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Abstract. We propose a continuous-time version of the correlated random walk model for
animal telemetry data. The continuous-time formulation allows data that have been
nonuniformly collected over time to be modeled without subsampling, interpolation, or
aggregation to obtain a set of locations uniformly spaced in time. The model is derived from a
continuous-time Ornstein-Uhlenbeck velocity process that is integrated to form a location
process. The continuous-time model was placed into a state–space framework to allow
parameter estimation and location predictions from observed animal locations. Two
previously unpublished marine mammal telemetry data sets were analyzed to illustrate use
of the model, by-products available from the analysis, and different modifications which are
possible. A harbor seal data set was analyzed with a model that incorporates the proportion of
each hour spent on land. Also, a northern fur seal pup data set was analyzed with a random
drift component to account for directed travel and ocean currents.

Key words: Argos location; Callorhinus ursinus; correlated random walk; harbor seal; integrated
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INTRODUCTION

Animal telemetry data are obtained by determining

the location of an animal at several points in time. There

is often great difficulty in locating an animal and, as

such, data are often collected opportunistically. Many

movement models for analyzing telemetry data are

conceptually based on locations that are collected on

regular intervals (Brillinger and Stewart 1998, Jonsen et

al. 2003, 2005, Forester et al. 2007). Thus, either a priori

data processing or model corrections in the form of

subsampling, interpolation, or aggregation must be

completed to transform locations to a regular interval

time scale. Here, we propose a model that can handle

data collected at irregular intervals. By considering

movement as a stochastic process on a continuous time

scale, irregularly spaced data can simply be thought of

as a discrete sample of times. Using this approach,

statistical inference can be made using the raw data

instead of aggregated, thinned, or interpolated data. The

continuous-time model can be placed in a discrete (but

still nonuniform) time framework to analyze movement

data collected in the field. Practical outputs of this

analysis are an estimate of the movement path as well as,

estimates of movement rate and travel speeds at each

point in the path. Standard errors for each of these

quantities are also produced. To illustrate the proposed

model, we analyzed marine mammal telemetry data sets

from two pinniped species of different families: harbor

seals (Phoca vitulina) and northern fur seals (Callorhinus

ursinus). The harbor seal analysis illustrates use of a

covariate to modify the movement model to account for

haul-out behavior. The fur seal analysis illustrates

inclusion of a drift component to model the effect of

currents, wind, and directed travel on migration through

the North Pacific Ocean.

Continuous-time movement models have been used in

the past to model movement with the end goal of

estimating the home range of an animal. Blackwell

(1997), Dunn and Gibson (1977), and Nations and

Anderson-Sprecher (2006) each make use of a bivariate

Ornstein-Uhlenbeck process to account for autocorre-

lation when estimating a home range distribution.

Billinger and Stewart (1998) use a continuous process

defined on a sphere to model northern elephant seal

(Mirounga angustirostris) migration. In agreement with

Jonsen et al. (2005) and Turchin (1998), we consider the

correlated random walk (CRW) model as a more

natural way to think about animal movement. The

CRW process models correlation in the movement rate

under the belief that animals have inertia which keeps

them moving at a similar rate over successive times.

Therefore, we developed a continuous-time version of

the CRW model.

Because the CRW model (both discrete and contin-

uous-time versions) is not Markovian, estimation can be

challenging. Correlated movements imply that an
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animal location at a given time is dependent on all

previous locations, not just the last one. A clever

formulation of the continuous-time version into a

state–space framework allows use of the Kalman filter

(KF) (Durbin and Koopman 2001) to estimate param-

eters via maximum likelihood and predict locations

along the movement path that were not observed.

Kalman filtering has been used for many years in the

field of wildlife telemetry (Anderson-Sprecher and

Ledolter 1991, Anderson-Sprecher 1994, Sibert et al.

2003, Royer et al. 2005, Nations and Anderson-Sprecher

2006, Forester et al. 2007). In addition, the state–space

framework allows inclusion of measurement error in

telemetry locations.

