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INTRODUCTION

Electronic tracking of marine predators has revealed
a wealth of information on patterns of distribution and
habitat use (Block et al. 2005), migratory patterns
(Block et al. 2001), and foraging ecology (Sale et al.
2006). We contend, however, that even more infor-
mation can be extracted from these data by applying
modern statistical methods that can deal with both
biological and statistical complexity in the data (Jon-
sen et al. 2005, Nielsen et al. 2006) and allow estima-
tion of hidden processes that are intractable to other
approaches.

Several approaches have been recently developed
that allow estimation of hidden states from time series

data. State-space models have great potential for mod-
elling population time series data and have been
generalized to admit a variety of population data types
and analyses (Newman et al. 2006). The state-space
approach has also been proposed as a powerful tool for
modelling animal movement data because of its ability
to deal simultaneously with potentially large measure-
ment errors and variability in the dynamics of move-
ment (Jonsen et al. 2003). Hidden Markov models,
unlike state-space models, do not estimate dynamics,
but they can identify hidden patterns in the data. This
was essentially the approach used by Morales et al.
(2004), who analysed GPS telemetry on elk movements
and showed how a switching model could be used to
reveal long- and short-range movement behaviours
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hidden in the data. Jonsen et al. (2005) further devel-
oped the switching idea by showing how different
behaviours that were obscured by measurement error
in Argos satellite telemetry data could be estimated
using a state-space approach that modelled the move-
ment dynamics and accounted for uncertainty in both
the observations and the dynamics. The fundamental
advantage of the state-space approach is that move-
ment dynamics are modelled explicitly and this allows
more complex behaviour to be captured, even when
the issue of measurement error is minor, such as with
GPS data.

Here, we consider the application of a switching
state-space model (SSSM) to the issue of identifying
foraging behaviour from remotely sensed tracking
data — a situation where direct observation is not
possible. When animals encounter areas of sufficiently
abundant prey, they often engage in area-restricted
search by decreasing their travel rate and/or increas-
ing their turning frequency and angle (Turchin 1991).
Conversely, animals encountering unsuitable habitats
often have fast travel rates and infrequent and small
turning angles (Turchin 1991). These differences in
movement behaviour can form the basis for estimating
nominal foraging and transiting behaviours from a
time series of observed positions. To identify different
behaviours that may be hidden in the position data, we
employ an SSSM. The purpose of an SSSM is to esti-
mate: (1) unobservable ‘true’ positions, termed state
estimates; (2) movement parameters from a specified
process model; and (3) hidden behavioural states from
data observed with error. Hereafter we refer to these
behavioural states as behavioural modes to avoid con-
fusion with the state estimates.

We illustrate our approach by fitting an SSSM to
Argos-derived positions of leatherback turtles off the
coasts of eastern Canada and the northeastern United
States. The leatherback turtle Dermochelys coriacea
is a cosmopolitan marine species that undertakes a
variety of migratory patterns (Luschi et al. 2003, James
et al. 2005a). Leatherbacks tagged off Nova Scotia,
Canada, make annual return migrations from tropical
to sub-Arctic waters (James et al. 2005a), with much of
their time in northern waters presumably spent forag-
ing on gelatinous zooplankton (James et al. 2006a).
Despite a growing awareness of the migratory strate-
gies and behaviours (James et al. 2005a, Jonsen et al.
2006) and population characteristics (James et al. 2007)
of these animals, we know remarkably little about how
they utilize foraging habitat, and even less about the
ecology of their jellyfish prey (Witt et al. 2007). Efforts
to identify habitats important to this species (James et
al. 2005b) are urgently needed, given its critically
endangered status (IUCN 2004). To this end, we illus-
trate how SSSMs can be used to estimate locations

where turtles are foraging based solely on the infor-
mation contained in the time series of their observed
positions. Then, as a means of corroborating the SSSM
predictions, we compare estimated switches between
behavioural modes to observed changes in patterns
of diving activity that were collected simultaneously.
Finally, using all the suitable telemetry data available
to us, we describe differences in diving behaviour and
the thermal environment of leatherback turtles that
engage in foraging versus transiting behaviours.

