA was observed,
which suggested that unbiased estimates were produced.
However, the most significant variables had consistently
higher Moran’s I-values, especially for M. leprosa (Table 2).
Variables tended to have greater explanatory power for
M. leprosa than for E. orbicularis and in the western
rectangle there were more variables with significant
(P < 0·05) effects (e.g. for GLM 16 significant variables
for M. leprosa and 13 for E. orbicularis) than there were
in the eastern rectangle (11 significant variables for
M. leprosa and two for E. orbicularis). The majority of
significant variables for M. leprosa distribution were

common to the three modelling approaches. In the
eastern rectangle nine significant variables were com-
mon and two uncommon, while in the western rectangle
15 significant variables were common and three
uncommon. For M. leprosa seven significant variables
were simultaneously common to both rectangles and the
three modelling approaches. For E. orbicularis in the
eastern rectangle, only one significant variable was
common to the three modelling approaches and three
variables were uncommon, while in the western
rectangle five significant variables were common and
eight uncommon. No significant variables were simulta-
neously common to both rectangles and the three
modelling approaches for E. orbicularis.

Discussion

In this study we used a simple and straightforward
method of pattern simulation to explore the effect of
SA on niche-based models. The results reinforce the
idea that conclusions from niche-based models could
be compromised because of the autocorrelated nature
of both predictor variables and species’ occurrences
(Lennon 2000; Hampe 2004).

When plotted against a measure of SA (Moran’s I ),
model performance showed clear trends. For example,
we found that significant log-likelihood ratio tests in
GLM need to be exponentially larger as SA of predictor
variables are stronger. This means that even slight
changes in the degree of SA have a strong effect on the

Fig. 6. Relationship between spatial autocorrelation and the 95th percentiles of the LRS tests generated by regressing each
simulated surface with presence/absence data of M. leprosa. Comparison between results using the original M. leprosa data on
presence/absence and two different procedures usually adopted to avoid effects of spatial autocorrelation: subsampling of the
original data set and forcing the inclusion of a contagion term in the model. Lines represent exponential fits. (a) Eastern rectangle;
(b) western rectangle.
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probability of a predictor variable being chosen as sig-
nificant. The same trend was observed with measures
of models’ predictive accuracy (here AUC), although
this measure was less sensitive to SA on both the
response and predictor variables.

Results also suggest that sensitivities of model accu-
racy (AUC) to SA using either validation or calibration
data sets are nearly identical. Model performances are
commonly measured using either resubstitution or by
splitting data into calibration and validation sets (Olden,
Jackson & Peres-Neto 2002; Araújo et al. 2005a). The
last approach does not fully avoid an overestimation of
model accuracy because two sources of bias may arise:
(i) SA between the calibration and validation data sets
and (ii) SA within data sets. In fact, even when using more
complex approaches such as cross-validation, boot-
strapping and jack-knifing (Guisan & Zimmermann

2000), most procedures involve splitting the original
data set into calibration and validation subsets using
random assignments. These two subsets have inevitably
some degree of non-independence because of SA (Araújo
et al. 2005a). In this study we used two data sets that
were spatially separated in order to avoid an overesti-
mation of accuracy because of a lack of independence
between data sets. This allowed an assessment of the
role of SA within each data set when predicting distri-
butions in other regions, i.e. its effect on model trans-
ferability (Randin et al. in press). Despite differences in
the environments of two rectangles, results suggest that
the models’ transferability depends greatly on the SA
of the environmental variables.

As demonstrated before with correlation and linear
regression analysis (Lennon 2000), SA of covariates
inflates their statistical significance in predictive models.