METHODS

A continuous-time model

We begin model development by first considering that

movement is a change in location. So, let l(t) ¼ [l1(t),
l2(t)]0 be the location of an animal at time t, with

subscript 1 referring to a ‘‘latitude’’ coordinate and

subscript 2 referring to a ‘‘longitude’’ coordinate. Then,

the difference dD(t)¼ l(tþD)� l(t) describes movement

of the animal over D time units. For movement on a

uniform time scale (i.e., D ¼ 1), Jonsen et al. (2005)

created a correlated random walk by applying a first-

order autoregressive process (Brockwell and Davis 1991)

to the d1(t) time series.

If l(t) is a smooth and continuous path, then as D
goes to 0, one obtains the differential equation dl(t) ¼
m(t)dt, where m(t) represents the instantaneous rate of

location change (velocity). The Ornstien-Uhlenbeck

(OU) process is the continuous-time version of the

autoregressive process that Jonsen et al. (2005) used to

model location differences. Thus, we consider its use for

the instantaneous velocity of an animal. For each

coordinate axis, c¼ 1, 2, the OU process mc(t) is defined,
for each separation in time, D, by the following

autoregressive equation:

mcðt þ DÞ ¼ cc þ e�bD½mcðtÞ � cc� þ fcðDÞ ð1Þ

where cc is the mean velocity (can be interpreted as

‘‘drift’’), b is an autocorrelation parameter, and fc(D) is a
zero mean normal random variable with variance r2[1�
exp(�2bD)]/2b. The parameter r controls the overall

variability in velocity. Essentially, the equation states

that velocity at time tþD is equal to a random variable

whose variance grows with D plus an adjustment based

on how far away the previous velocity value was from

the mean.

The bivariate velocity process, m(t)¼ [m1(t), m2(t)]0, can
be cross-correlated between coordinates (i.e., cov[m1(t),
m2(t)] 6¼ 0); however, an elliptical velocity pattern is more

realistic (Anderson-Sprecher and Ledolter 1991). Corre-

lated velocities would produce strange directed travel. For

example, positive correlation implies movement predom-

inantly and equally in a northeast and southwest

direction. It seems unlikely that, at any given time and

current location, an animal would randomly switch, with

equal probability, between northeast and southwest

travel. This situation might occur if the animal is

constrained to an oblong-shaped area in which move-

ments are large relative to the size of the area; a fjord

perhaps. In the majority of cases, it would be more

realistic to model purposeful travel with the cc terms.

Therefore, for the remainder of this paper, we consider the

velocity processes in each coordinate to be independent.

Using the velocity process, the continuous-time loca-

tion process l(t) can be obtained by integration to give

lðtÞ ¼ lð0Þ þ
Z t

0

mðuÞdu: ð2Þ

Essentially, the location at time t is the ‘‘sum’’ of the

steps plus a starting location. Thus, by modeling

velocity, we obtain a model for animal location. Eqs. 1

and 2 define the basic continuous-time correlated

random walk model (CTCRW). Because the location

process is constructed from a process of correlated

velocities, the entire track provides information about

the next step (i.e., location process is not Markovian),

unlike a simple random walk. This is what gives

CTCRW directional persistence. As b tends to ‘ and

r/b tends to a constant, the location process becomes a

standard Brownian motion (continuous-time version of

a random walk). Small b implies more directional

persistence than a simple random walk. In fact, at time

separation D ¼ 3/b, mc (t þ D) and mc(t) are roughly

independent (correlation approximately 0.05). So, the

quantity 3/b can be considered a measurement of

directional persistence in units of time. That is to say,

whatever effects are causing the animal to travel in the

same direction at the same speed will be independent

after 3/b time units. In addition, cc¼0 usually, but could

be modeled to account for drift over time (e.g., see

Examples: Marine mammal movement). For ease of

description in the next section, we have assumed cc ¼ 0

(i.e., no drift).

State–space model formulation

In the previous section, we proposed a continuous-

time model for animal movement. The continuous path

of an animal, however, can only be observed at sampled

times. In addition, there are often measurement errors in

the observed locations. In order to model animal

movement, while simultaneously accounting for mea-

surement error, we put the CTCRW into a state–space

model (SSM) framework. This basic SSM can be

modified by the researcher to fit the needs of the data.

In the section Examples: Marine mammal movement we

illustrate some more complex modifications.