MATERIALS AND METHODS

Data. The data consist of Argos-derived surface
positions obtained from satellite-linked time–depth
recorders (SLTDRs; model SSC3, Wildlife Computers)
attached to leatherback turtles captured in waters
off Nova Scotia, Canada (see James et al. 2005b for
details). We focus our analyses on movement behav-
iours and diving data in the northeastern Atlantic
(>36° N) off eastern North America, where the turtles
spend considerable time foraging (James et al. 2005b).

In addition to providing surface positions, the SLT-
DRs collect and relay data on time at depth, time at
temperature, maximum dive depth and dive duration.
These dive data are not directly associated with the
recorded positions, rather they are binned within 14
user-defined data ranges over 6 h collection periods.
Periods were set such that one consistently encom-
passed night and one encompassed day (Night: 21:00–
03:00 h; Morning: 03:00–09:00 h; Day: 09:00–15:00 h;
Evening: 15:00–21:00 h; Atlantic Daylight Time). Time
at depth and time at temperature reflected all time
when SLTDRs were submerged, whereas dives were
registered only when turtles descended below 4 m or
6 m (depending on the tag used). These data are trans-
mitted in histogram format to increase ease of transfer
via the limited bandwidth of the Argos satellite system.
Nonetheless, patterns in diving behaviour can be
readily identified and compared with the behavioural
estimates from the SSSM described below.

Suitable data were available for 5 turtles, 2 of which
were deployed with tags set to record continuously,
and 3 with tags that were duty-cycled (set to record
every second 24 h period). Leatherbacks in these
northern waters complete annual return migrations
from tropical waters in the Caribbean or South Amer-
ica (James et al. 2005a) and 4 of the 5 tags (3 duty-
cycled, 1 continuously recording) transmitted long
enough to record parts of 2 successive seasons spent
foraging in northern waters. We consider only those
portions of the data north of 35° Lat. where the turtles
appear to forage extensively. The duration of observed
tracks ranged from 49 to 216 d (mean 124 d ± 46 SD).
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Switching state-space model. Here, we describe the
components of the SSSM employed to estimate hidden
behavioural modes, states, and movement parameters
from the Argos satellite telemetry data. 

We use a first-difference correlated random walk
model (DCRW) (Jonsen et al. 2005) to model the move-
ment process. The DCRW assumes a correlated ran-
dom walk on the differences in successive locations,
not on the locations themselves. This makes sense
intuitively as the behaviour we are interested in is how
animals change their speed and direction, not how
they change their location per se. Written as a state-
space process model in 2 dimensions, the DCRW has
the following form,

dt~N2�γ T(θ)dt –1, ΣΣ� (1)

where dt –1 is the difference between the locations xt –1

and xt –2, and dt is the difference between the locations
xt and xt –1. T(θ) is a transition matrix that provides the
rotation required to move from dt –1 to dt, where θ is the
mean turning angle. N2 is a bivariate Gaussian distrib-
ution with covariance matrix ΣΣ . We include γ to allow
for variability in the autocorrelation of direction and
speed; with γ = 0 resulting in a simple random walk
and 0 < γ < 1 yielding a random walk with correlation
in both direction and move speed.

The second component of the state-space model
relates the unobserved states predicted by the process
model to the observed data; consequently it is termed
the observation model. Rather than use a simple model
where each unobserved state corresponds to an ob-
served location, we must account for the irregular
sampling of positions, the variable quality of Argos
observations, and their non-Gaussian errors (see
Jonsen et al. 2005 for full details).

