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Abstract The problem of reconstructing past climates

from a sparse network of noisy time-averaged observations

is considered with a novel ensemble Kalman filter

approach. Results for a sparse network of 100 idealized

observations for a quasi-geostrophic model of a jet inter-

acting with a mountain reveal that, for a wide range of

observation averaging times, analysis errors are reduced by

about 50% relative to the control case without assimilation.

Results are robust to changes to observational error, the

number of observations, and an imperfect model. Specifi-

cally, analysis errors are reduced relative to the control

case for observations having errors up to three times the

climatological variance for a fixed 100-station network,

and for networks consisting of ten or more stations when

observational errors are fixed at one-third the climatologi-

cal variance. In the limit of small numbers of observations,

station location becomes critically important, motivating

an optimally determined network. A network of fifteen

optimally determined observations reduces analysis errors

by 30% relative to the control, as compared to 50% for a

randomly chosen network of 100 observations.

Keywords Data assimilation � Paleoclimate �
Ensemble Kalman filter � Atmospheric modeling

1 Introduction

Accurate estimates of past climate change provide impor-

tant benchmarks for comparing and understanding future

climate change. Climate reconstructions based on models

alone lack a link to observations, which constrain the space

of possible states of the climate. Given the short length of

time for the instrumental record, approaches based on

observations necessarily rely on measurements of proxy

quantities. A major challenge with these measurements is

the quantitative assessment of the relationship between the

proxies and the physical fields, such as wind and tempera-

ture, near and far from the location of the proxy mea-

surement. Empirical relationships are frequently used, but

they lack the physical constraints that relate the proxies to

dynamically consistent fields in space and time. The

approach we advocate here attempts to overcome these

shortcomings by blending information from observations

and model estimates of the observations using ensemble-

based state estimation.

One obstacle to progress on this problem using state

estimation is that, unlike most weather observations, proxy

measurements represent integrals over long periods of

time; often a year or longer. A solution to this problem was

proposed by Dirren and Hakim (2005) and tested on a

Lorenz system with slow and fast modes. The crux of this

method is that the time averaging and Kalman-filter-update

operators are linear and commute. This property allows one

to update the time-averaged state independently from the

deviation from the time average, the latter being essentially

a high-frequency signal unresolved by the observations.
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The purpose of this paper is to test this method in an

atmospheric model, which is idealized yet contains

dynamically relevant variability at a range of frequencies

as a result of a baroclinic storm track interacting with a

mountain. Such a framework is realistic enough to assess

the generality of the low-order results of Dirren and Hakim

(2005), but simple enough to allow testing over a range of

observation network and model configurations. This sim-

plicity also comes at a price: Although our motivation is

paleoclimate reconstruction, the model we employ is

insufficiently complex to capture true paleoclimate vari-

ability, which necessarily involves additional components

of the Earth climate system such as oceans and ice. Never-

theless, the simpler model chosen here provides a testbed

for solution techniques to key aspects of the problem of

paleo data assimilation, while supplying some of the rich

dynamical interactions across different timescales repre-

sentative of the complete problem. It serves, thus, as a

stepping stone in the hierarchy of models, moving toward

proper assimilation of paleo proxy data in more compli-

cated models.

The remainder of the paper is organized as follows. The

method is described in Sect. 2, and results from a control

experiment without any data assimilation and a set of

baseline experiments with a fixed, randomly distributed

network of observation are described in Sect. 3. The sen-

sitivity of the baseline experiment to changes in the

observation averaging period are described in Sect. 4.

Experiments exploring the sensitivity of the baseline

results to the observational error and to the number and the

location of stations are described in Sects. 5 and 6,

respectively. A limited assessment of the impact of model

error, in the form of degraded resolution and erroneous

damping timescale, is described in Sect. 7. Section 8 pro-

vides a concluding summary.

2 Methodology

2.1 Notation

Throughout, ensemble averages will be denoted using

angle brackets h�i, while averages over time will be indi-

cated using an overbar �� . Quantities from the ‘‘true state’’

simulation, or observations taken therefrom and modified

with noise, will be denoted by a subscript o. The averaging

time period is denoted by s.

2.2 The model

With the idea of a model hierarchy in mind, we chose a

quasi-geostrophic (QG) atmospheric model to test the

assimilation method described below, building on earlier

research with an idealized one-dimensional model (Dirren

and Hakim 2005). The QG model provides some of the

realistic phenomenology and chaotic behavior of the atmo-

sphere, such as jets, baroclinic waves, cyclones and fronts,

yet it is simple enough to run quickly and to permit a

straight-forward analysis of the results. Specifically, the

model describes a turbulent jet stream on a periodic domain

for a uniform potential vorticity troposphere, bounded above

and below by rigid surfaces. A convenient consequence of

such a configuration is that the interior field (between ground

and tropopause) is determined completely and without

approximation by the potential temperature boundary con-

ditions; therefore the dynamics collapse computationally to

two dimensions. Throughout we will be analyzing the

potential temperature field h on the boundaries.