The general form of a Gaussian linear SSM for a

univariate observation is given by two equations, the

observation equation and the state equation:

yi ¼ Z 0
iai þ ei aiþ1 ¼ Tiai þ gi ð3Þ
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where ai is the current state vector, yi is an observation

at time i, Ti and Zi are appropriately sized transforma-

tion matrices, ei is a normal measurement error with

variance Hi, and gi are normal error vectors with

covariance matrix Qi. In the case of animal movement

data, yi represents an observed location at time ti and ai

is the true location and movement process of the animal

at time ti.

Assume that locations yi ¼ [y1i, y2i] are measured at

times t1, . . . , tn, then, substituting the subscript i for the

argument ti and conditioning on the true location of the

animal, li¼ [l1i, l2i]0 at time ti, we have the observation

equation for the cth coordinate

yci ¼ lci þ eci; eci ; Nð0;HciÞ ð4Þ

where Hci is the measurement error variance. The error

variance could depend on external location quality

covariates (e.g., see Examples: Marine mammal move-

ment).

Forming the true location equation from the defini-

tion of the CTCRWmodel is not as obvious because l(t)
is not Markov. We can form a Markovian state ai,

however, by bundling the velocity process (which is

Markovian) to the location process into a single state

vector. The transition equation for the velocity process

at time tiþ1, mc,iþ1, is already given in Eq. 1. See Appendix

A for the mathematical details of the derivation.

The location, lc,iþ1 can be formulated in terms of the

location and velocity at time ti to obtain the following

transition equation:

lc;iþ1 ¼ lci þ mci
1� e�bDi

b

� �
þ nci ð5Þ

where Di ¼ tiþ1 � ti and nci are normal errors with

variance

V½nci� ¼
r2

b2
Di �

2

b
1� e�bDi
� �

þ 1

2b
1� e�2bDi
� �� �

: ð6Þ

The covariance between nci and fci is also necessary for

SMM specification and is given by

C½nci; fci� ¼
r2

2b2

�
1� 2e�bDi þ e�2bDi

�
: ð7Þ

Finally, using Eqs. 1, 4, and 5, the CTCRW can be

placed into the SSM framework for parameter estima-

tion and prediction from observed locations with the

specifications yci¼ observed location in the c coordinate

at time ti; Zi ¼ [1 0]0, aci ¼ [lci mci]0, gi ¼ [nci fci]0, Hci ¼
H(xi), where xi is a known location quality covariate;

and

Ti ¼ 1 ð1� e�bDiÞ=b
0 e�bDi

� �
;

Qci ¼
V½nci� C½nci; fci�

C½nci; fci� V½fci�

� 	
:

Statistical inference

Here we focus on the maximum likelihood method of

parameter estimation and location prediction, but

inference could be made with other methods (see

Discussion). When using SMMs, the Kalman filter

(KF) (Durbin and Koopman 2001) is a fast and efficient

computing method for finding maximum likelihood

estimates of movement parameters ĥ ¼ [b̂1, b̂2, r̂1, r̂2]
0

(see Appendix B). In addition, optimum predictions and

prediction intervals of unobserved locations, l̂(t) (as well
as velocity m̂(t)), can be obtained as a by-product.

The likelihood for the CTCRW model is a large,

multivariate normal density (based on normal measure-

ment error and movement model). The Kalman filter

evaluates this complex likelihood by using matrix

manipulations to calculate the conditional log-likeli-

hoods, which are summed to produce the joint log-

likelihood. The log-likelihood is maximized to obtain

parameter estimates that are then used, with a back-

wards set of recursions, to produce location predictions.

The KF recursions need to be started with an initial

value and variance matrix for a1, say ac1 and Pc1. We

suggest ac1¼ [yc1, 0] for an initial state value. The initial

covariance matrix Pc1 may depend on the type of data. If

the initial location is unknown, large variances (relative

to the location scale) would be advisable (see harbor seal

analysis in the next section). If the first location is known

(as in the fur seal example) then P1 ¼ 0 can be used.

EXAMPLES: MARINE MAMMAL MOVEMENT

The continuous-time movement model is illustrated

with analysis of two pinniped data sets from very

different taxa, harbor seals and northern fur seals. Both

are expected to have different behaviors which illustrate

different modifications of the base model presented in

the previous sections. There are, however, some

common modeling considerations and methods by

which data were collected.