We let i be an index for locations (if any are ob-
served) between time t and t+1, i.e. i = (0,…,nt). We
make the simplifying assumption that animals travel in
a straight line between xt –1 and xt. This poses no diffi-
culty for state transitions with reasonably short time
steps, relative to the resolution of the data, 

yt,i = (1 – ji)xt –1 + ji xt + εεt (2)

where yt,i is the i th observed position during the regular
time interval t–1 to t, ji is the proportion of this time in-
terval at which the ith observation is made (0 < ji < 1),
and εεt is a random variable representing the error in the
Argos-derived positions. Note that ji can be calculated
from the data if the time of day is recorded with each
observed location, and that for regular time intervals
where no observations exist we set i = 1 and ji = 0.5.
Because Argos position errors can be strongly non-
Gaussian (Jonsen et al. 2005), we model the errors with
generalized t-distributions which are robust to extreme
values. In addition, Argos categorizes positions into

6 quality classes and we use this information to deter-
mine the appropriate t-distribution parameters to use
for each position in the observation model. For estima-
tion errors in latitude or longitude of quality class q (q =
1,…,6) we let εεq (i),t ~ t(0, ττq (i),t, ννq (i),t), where ττq (i),t is the
scale parameter and ννq (i),t is the degrees of freedom.
When fitting the state-space model to the Argos-de-
rived position data, we fix εεt to values estimated from
independent data (Jonsen et al. 2005), thereby avoiding
the need to estimate an additional 24 parameters.

With the state-space model described above we can
estimate the unobserved states xt and the parameters
of the DCRW model, θ, γ and ΣΣ. We still require a
method to identify discrete behavioural modes from
the position data. To do this, we specify a process
model for each behavioural mode we believe exists in
the data, i.e. we use an index bt to denote behavioural
mode on the parameters θ and γ (Morales et al. 2004).
Thus Eq. (1) becomes:

dt~N2�γbtT(θbt)dt–1, ΣΣ� (3)

where bt = k, k ∈ {1,...,B} and B is the total number of
behavioural modes to be estimated. Here we consider
2 general behaviours, nominally, transiting and for-
aging. This is the DCRWS model (from Jonsen et
al. 2005).

The analysis now involves the estimation of 2 sets of
unobserved variables, xt and bt, and the estimation of the
parameters θ, γ, and ΣΣ. We can estimate bt using a mix-
ture model approach, which assumes that what an ani-
mal is doing now is independent of what it was doing
previously. However, a more realistic approach is to as-
sume that what an animal is doing now depends to some
extent upon what it was doing previously. With this in
mind, we make use of a switching model (Morales et al.
2004, Jonsen et al. 2005) where the movement para-
meters θ and γ are indexed by behavioural mode. In our
case, we are interested in transiting and foraging behav-
iours, so there are 4 possible transitions, and we must
estimate 2 of these. We let α1 be the probability of an
animal transiting at time t, given it was also transiting at
time t–1, and we let α2 be the probability of an animal
transiting at time t, given it was foraging at time t–1.

We use a Bayesian approach to fit the model, placing
vague priors on model parameters (see Jonsen et al.
2005 for details), except for the movement parameters
for the transiting mode: θ1 and γ1. For these parameters
we used the following priors: θ1~Beta(20,20) and
γ1 ~ Beta(48,16); reasoning that while transiting, turn
angles should be closer to 0 and autocorrelation should
be higher than when foraging. The model was fit with
the freely available WinBUGS software (Spiegelhalter
et al. 2004) which uses Markov Chain Monte Carlo
(MCMC) methods to approximate the multi-dimensional
integration required in Bayesian analyses. The model
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was fit to each dataset with a total of 30 000 MCMC
samples, the first 10 000 were discarded as a burn-in and
the remaining 20 000 samples were thinned out to 4000
samples by retaining only every 5th sample to reduce
autocorrelation. Parameter, state, and behavioural mode
estimates were based on these final 4000 samples. The
model code is provided in Appendix 1 (available in
MEPS Supplementary Material at www.int-res/articles/
suppl/m337p255_app.pdf ).