Table 2. Significance of each predictor variable using a Monte Carlo simulation approach (*P < 0·05; **P < 0·01). Variables are
displayed in a increasing order of autocorrelation as measured by Moran’s
  

  

Mauremys leprosa Emys orbicularis

Variables GLM GAM TREE GLM GAM TREE

(a) Eastern rectangle
Random 0·753 0·596 0·936 0·582 0·986 0·977
Hill 0·013* 0·201 0·283 0·004** 0·011* 0·044*
Hillmax 0·717 0·928 0·937 0·283 0·418 0·028*
Hillmin 0·959 0·869 0·922 0·997 0·369 0·003**
Slope 0·988 0·852 0·795 0·613 0·412 0·552
Altmax 0·153 0·313 0·319 0·454 0·773 0·847
Alt 0·017* 0·059 0·077 0·160 0·419 0·548
Altmin 0·018* < 0·001 0·012* 0·164 0·137 0·389
Paut 0·957 0·357 0·351 0·982 0·157 0·072
Pwin 0·940 0·412 0·557 0·988 0·122 0·273
Pann 0·185 0·418 0·366 0·724 0·698 0·791
Pspr < 0·001 < 0·001 < 0·001 0·134 0·320 0·440
Psum < 0·001 < 0·001 < 0·001 0·077 0·289 0·358
Mtc < 0·001 < 0·001 < 0·001 0·107 0·368 0·638
A2P 0·005** 0·018* 0·048* 0·235 0·678 0·436
Rann < 0·001 < 0·001 0·008* 0·140 0·790 0·460
Tann < 0·001 0·003** < 0·001 0·091 0·173 0·340
Gdd < 0·001 < 0·001 < 0·001 0·090 0·149 0·289
Mtw < 0·001 0·001** 0·013* 0·042* 0·191 0·421

(b) Western rectangle
Random 0·426 0·383 0·204 0·882 0·982 0·982
Hill 0·013* 0·022* 0·049* 0·410 0·091 0·551
Hillmax 0·036* 0·033* 0·023* 0·044* 0·035* 0·242
Hillmin 0·013* 0·008** 0·008** 0·004** 0·021* 0·019*
Slope 0·015* 0·020* 0·041* 0·034* 0·070 0·033*
Altmin 0·109 0·050 0·048* 0·551 0·840 0·857
Alt 0·068 0·041* 0·062 0·285 0·333 0·289
Altmax 0·028* 0·017* 0·009** 0·146 0·159 0·132
Rann < 0·001 < 0·001 < 0·001 < 0·001 < 0·001 < 0·001
Pwin 0·001** < 0·001 < 0·001 0·011* 0·006** 0·018*
Pspr 0·002** 0·002** 0·010* 0·008** 0·024* 0·010*
Paut 0·009** < 0·001 < 0·001 0·040* 0·027* 0·037*
Pann 0·007** 0·007** < 0·001 0·012* 0·053 0·113
Psum 0·005** 0·006** 0·002** 0·020* 0·231 0·289
Mtc 0·045* 0·110 0·078 0·252 0·459 0·568
A2P 0·005** 0·001** < 0·001 0·006** 0·071 0·038*
Tann 0·006** 0·004** < 0·001 0·012* 0·033* 0·078
Mtw < 0·001 < 0·001 < 0·001 < 0·001 0·060 0·001**
Gdd 0·002** 0·001** 0·012* 0·006** 0·029* 0·169



442
P. Segurado, 
M. B. Araújo & 
W. E. Kunin

© 2006 The Authors. 
Journal compilation 
© 2006 British 
Ecological Society, 
Journal of Applied 
Ecology, 43, 
433–444

In the present study, the maximum inflation ratio was
94 for the clumped distribution, i.e. variables were found
to be significant 94 times more often than expected by
chance. Inflation ratios reached 89 for M. leprosa and
54 for E. orbicularis. These inflation values are similar
to those estimated by Lennon (2000) using synthetic-
ally generated spatial patterns.

The two a priori procedures used to minimize the
effect of SA partially cancelled (systematic subsampling)
or fully cancelled (inclusion of the contagion term) the
effect of SA. However, it should be noted that testing for
relationships between environmental variables and species’
occurrences after forcing the inclusion of a contagion
term might represent a problem. This procedure cancels
the SA of species’ distributions without differentiating
environmental from demographic/historical contribu-
tions. By cancelling the environmental contribution to
the SA, models tend to underestimate the importance
of environmental variables that co-vary with species’
occurrences (Araújo & Williams 2000). Variables that
enter in models with an autocovariate term are most
likely to explain the non-autocorrelated aspects of patterns,
which may represent only a minor fraction of total variance.
Moreover, such a model would most probably lack pre-
dictive power outside the calibration set or under future
climate-change scenarios. Indeed, models that incorporate
a term for SA cannot be extrapolated to regions where
no occurrence data are available. Hence, the inclusion
of an autocovariate term is only possible when projec-
tions are made within the geographical range of  the
calibration data set.