The model implementation employs a pseudo-spectral

method and a third-order accurate Adams-Bashforth time

integration scheme. The dynamics are damped by hyper-

viscosity and an Ekman layer on the lower boundary.

Forcing is supplied by relaxation back to a prescribed jet

(Hoskins and West 1979) on a timescale of about 20 days,

which is meant to mimic radiative restoration of midlati-

tude baroclinicity.

The size of the domain is approximately 28,000 km in x,

11,000 km in y, and 10 km in z, with a de-aliased spectral

resolution equivalent to 64 9 32 grid points (about

435 km 9 345 km). Time and space are scaled and

expressed in nondimensional units, where one unit corre-

sponds to 9.26 h and 1,000 km, respectively. Moreover,

potential temperature (the prognostic variable in this

model, which we will analyze) is also non-dimensional-

ized, with one unit scaled to 9.18 K. Further details on the

model and scaling are provided in Hakim (2000).

A mountain is positioned at the center of the domain, with

height roughly 6 km and of spherical Gaussian shape (with

a damping length scale of 1,000 km). Compared to a flat

bottom boundary, this topography results in a richer low-

frequency spectrum in the potential temperature field and

facilitates the study of different averaging times.

2.3 The assimilation procedure

The method we employ for assimilating time-averaged data

is a variation of the (square-root) ensemble Kalman filter

(EnKF), which is derived as the optimal unbiased state

estimate under the assumptions of a linear model and

Gaussian error statistics. This novel version of the algo-

rithm was first suggested by Dirren and Hakim (2005).

Rather than determining innovation increments to instan-

taneous quantities from averaged observations, the time

averages themselves are updated and unchanged perturba-

tions therefrom added to the analysis to recover the full

state. See Appendix 1 for further details.
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For the experiments presented here, an ensemble of fifty

members is cycled over fifty averaging periods. Standard

measures are employed to address sampling error, includ-

ing spatial localization of covariances by a combination of

a hierarchical filter (Anderson, 2007) with five sub-

ensembles and a Gaspari-Cohn function (Gaspari and Cohn

1999).

For the EnKF, observations impact only those variables

that covary with the model estimates of the observations. In

theory, if the true statistics of the system were known

precisely (and provided the observations are a linear

function of the state vector), the resulting time averages of

the algorithm used here would be equivalent to those

achieved by applying the EnKF directly to the instanta-

neous variables, due to the commutation of the linear

operators (time average and filter update; see Appendix 2).

In practice, the statistics must be estimated from the

ensemble, and we expect covariance relationships of time-

averaged observations with time-averaged state variables

to be less prone to noise than those with instantaneous state

variables.

In addition, and more importantly, the Dirren and Hakim

method has the advantage that far fewer covariance esti-

mates have to be carried out at each assimilation step in

order to update the time-averaged state than with a com-

parable traditional implementation of the EnKF. In experi-

ments based on a dense observation network (Fig. 1), using

the present method, where only time averages are updated

during assimilation, and using another where instantaneous

states are updated and then averaged a posteriori, we found

both analysis and forecast estimates of the time averages to

be essentially equally good from both methods. The esti-

mates of instantaneous quantities are slightly better when

they are directly updated, although only at short averaging

times. However, the instantaneous-assimilation method

becomes increasingly expensive for long time averages,

since the time required for assimilation scales linearly with

the number of assimilation times; the method advocated

here requires only a single assimilation step per averaging

interval. For the s = 100 case, the difference in computing

time amounts to roughly a factor of 60.

2.4 Statistical validation methods

An assumption of ensemble modeling is that the discrete

statistics of the finite ensemble are a good representation of

the continuous statistics of the real system. Even in the case

of a perfect model experiment, as we have here, it is well

known that sampling error can result in poorly calibrated

ensemble data assimilation systems with, for example, an

underestimate of the variance (see, e.g., Anderson and

Anderson (1999)).

The validation method we employ here, based on

Murphy (1988), compares the expected value of the

squared error in the ensemble mean to the expected value

either of the ensemble variance or of the squared error in a

single run. Let the state variable be denoted by h and a

single ensemble member by hj. The ‘‘truth’’ is ho and the

ensemble average hhi . An expected value will be indicated

by ½½��� . Let N be the number of ensemble members.