Analyses. We used the diving statistics described
earlier, which show relatively clear behavioural pat-
terns (James et al. 2006a), as a means of corroborating
the estimates of bt obtained from the DCRWS model.
Because bt is a discrete parameter — values can only
be 1 or 2 — we used the means of the MCMC samples
as a convenient way to visualize behavioural switches.
We, therefore, delineated the 2 behavioural modes by
adopting cut-offs at 1.25 and 1.75; mean estimates
below 1.25 were considered to represent transiting and
mean estimates above 1.75 were considered to repre-
sent foraging. Mean estimates between 1.25 and 1.75
were treated as uncertain, i.e. there was insufficient
information to distinguish between the behaviours in
these cases. We view this as a conservative approach
to classifying the behaviour modes as one could easily
assume a single cut-off of 1.5.

We used a graphical approach, overlaying a time
series histogram of binned diving statistics (14 data
ranges in 6 h collection intervals) with bt (also at 6 h
intervals) to look for congruence
between estimated switches in bt and
obvious changes in the temporal pat-
tern of the diving statistics. We also
aggregated the data over time and
compared the proportion of dives
that occurred while turtles were pre-
dicted to be transiting or foraging
within each of the 14 data ranges.
Finally, for each diving statistic we
present plots of the difference in the
mean for time periods when the tur-
tle was transiting versus foraging.
The means of the diving statistics
were calculated from time series
data, and we accounted for autocor-
relation by estimating the effective
sample size (Bayley & Hammersley
1946) and adjusting the df for the
confidence intervals. The differences
between transiting versus foraging
for temperature, time at depth, dive
duration and maximum dive depth
were each combined using a random
effects meta-analysis (Worm & Myers
2003). As mentioned earlier, 4 of the

tags provided data on successive foraging seasons in
northern waters. We consider these multiple foraging
seasons to be distinct enough to consider them as inde-
pendent datasets in this analysis. We do, however,
evaluate the more conservative assumption of non-
independence among tracks from the same turtle.

RESULTS

Maps of state estimates with associated behavioural
modes (Fig. 1 & Fig. A2-1 [Appendix 2 available
at: www.int-res.com/suppl/m337p255_app.pdf) indicate
that 2 of the turtles spent a considerable proportion of
time (0.74, Turtle A; 0.55, Turtle B.1) foraging in shelf
(Fig. 1, red circles) or slope (Fig. A2-1, red circles)
waters off Canada and the northeastern United States.
Estimated foraging bouts for the other turtles occurred
in waters from 37 to 50° N with most bouts occurring
in slope waters south and east of George’s Bank, the
southern Gulf of St. Lawrence, and off northeastern
Cape Breton Island. The proportion of time spent
foraging in northern waters by these turtles ranged
from 0.28 to 0.76.

There was relatively little uncertainty in the behav-
ioural mode, as less than 10% of state estimates had
behavioural modes estimated between 1.25 and 1.75
(Fig. 1, black circles). These uncertain behavioural
modes were associated either with short transition
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Fig. 1. Dermochelys coriacea. State estimates (xt, filled circles) with associated
behavioural mode estimates (blue = transiting, red = foraging, black = uncertain)
obtained from the SSSM for a leatherback turtle (B.1) tagged in coastal waters
off Nova Scotia, Canada. The full path is shown inset. The underlying grey line
indicates the observed Argos positions. The time interval between each xt is 6 h.

The 1000 m isobath is displayed as a dashed black line
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periods from transiting to foraging (or vice-versa) or
with short intervals (i.e. 12 to 18 h) of faster, directed
movement embedded within longer foraging bouts.
The latter may suggest either the presence of a third
behavioural mode or an inability of the model to esti-
mate switches from foraging to transiting back to
foraging over such a short time interval. Use of a time
step shorter than 6 h might yield better behavioural
mode estimation in these instances, but this may come
at the cost of overly conservative estimation of foraging
modes due to the scale-dependent nature of the θ and
γ parameters.