For each species location data were recorded by the

Argos system (system description available online).3

Along with locations the Argos system rates the quality

of observed location with a score from 1 (lowest

measurement error; Argos class 3) to 6 (highest

measurement error; Argos class B). Here we used

quality as a location error covariate xi ¼ 1 to 5.

Locations with xi¼ 6 were removed due to possibility of

outliers and high location error variance. A location

error variance model was formulated with a known

proportionality constant between the best location

quality and the other location qualities, Hci ¼ s2
cK2

c (xi),

c ¼ 1, 2, where the values of Kc(�) are given in Table 1

and sc is a parameter which was estimated. To further

reduce the possibility of extreme outliers, both data sets

were processed with the swim speed filter of McConnell

et al. (1992) using a moving average of 1.5 m/s.

3 hhttps://www.argos-system.org/manual/i
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In addition to the location quality adjustment, a

scale correction was also made in each analysis to

adjust for scale differences in latitude and longitude.

Namely, for movements near latitude _y1 there are

approximately 1/cosfrad( _y1)g degrees longitude per

degree latitude, where rad(�) represents conversion to

radians. Thus, it follows that if H1i¼ s2
1K2

1(xi), then H2i

¼ K2
2(xi)/cos

2frad( _y1g implies that s1 and s2 are

approximately equal scale for some appropriately

chosen _y1. Different values of _y1 can be chosen for

different legs of the track to approximate the changes in

longitude scale. In addition, there was no reason to

believe that movement processes in either coordinate

should be different aside from previously mentioned

longitude scale changes. Therefore, we set b2¼b1¼b, r1

¼ r, and r2 ¼ r/cosfrad( _y1g. All computations were

performed with the R statistical package (available

online).4

Harbor seal movement

Between September 2004 and May 2006 satellite-

linked time-depth recorders were attached to harbor

seals in lower Cook Inlet, Alaska, USA. Harbor seals

routinely haul out on land during the course of day-to-

day travels. Haul-out data are derived from a conduc-

tivity sensor in the tag, and this behavior was

summarized into hourly bins indicating the percentage

of each hour the tag was dry.

It would be unwise to use the basic CTCRW model as

it assumes the animal is in continuous motion for the

length of the track. The haul-out behavior of harbor

seals needs to be taken into account to provide accurate

estimates of location. Other authors have proposed

inclusion of characteristics into movement models that

account for behavioral shifts in movement. (Blackwell

1997, 2003) proposes a switching model for inclusion of

a discrete behavior covariate that controls movement

parameters. Other authors (Morales et al. 2004, Jonsen

et al. 2005) have proposed the same type of model, but

treated the discrete behavior variable as a latent random

effect to create a mixture movement model. Here we

consider inclusion of a continuously valued covariate

which produces a model in which a smooth range of

haul-out behavior is allowed to act on the movement of

the seal. This avoids subjective loss of covariate

information by discretization. However, the covariate

must be available, something not all telemetry devices

can record.

To develop a haul-out model, first, let u1, . . . , um be

the cut points for which the proportion of time the

instrument was dry, Di, is measured. For the present

analysis, ui and uiþ1 are an hour apart. The dry time Di is

associated with the interval (ui, uiþ1]. If dry time equals 1,

the model should, in essence, slow down so that l̂(t) is
equal to l̂(ui) for any t in the interval (ui, uiþ1]. Upon

examining specification of the mc(t) process in Eq. 1, one

can see that letting b tend to infinity (while r remains

constant) will give the desired result that velocity tends

to zero. If all location observations occurred at u1, . . .,

um, the CTCRW state-space model could be used by

replacing b with bi¼ b/(1� Di)
/, where / is positive, in

the matrices Ti and Qi. This is not, however, the case. It

would be impossible to achieve a perfect correspon-

dence.