The ensemble variance is then defined as

S ¼ 1

N � 1

XN

j¼1

hj � hhi
� �2

: ð1Þ

The squared errors in the mean and in a single run are,

respectively,

EM ¼ hhi � hoð Þ2 and ð2Þ

Ej ¼ hj � ho

� �2
: ð3Þ

Murphy showed that, under the assumption that the ‘‘truth’’

is drawn from the same distribution as the ensemble

members,

½½EM �� ¼
N þ 1

N
½½S�� ð4Þ

and

½½EM �� ¼
N þ 1

2N
½½Ej��: ð5Þ

These results will be used to check the calibration of the

ensemble. Note that the errors in these expressions are

squared, not root-mean-square. While it is common in the

literature to use the ratio of the root-mean-squared errors,

½½
ffiffiffiffiffiffiffi
EM

p
=h

ffiffiffiffiffi
Ej

p
i�� , Murphy’s theory (which is often cited as

justification) in fact does not extend to this expression,

since ½½
ffiffiffiffi
X
p
�� 6¼

ffiffiffiffiffiffiffi
½½X��

p
and ½½X=Y �� 6¼ ½½X��=½½Y �� in general.

2.5 Diagnostics

Ensemble data assimilation is designed to improve upon a

background estimate by adjusting the ensemble meanFig. 1 Baseline experiment observation network
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closer to observations and by reducing the ensemble vari-

ance. We focus primarily on error reduction in the

ensemble mean to evaluate the performance of our algo-

rithm in the QG model. Specifically, we consider the root-

mean-square (rms) error in the potential temperature (h)

field taken over the ground and tropopause, given by

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

X

x

hhðxÞi � hoðxÞ½ �2
s

; ð6Þ

where K is the number of points in space and either the

analysis or the forecast is substituted. A similar expression

is used to analyze the time averages relevant in the context

of averaged observations.

A reference value is generated by carrying out these

calculations on a control ensemble created without any

assimilation. The resulting rms error samples are used to

determine an rms error time mean,

Ravg ¼ 1

T

X

t

RðtÞ; ð7Þ

and standard deviation,

rR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T � 1

X

t

RðtÞ � Ravgð Þ2
s

: ð8Þ

Due to averaging, ensemble mean forecasts are expected to

have smaller errors than forecasts from a single simulation

(Eq. (5) above; see Murphy 1988). To distinguish the error

reduction due to the use of an ensemble from that due to

the data assimilation, it is important to derive the reference

value from an ensemble mean rather than from a single

simulation.

3 Baseline experiments

3.1 The setup

Many factors affect filter performance, including observa-

tion locations and error statistics and the number of

ensemble members. Throughout the experiments we fix

parameters associated with the assimilation technique, such

as ensemble size, covariance localization method, and

assimilation interval. All ensembles are initialized by fifty

random draws from the model climate history. In the

experiments that follow the observation averaging interval

is varied to investigate the performance of the assimilation

algorithm (Sect. 4). In subsequent experiments (Sects. 5

and 6) we consider the effect of observation error, location,

and number on the results.

For the baseline experiments, 100 observation locations

are chosen randomly but evenly spread across the two

surfaces (Fig. 1). A single truth run is created for generating

observations and for verification of analyses and forecasts.

For each observation averaging period, s, observations are

drawn at the specified locations from the truth run, aver-

aged, and modified by random noise (normally distributed,

with mean 0 and standard deviation ro = 0.27, which is

about half the climatological variability in the model).

3.2 Two examples: s = 100 and s = 20

Assimilation results are reviewed here for two cases: a

relatively long averaging time s = 100 (i.e., about a

month) and a relatively short averaging time s = 20

(i.e., about a week). For paleoclimate records, even

monthly averages are unrealistically short, but the absolute

timescale is not the main point here. The more general

question addressed here is to what extent a low-frequency

signal can be determined from time-averaged observations

in the presence of large high-frequency variability, such as

the baroclinic waves in the QG model, which dynamically

interact with the low-frequency signal.

Due to Ekman damping, there is less variability on the

lower surface of the model than at the tropopause. Simi-

larly, there are north–south spatial differences in variability

due to the chaotic motion of the jet. We will not address

results associated with these spatial variations, but focus

instead on summary results for both boundaries taken

together. Our conclusions hold for each boundary taken

separately as well.