Marginal posterior distributions of the parameters θk

and γk showed no overlap between the 2 behavioural
modes, suggesting that the modes indeed represent
distinct classes of movement (Table A2-1). As would be
expected for transiting animals, the median θ1 is near 0
and the median γ1 is relatively high (see Fig. A2-2 for
examples). Foraging animals typically exhibited some
form of area-restricted search with large turning
angles and relatively slow travel rates (e.g. Fig. 1, red
circles). The θ2 medians indicate that turtles tend to
reverse their direction frequently (at a 6 h time scale)
while foraging (Table A2-1). The turtles also showed
relatively low autocorrelation in their turns and speed
(Table A2-1), indicating a lack of persistence in turn
angle and travel rate from one time step to the next.
Travel rates calculated from the state estimates (xt)
were also clearly distinguishable between the 2 behav-
ioural modes (e.g. see Fig. A2-3).

The means of the estimated bt, which range between
1 (1 ≤ transiting < 1.25) and 2 (1.75 < foraging ≤ 2),
match well with the temporal histograms of the diving
statistics. There appears to be close correspondence
between switches from one behavioural mode to the
other and variation in time at temperature. Tempera-
tures sampled by the turtles were more stable when
the model predicted the turtle was foraging (e.g. Turtle
B, Fig. 2), suggesting that, at least in northern waters,
they forage in a relatively narrow temperature range of
approximately 13 to 22°C (e.g. Turtle B, Fig. 3). Dive
durations followed a similar pattern, in that duration
increased with increasing temperature when the
model predicted turtles were transiting, but durations
tended to have no obvious trend (Fig. 2) and were gen-
erally shorter when turtles were predicted to be forag-
ing (Fig. 3). There was reasonable correspondence
between changes in the pattern of time spent in deeper
water and switches from one behavioural mode to the
other. Turtles spent the majority of their time in the
upper 65 m of the water column regardless of behav-
iour, however, deeper dives were more often associ-
ated with transiting behaviour (Fig. 3) but were occa-
sionally observed when turtles were foraging (see
Fig. A2-4). Maximum depths attained naturally fol-

lowed a similar pattern (Figs. 2 & 3). Representative
plots for Turtle A and a turtle (E.1) with a duty-cycled
tag are provided in Appendix 2, Figs A2-4 to A2-7 at
www.int-res/articles/suppl/m337p255_app.pdf.

Using behavioural mode estimates and diving data
for turtles with duty-cycled and continuously-recording
tags, we found clear differences in the means of time
at depth, temperature, dive duration, and maximum
depth when turtles are transiting versus foraging
(Fig. 4). When transiting, turtles on average were 32 m
(±3.2 SE, 8 df) deeper (Fig. 4a), in water 1.4°C
(±0.38 SE, 8 df) warmer (Fig. 4b), had maximum dives
25.5 m (±1.97 SE, 8 df) deeper (Fig. 4c), and had dives
6.6 min (±0.98 SE, 8 df) longer (Fig. 4d) than when
foraging. The random effects means are also signifi-
cantly different from 0 under the assumption of a lack
of independence among annual foraging bouts of
single turtles.

DISCUSSION

Our state-space approach for identifying foraging
sites relies on estimating unobserved behavioural
modes by modelling the dynamics of the movement
process directly. A key assumption of our approach is
that, given sufficient time, animal movement pathways
are an integration of more than one behavioural mode.
The resulting dynamics, represented by the time-
series of observed positions, can be inherently non-
linear and are therefore best analysed with some form
of switching model (Morales et al. 2004, Jonsen et al.
2005). SSSMs allow dynamics to be broken into dis-
crete behavioural modes by specifying a process
model for each behaviour and then estimating the
probability of switching from one behavioural mode to
another at each time step. In our case, the process
models for the transiting and foraging behaviours are
functionally identical and differ only in the parameter
values. This approach also allows for additional com-
plexity such as modelling switches between more than
2 behaviours and modelling the influence of environ-
mental features (Morales et al. 2004) or physiological
constraints on switching probabilities.