In order to overcome the fact that locations and dry

time values are measured at different times, we used the

built-in missing data handling properties of the KF (see

Appendix B). Times for which an estimated location is

desired can be included in the data set as a missing value

and the filter automatically will process the entire

augmented data set at the both the prediction and

estimation stages. Thus, to implement the haul-out

model we augmented the location times t1, . . . , tn with

the cut points u1, . . . , um�1, here we let um¼ tn. Now, let

t�i , i¼ 1, . . . , nþm� 1, be the augmented time set. For

the t�i where a location is measured, Di was set to the dry

time measured at the closest cut point previous to t�i (see

Appendix C: Fig. C1 for illustration). For hours where

Di was missing, Di¼0 was used as missingness was likely

due to the animal being in the water. This represented a

small fraction of the total number of hours. Harbor seals

do not range over large latitudinal gradients; therefore,
_y1i was set to the geometric mean latitude.

To obtain parameter MLEs, the CTCRW KF is run

over the entire augmented data set. The likelihood is

maximized to obtain estimates b̂, r̂, ŝ1, ŝ2, and /̂.
Because the animals were allowed to range freely to

reduce capture effects, initial locations were unknown.

So, we used ac1¼ [yc1, 0] and Pc1¼ diagf[1, 1]g. We felt

that this was sufficiently large to represent an unknown

initial state when recording locations in degrees latitude

and longitude.

Fig. 1 illustrates the estimated hourly locations and

haul-out locations for a single harbor seal. These

locations correspond to many known haul outs from

extensive aerial surveys in Cook Inlet. Parameter

estimates and standard errors are given in Appendix

C: Table C1. Knowing that the animal remains in a fixed

location during haul-out allows more rigorous estima-

tion of location error. The estimates and 95% confidence

intervals of s1 and s2 imply estimates of measurement

TABLE 1. Values of the known multiplier function K(�) for the
location error variance.

Quality Latitude Longitude

1 1.00 1.00
2 1.57 1.83
3 3.88 4.71
4 14.17 14.22
5 11.08 5.21

Note: The location quality constant values were obtained
from standard deviation ratios presented in Vincent et al.
(2002).

4 hhttp://www.r-project.org/i
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error standard deviations for the highest quality

locations of 81.5 m (95% CI: 74.1–89.7 m) in the latitude

coordinate and 179.9 m (95% CI: 167.0–193.8 m) in the

longitude coordinate. This is consistent with Vincent et

al. (2002) who also found larger Argos error in the

longitude coordinate. The small value b̂¼ 0.67 (95% CI:

0.53–0.85) show that this animal exhibited persistence in

direction while swimming; a simple random walk would

not have been appropriate. From b̂ the estimated

directional persistence is 4.5 h (95% CI: 3.5–5.6 h) when

the seal is swimming, significantly far from zero.

Northern fur seal pup migration

In November 2005, northern fur seal pups (NFS)

from St. Paul Island, Alaska were equipped with satellite

tags prior to departure from the breeding colonies. Pup

departure times from rookeries were calculated as the

midpoint between the time of the last land location and

the first location at sea.

The NFS location data presents another challenge to

the basic CTCRWmodel such that another modification

was necessary. Due to the fact that this is a migration

path where pups are traveling long distances to feeding

grounds in the North Pacific Ocean, it is conceivable

that they may exhibit some directed travel or large-scale

ocean current effects. Therefore, we will include a slowly

varying drift model for the mean velocity.

A random drift model can be fit by thinking of

movement as the sum of two independent zero mean OU

velocity models:

mcðtÞ ¼ ccðtÞ þ qcðtÞ ð8Þ

where qc(t) has parameters b and r, as before, and cc(t)
has parameters b/w and rc. The parameter w . 1 is a

scale-multiplying factor for the drift process. This forces

c(t) to vary more slowly (longer directional persistence)

than q(t). Thus, c(t) represents the effects of slowly

changing conditions and q(t) represents small-scale

adjustments in velocity.

The drift model was fit to the NFS data by making the

following changes to the SMM matrices:

Zci ¼ ½1 0 0� 0 aci ¼ ½lci mci cci� 0

Tci ¼

1 ð1� e�bDiÞ=b wð1� e�bDi=wÞ=b

0 e�bDi 0

0 0 e�bDi=w

2
6664

3
7775

and

Qci ¼
V½nci� C½nci; fci� C½nci;xci�

C½nci; fci� V½fci� 0

C½nci;xci� 0 V½xci�

8<
:

9=
;:

Now,

V½nci� ¼
r2

b2
Di �

2

b
1� e�bDi
� �

þ 1

2b
1� e�2bDi
� �� �

þ
w2r2

c

b2

�
Di �

2w
b

1� e�bDi=w

 �

þ w
2b

1� e�2bDi=w

 ��

ð9Þ

and

V½xci� ¼
wr2

c

2b
1� e�2bDi=w

��

C½nci;xci� ¼
w2r2

c

2b2
1� 2e�bDi=w þ e�2bDi=w

 �

:

Appendix A provides mathematical details of the drift

process state-space model derivation.