For an averaging time of s = 100, time-averaged anal-

yses (h , red line in Fig. 2 (a)) improve upon the control

(black line), reducing the rms error on average (over the 50

assimilation intervals) by over 18 % . The rms error is

almost always less than the ensemble-adjusted control

value, Rc
avg, despite the fact that the observational error

(green line) actually exceeds the mean control rms error

(i.e., climatology). The improved accuracy of the analyses

does not, however, translate to improvements in the forecast

(blue line). We conclude that the time-averaged observa-

tions constrain the time-averaged potential temperature

field, but for long time averages, the error still saturates in

the forecast cycle. In fact, for averaging times greater than

s = 30, using an ensemble randomly drawn from the model

climatology, as opposed to the ensemble advanced by the

model from the previous analysis time, yields essentially

identical analysis rms errors (not shown). In other words, in

this situation, the model adds little information over that

available from climatology, and the assimilation procedure

primarily serves to interpolate spatially between the

observations. For s = 100, the rms error in the instanta-

neous values exhibits little improvement over the control,

since variability at shorter timescales dominates (Fig. 2b).

Results differ for shorter averaging times. For example,

h analysis errors for s = 20 are larger in absolute terms,

998 H. S. Huntley, G. J. Hakim: Assimilation of time-averaged observations

123



because of the larger variability on shorter timescales, but

show greater improvement relative to the corresponding

time-averaged control (Fig. 3a). Moreover, forecast errors

are also substantially reduced, as are errors in both analyses

and forecasts of the instantaneous values (Fig. 3b). Note

that the observational error in this case is below the control

(Rc
avg), which effectively gives the observation more

weight; this issue will be revisited in Sect. 5.

We remark here that application of the filter alone, as

can be seen in Figs. 2 and 3, will inevitably lead to some

discontinuities at each assimilation step in a time-series of

multiple averaging periods, which do not represent physi-

cal processes. A smoother transition can be attained

through a post-analysis step of filtering for low-frequency

variability. Whether such a smooth solution is any closer to

the ‘‘true’’ physical state is unclear, but such a filter-

smoother combination will be more appropriate for some

types of analyses. As we do not focus here on the dynamics

across multiple assimilations, our results are not impacted

by the discontinuities, and the many issues surrounding this

phenomenon, associated with any reanalysis application,

are beyond the scope of this paper.

3.3 Statistical validation

As described above in Sect. 2.4, an ensemble data assim-

ilation technique not only has to improve the estimate of

the true state but should also reflect the probability distri-

bution from which the true state is drawn. The main

challenge is to maintain proper ensemble variance. To

verify that our algorithm is properly calibrated, relation-

ships (4) and (5) are evaluated by averaging over all

available instances in time, and in the case of ½½Ej�� also over

all ensemble members. Since fifty ensemble members were

used, the theoretically predicted values for the ratios are

½½EM ��
½½S�� ¼

N þ 1

N
¼ 51

50
¼ 1:02 ð9Þ

½½EM ��
½½Ej��

¼ N þ 1

2N
¼ 51

100
¼ 0:51 ð10Þ

The values computed for the two example cases s = 100 and

s = 20 are given in Table 1. These numbers indicate that our

ensembles are generally well calibrated, although the spread

tends to be smaller in the analysis of the averaged quantity.

Fig. 2 Root-mean-square error at the boundaries of the model run

with s = 100, compared to the ‘‘truth’’ run. The left panel (a) and the

right panel (b) show results for averaged h and instantaneous h,

respectively. Red indicates analysis, blue forecast values. The green
lines represent the standard deviation for the error added to the

observations. The solid black lines show the mean rms error of the

time-averaged and instantaneous quantity, respectively, for the

control run ensemble, with the shaded grey band indicating one

standard deviation from this mean

Fig. 3 Same as Fig. 2, but for

s = 20
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4 Effects of changing the averaging period s

To construct a more complete analysis of the effects of

varying the averaging time of the observations, experi-

ments were performed for s varying from 10 to 100 in steps

of 10. In all cases, the rms errors of the analysis of aver-

aged quantities, at both the tropopause and the ground, (red

line, Fig. 4) are significantly less than in the control (black

line). The analysis error is also smaller than the assumed

observational error (green line) for all values of s. For

s = 10 and 20, forecasts (blue line) exhibit average rms

error reduction of more than approximately one standard

deviation rR, as derived from the unassimilating control;

decreases for s = 30 are slight and disappear altogether for

larger values of s. Although the observation error becomes

unrealistically large relative to intrinsic variability for

s[ 30, we show in Sect. 5 that this factor cannot account

for the lack of improvement to forecasts for these time

averages. This leads us to conclude that, for these time-

scales, the growth to saturation of errors at higher

frequencies is shorter than the averaging time, which no

reduction in analysis error can change; that is, these

timescales are beyond the limit of predictability for this

model assimilating such averaged observations with our

method.