Search theory predicts that animals will change their
behaviour and, consequently, their movement pattern
as they encounter changes in habitat or prey density
(Turchin 1991). Typically, animals encountering prey
at a sufficiently high density will engage in area-
restricted search behaviours that are distinct from
transiting or migration behaviour. Examination of ob-
served Argos locations shows that leatherbacks
engage in both area-restricted search and transiting
behaviours; but clear, objective delineation of the
change points between behaviours is challenging due
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to the measurement errors in the data. By fitting an
SSSM to the 2-dimensional position data we were
able to extract the behavioural dynamics obscured by
measurement error in the positions. Even though con-
siderable information contained in the third dimension
was ignored, the correspondence between behavioural
mode predictions and the diving data suggests that be-
havioural estimation based only on the 2-dimensional
position data sufficiently captures the behavioural

dynamics. Nevertheless, information on diving behav-
iour could be incorporated into the SSSM to further
refine estimation of behavioural switches and identifi-
cation of foraging habitat.

Because leatherbacks forage throughout the epi-
pelagic and into the mesopelagic zones on gelatinous
zooplankton (James et al. 2005a), we assumed that cor-
responding changes in horizontal behaviour would be
apparent in the vertical movement. Indeed the turtles
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tend to spend more time at greater depths and dive
durations are longer when transiting versus foraging.
This pattern lends support to the idea that leather-
backs may make scouting dives while transiting as an
efficient means for sampling prey density (James et
al. 2006a) and perhaps opportunistic foraging without
greatly reducing travel rate. Moreover, the shallower
dives associated with extended, and presumably more
profitable, foraging suggest that the turtles focus on
regions where prey are available at shallower strata
perhaps to reduce the energetic demands of foraging
at depth. The thermal habitat of these foraging areas is

slightly cooler than that associated with
waters through which the turtles tran-
sit. The cooler waters associated with
leatherback foraging may result from
thermocline and, perhaps, an associ-
ated halocline effect on jellyfish move-
ments (Graham et al. 2001). The narrow
range of temperatures experienced
while foraging (13 to 22°C) corresponds
well with the average sea surface
temperature (SST) (16.6°C) associated
with peak sightings of leatherbacks off
of Nova Scotia (James et al. 2006b).
Furthermore, a lack of bi-modality in
the range of temperatures experienced
while foraging suggests that leather-
backs do not cross frontal boundaries
frequently, at least in the northern
waters considered here (Polovina et
al. 2004).

Leatherbacks found off South Africa
engage in horizontal movements simi-
lar to the foraging and transiting be-
haviours shown here, but their move-
ments do not correspond to simulta-
neously collected diving data (Sale et
al. 2006). Leatherbacks in this area may
be transported by the tremendously
strong Agulhas current system (Luschi
et al. 2003) and putative switches
between transiting and foraging be-
haviours may simply be the result of
advection rather than active behaviour
per se. In the presence of strong cur-
rents, our model might incorrectly clas-
sify the behaviours, particularly when
apparent area-restricted search be-
haviour is due purely to advection. In
these situations more detailed models
that incorporate information on ocean
currents (Gaspar et al. 2006) will be
required to reliably identify behav-
ioural states by parsing realized move-

ments into passive advection and active behavioural
components.

The SSSM approach to identifying multiple behav-
iours in movement data is more powerful than descrip-
tive methods such as nonlinear curve-fitting to the
log-frequency of behavioural events (Sibly et al. 1990),
path tortuosity and/or scale-dependency measures
(Johnson et al. 2002), and first-passage time analysis
(Fauchald & Tveraa 2003), because it permits the for-
mulation and fitting of mechanistic movement models
to the data (Morales et al. 2004). In general, we need
models based upon clear statistical principles that
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Fig. 4. Dermochelys coriacea. Differences between transiting and foraging for
the 4 diving statistics: (a) time at depth; (b) time at temperature; (c) maximum
depth; and (d) dive duration. Mean differences (and 95% confidence intervals)
are displayed for each of the 9 turtle tracks. Meta-analytic summaries (random
effects mean with 95% confidence interval) of the 9 individual estimates are
displayed as solid diamonds on the bottom of each panel. Confidence intervals
for the individual estimate were adjusted for temporal autocorrelation (see
‘Material and methods’ for details). The trailing numerals in the turtle designa-
tions indicate separate annual migrations into northern waters for the same
individual (see ‘Material and methods’ for assumptions regarding independence)
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allow estimation of the dynamical parameters that cap-
ture the essence of complex movement behaviour;
descriptive methods cannot do this.