Due to the fact that the pups were instrumented on

land and rookery locations are known, the initial state

and state variance were set to Pc1¼ 0 and ac1¼ [Rc, 0, 0],

where Rc is the coordinate c value of the rookery

location.

Because a large range of latitudes was traversed

during migration (see Fig. 2 for a single pup), the

longitude scale correction factor becomes important.

For each location, a value of _y1 is necessary. To provide

FIG. 1. Haul-out adjusted continuous-time model for
harbor seals (Phoca vitulina) in Cook Inlet, Alaska, USA.
Light gray points represent predicted hourly locations when the
animal was swimming for some portion of the hour (i.e., dry
time ,1). Large black points represent predicted locations
when the animal is hauled out (i.e., dry time¼ 1).
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values, each observed latitude was truncated its whole

degree value, _y1i ¼ [y1i ]. For each t in the interval [ti,

tiþ1), where a prediction was desired, _y1 was set to _y1i.
Admittedly, this is somewhat ad hoc, however, various

alternatives produced nearly identical results, so, the

CTCRW model seems rather robust to this choice.

One quantity of interest for NFS pups is speed. The

ground speed of the pups is likely to be an indicator of

when the animals are foraging vs. traveling during their

trip. The instantaneous speed, Ŝ(t), of the pup at time t

(in km/h) is approximately

ŜðtÞ ¼ 111:325

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂1ðtÞ2 þ ½m̂2ðtÞcos rad½l̂1ðtÞ�f g�2

q
ð10Þ

where m̂c(t) ¼ ĉc(t) þ q̂c(t). For the small distances

traveled (,10 km) by the animal in one hour, this

approximation is within 0.02% error of the true rate

when calculated using the great circle distance. The

standard error of Ŝ(t) can be estimated via the delta

method (Casella and Berger 2002). The CTCRW KF

provides all the variances and covariances necessary for

the delta method calculation using the generic delta-

method( ) function in the msm library for R (see

Appendix B).

Fig. 2 illustrates hourly speed estimates and location

predictions for a single pup. Very fast speed is frequently

attained by pups through the Aleutian Island passes (see

Fig. 2 left inset). The degree to which pups actively swim

or ride the swift pass currents is unknown and the

subject of further study. The right inset map in Fig. 2

illustrates the slow speeds around possible foraging

areas of the instrumented pup.

Fig. 3 illustrates the estimated drift and small-scale

velocity trace. Examination of the drift process trace in

Fig. 3a shows directed southerly travel for approximate-

ly the first two weeks. This is followed by generally

eastern progression (Fig. 3b). The small-scale autocor-

relation MLE b̂ ¼ 0.57 (95% CI: 0.53–0.85), hence the

estimated directional persistence for q(t) is 5.3 h (95%

CI: 3.7–7.6 h). Interestingly, quite similar to the harbor

seal in the previous section. The directional persistence

ratio ŵ ¼ 58.92 h gives an approximately 13-day

persistence effect for the random drift component c (t).

DISCUSSION

In this paper, we presented a continuous-time model

for animal movement. The continuous-time formulation

allows the data to be used without subsampling or

aggregating data to fit into a regularly spaced time scale.

By further placing the model into a state-space

framework the fast and computationally efficient Kal-

man filter can be used to estimate locations at a set of

desirable times. This represents a significant improve-

ment over discrete time scale models. First, and

foremost, because it does not require a researcher to

select what the modeled movement time scale will be

(e.g., daily or weekly). With movement models such as

Jonsen et al. (2005), the assumption that true location at

the time of measurement is a linear interpolation of the

bracketing modeled locations means that small scale

movements are assumed to be linear. If there are

multiple observations between two modeled times all

deviation from linear travel is assumed to be measure-

ment error. This implies the need for careful consider-

ation of the modeled time scale. Using the CTCRW

model, once parameters are estimated, the KF can make

predictions at any chosen time scale and the small scale-

movements are retained.