When sample size is not a limiting factor, subsam-
pling of the original data matrix is a possibility. Even
though it does not completely eliminate the inflation
effect, it reduces it substantially. This can be done by
simply selecting samples in a systematic manner as
done here, or by using geostatistical tools such as
variogram and correlogram plots (Maurer 1994; Diniz-
Filho, Bini & Hawkins 2003), to analyse the overall
pattern of spatial dependency and to help establish a
minimum distance between samples that will reduce
SA at a given amount (Catry et al. 2003). None the less,
as populations and environmental variables tend to be
autocorrelated at all scales, it seems likely that the spac-
ing out of samples will never fully eliminate SA effects.

Another type of procedure is to account a posteriori
for SA using a Monte Carlo approach, such as that
used here, to estimate variable significance based on
null spatial patterns. However, even when P-values are
estimated using this approach, variables that exhibit
higher SA tend to be more significant. Nevertheless,
these are likely to be the better candidates as actual
causative factors of species’ distributions; they are
more likely to contribute to the autocorrelated nature
of species’ patterns of occurrence.

The use of semi-parametric modelling techniques,
such as GAM, and non-parametric techniques, such as
classification trees, slightly reduces the effect of SA in
our analyses. These techniques place fewer constraints

on the shape of species’ responses to their environ-
ments, and stronger adjustments to predictions are
consequently produced in comparison with parametric
techniques, such as GLM. Our results suggest that this
is particularly evident for response or environmental
variables that display only moderate levels of SA. Thus
these techniques are slightly less sensitive to variations
in the variables’ patterns of  SA than traditional
parametric approaches such as GLM.

The results described above, and thus the recom-
mendations given for dealing with SA, apply only to univariate
modelling. When there is more than one candidate
variable to explain a species’ distribution, the assessment
of the effect of SA on models requires a more complex
and thorough approach. Indeed, the impact of SA on
multivariate model building is an urgent issue for
future investigation. The first step of  multivariate
modelling is variable selection. Methods based on
stepwise variable selection are still widely used by ecologists
although it has been demonstrated that automated
model building procedures can result in the selection of
a subset of predictor variables with no direct effect on
the response variable (Derksen & Keselman 1992).
Nevertheless, even if  SA inflates variable significance
this does not mean that the final model configuration
will exclusively include the most autocorrelated vari-
ables. If  an autocorrelated variable is included in the
model, it may explain a substantial fraction of the SA
in the species’ pattern of occurrence. If  that is the case
the remaining variables may then be related to the less
autocorrelated aspects of the distribution, probably
driven by factors that act at finer spatial scales (Diniz-
Filho, Bini & Hawkins 2003).

Some recommendations for the variable selection
process can, however, be drawn from our results. Variable
selection based on simulated patterns is not cost effec-
tive. We recommend, instead, before model adjustment
running univariate tests based on null patterns such as
the procedure described in this study. Strong autocor-
related variables that loose explanatory power when
their significance is adjusted for SA should be handled
with special care because they could inflate the models’
significance. An alternative would be simply to exclude
such variables from the analysis. Employing methods
based on the recent information–theoretic paradigm
(Burnham & Anderson 2002; but see Stephens et al.
2005) during model building, such as variable selection
procedures using the Akaike information criterion
(Akaike 1974), is always preferable because it does not
fully rely on significance thresholds. For modelling spe-
cies’ distributions that show a high degree of SA it might
be adequate to use semi-parametric or non-parametric
techniques, as well as avoiding the use of statistics such
as LRS, which are bound to be more sensitive to SA
than other accuracy measures (e.g. AUC).

The value of niche-based distribution models for
planning and management purposes greatly depends
on their ability to overcome different sources of biases
that are inherent with biological data. SA is just one
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among other sources of bias, yet probably the most
challenging one. It is our belief  that simple procedures
such as the ones discussed in this study would help to
enhance ecological reliability of models and therefore
to increase their applied value during the decision-
making process.
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