Hidden Markov models have recently been used
to estimate movement parameters including the proba-
bility of switching between different behavioural
states (Morales et al. 2004). The Hidden Markov ap-
proach is conceptually similar to our SSSM approach
with the following 2, albeit related, differences. First,
by fitting a switching model in a state-space context
we are able to model the dynamics of the movement
process directly (Jonsen et al. 2005). Hidden Markov
models do not estimate dynamics per se and thus may
be unable to capture more complex behavioural pro-
cesses. Second, observation errors can be accounted
for in the Hidden Markov context (Morales et al. 2004),
but they cannot be separated from variability in the un-
derlying process that is implicitly being modelled. This
drawback of the Hidden Markov approach will likely
lead to overestimation of the observation errors, or,
if the errors are assumed to be known, may lead to
biased movement parameter estimates.

Identification of habitat and habitat use for marine
predators is of critical importance for effective conser-
vation and management efforts. Assessment of habitat
use is dominated by kernel density estimation methods
(Seaman & Powell 1996) which give each observed
position equal weight and ignore underlying behav-
ioural mechanisms that constrain animal movement to
particular regions or habitats. Our method can be used
to inform kernel density estimation with behavioural
information either by considering only those state esti-
mates associated with foraging or by weighting the
estimation with the bt estimates (e.g. mean of MCMC
samples for each bt) so that state estimates associated
with transiting carry little or no weight. Of course,
a more powerful method would be to model directly
the relationship between habitat features, such as sea
surface temperature or current vectors, and movement
behaviour (Jonsen et al. 2003, Morales et al. 2004) to
gain a mechanistic understanding of how the animals
interact with their environment.

CONCLUSIONS

Using an SSSM that assumes a first-difference corre-
lated random walk on positions in space and time, we
show that distinct classes of movement behaviour can
be readily estimated from error-prone Argos telemetry
data. Moreover, the switches between behavioural
modes correspond with marked changes in the pat-
terns of time at depth, temperature at depth, and dive
duration. The correspondence between the model pre-
dictions and the diving data is impressive because the

SSSM only makes use of information contained in the
time series of positions to estimate the behavioural
modes; the model is ignorant of the diving data. Fur-
ther refinement of the behavioural mode estimation is
possible by allowing the model switching to depend on
the diving behaviour and/or environmental variables.

The leatherback turtle is one of the most difficult ani-
mals to study when they are foraging, furthermore, its
jellyfish prey are nearly transparent and are even more
difficult to study (but see Witt et al. 2007). Thus, our
approach provides insights that cannot be obtained
from other methods; but it would be useful to verify the
predictions of our models using other independent
data, for example, from sensors that detect changes in
stomach temperature, mouth opening, and/or animal-
borne video cameras. However, these methods are dif-
ficult to use for long periods of time for an animal like a
leatherback turtle, that cannot usually be recaptured.

State-space methods represent a critical advancement
in the analysis of electronic tracking data by accounting
for uncertainty in the data and by directly modelling the
dynamics of animal behaviour. For example, the uncer-
tainty in Argos-derived positions can be an order of mag-
nitude greater than the distances over which foraging
animals typically move (Jonsen et al. 2005). In these
situations, use of standard methods such as travel rate
filters to remove suspect observations will inevitably
yield misleading results (Jonsen et al. 2006). Only by
explicitly accounting for uncertainty in the data and
modelling the dynamic nature of behavioural processes
can we gain meaningful insight into the interactions
between animals and their environment.
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