The basic CTCRW model can be generalized to

include movement covariates and large- and small-scale

movement rate modeling. Something difficult to do with

a discrete time scale, unless the covariate times are

aligned with the location time scale. Both of these

modifications were illustrated with example analysis of

marine mammal telemetry data. First by including a dry

time covariate model to model harbor seal movement in

the presence of haul-out behavior. Secondly, a random

drift modification was used to model northern fur seal

migration in the presence of long-term directed travel

and ocean currents. Here, environmental covariates

FIG. 2. Estimated hourly locations for a northern fur seal
pup (Callorhinus ursinus) tracked from St. Paul Island, Alaska,
USA, November 2006 to June 2007. In the full-scale track, only
two speed classes are plotted, ,4 km/h (small dots) and �4
km/h (large dots). In the inset maps, speed is discretized to 1
km/h blocks for more detail. The left inset shows predicted
hourly movement through Amukta Pass; the right inset shows
tortuosity of northern fur seal pups highlighting rapid
(travel/current) and slow (foraging) movement regions.
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were not included. But it is easy to envision a model,

similar to the haul-out model, where the velocity

parameters are a function of these variables (Forester

et al. 2007).

The main assumption of the CTCRW model and

associated state–space modeling methods is one of

normality. The measurement error and velocity were

both assumed to be normally distributed. For any given

data set it is certainly possible to violate this assumption

on both counts. Argos locations are known to have large

outliers (Vincent et al. 2002, Jonsen et al. 2005). The

filtering we performed and use of higher quality

locations alleviated this problem to a visually detectable

degree.

If preprocessing of the data is not possible there are

some slight modifications of the CTCRW model that

can be used. If the measurement error assumption is

significantly violated the CTCRW model could be

placed in the robust framework of Jonsen et al. (2005)

by assuming t distributed location errors. Inference

could then make via Markov Chain Monte Carlo

(MCMC). We believe, however, that it is better to

invest research effort into outlier detection in Argos

locations rather than use of a robust black box. The

robustness of the t errors comes at a cost. If every

location is potentially an outlier, any model will tend to

produce predicted paths which are more linear as

velocity shrinks toward the mean. By detecting outliers,

removing them, and using the normally distributed

CTCRW model, small-scale movements will be better

preserved.

A nonnormal movement process, such as a heavier

tailed process, has the potential to be more challenging

to handle. A heavy tailed process implies that the animal

exhibits ‘‘flight’’ behavior where there are occasionally

very large movements mixed with mostly small move-

ments. The mixture model framework of Morales et al.

(2004), however, could be employed. A latent variable

could indicate ‘‘flight’’ sections where velocity variance

would be large. And, conditional on this latent

indicator, the movement could be assumed to be normal

(albeit, with different variances). The resulting mixture

of normal movements will be heavier tailed than a single

normal movement model. MCMC would be the most

straightforward method of inference for this type of

model.

In the presence of possible normality assumption

violations the normal CTCRW model can be slightly

modified to overcome these problems. Even with the

normality assumptions it is a very flexible model for

animal movement data.

FIG. 3. Estimated hourly velocity processes for a northern fur seal pup tagged on St. Paul Island, Alaska, USA. Heavy black
lines represent the drift process cc(t) and the heavy gray lines represent the small-scale qc(t) process (c¼ 1 for latitude and c¼ 2 for
longitude). Finer lines represent 95% confidence bands for each process. Negative values for latitude processes represent movement
to the south. Negative values for longitude represent travel to the west. A vertical line is drawn at two weeks of migration to
illustrate what appears to be a change in overall direction and speed by the animal.
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APPENDIX A

Mathematical details of the continuous-time correlated random walk (CTCRW) model (Ecological Archives E089-074-A1).

APPENDIX B

Details for application of the Kalman filter to the CTCRW model (Ecological Archives E089-074-A2).

APPENDIX C

Additional details for the analysis of marine mammal data (Ecological Archives E089-074-A3).
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