Thus far we find that assimilating s-averaged observa-

tions improves s-averaged analyses. Here we generalize the

assessment of reduction in Ravg to a range of output aver-

aging times, s*, by considering for each observation aver-

aging time s the error reduction function

gðs; s�Þ ¼ Ravg
c ðs�Þ � Ravg

analðs; s�Þ
Ravg

c ðs�Þ

� �
� 100%: ð11Þ

Note that the control value Rc
avg depends on s* only, while

the analysis value Ranal
avg is a function of both observation

and output averaging times. The results for a range of

values of s and s* are summarized in Fig. 5. The forecast

used for the second panel in each case is run for a length of

s (the observation averaging period) between assimilations,

as displayed in Figs. 2 and 3; consecutive sections

of length s* (the output averaging period) enter the

calculation.

For a given analysis state variable averaging time s*,

assimilation with a shorter observation averaging time

generally produces a greater improvement; i.e., along a

horizontal line in Fig. 5 a, the error reduction decreases.

Exceptions to this rule occur for most values of s* with

s = s* giving, in fact, a better result than the pattern

suggests, due to the in-phase relationship between assimi-

lation period and output averaging period. Similarly, along

a vertical line in Fig. 5a, for a given observation averaging

time s, a greater error reduction is realized for longer state

variable averaging times s*. The exceptions here are

somewhat more noticeable and, again, fall predominantly

along the line s = s* but also on values of s* that are

integer multiples of s, as one would expect. Maybe most

noteworthy is that the error reduction across almost the

entire figure is quite substantial, with significant improve-

ments ( C10%) well below the s = s* line. In fact, the

10%-cut-off follows more closely s* = 0.5 s for s C 50

and is even lower for smaller s. In other words, the method

is fairly successful at constraining some higher-frequency

variability with low-frequency observations.

Interestingly, these patterns in the error reduction in the

analysis are not reflected by the error reduction in

the forecast (Fig. 5b). As seen in Fig. 4, the error in the

s-averaged forecast saturates at the control error for sJ30.

However, the forecast averaged over longer periods s* still

exhibits some error reduction (C5%) for s up to 70. On the

other hand, there is virtually no error reduction for s* \ s,

with the exception of s = 10 and 20. Thus, improving the

longer timescales does not have a significant influence on

shorter timescale dynamics.

Table 1 Statistical validation of the ensemble variance for the

baseline cases using Murphy’s formulae

Inst fcst. Inst anal. Avg fcst. Avg anal. Target

s = 20 0.97 0.97 1.05 1.16
½½EM ��
½½S�� ¼ 1:02

s = 100 1.03 1.03 1.06 1.13

s = 20 0.50 0.50 0.52 0.54
½½EM ��
½½Ej �� ¼ 0:51

s = 100 0.51 0.51 0.52 0.54

Fig. 4 Mean root-mean-square errors Ravg for h of the analyses (red)

and forecasts (blue) as a function of averaging time s. For

comparison, the plot also shows ro (green, independent of s) and

the control Rc
avg (black, squares) for ensemble forecasts, along with

the span of ± rR (grey shading)
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5 Impact of observation error

In the baseline experiments, the assumed observational

error is fixed for all averaging times. As a consequence,

the observational error actually significantly exceeds cli-

matological variance for larger s. It is conceivable that the

lack of improvement in the forecast could be ascribed to

overly noisy observations. To test this idea, experiments

are repeated with ro now taken consistently as a third of

the climatological rms error Rc
avg for each value of s. As

Fig. 6 shows, the decreased observational noise (dashed

green line, vs. the original noise as a solid green line) does

significantly lower the error in the analysis of the

s-averaged potential temperature (dashed red line with

triangles, vs. solid red line with circles). For s C 30, the

rms error is cut by roughly a third or more (almost half for

s = 100). The forecasts, however, are barely improved for

s = 10 and 20 and not at all for any larger values of s
(dashed blue lines with triangles, vs. solid blue lines with

circles). In other words, the averaging periods are long

enough that the errors saturate in the model forecast, even

if the initial conditions are markedly more accurate. As

mentioned before, in these cases, the model serves to

interpolate between the observations, and the assimilation

can be performed on an ensemble drawn from climatology

at each assimilation step with similar results. Instanta-

neous analyses improve by 2–6%, while forecasts have

practically the same errors as in the baseline experiments

(not shown).

To assess further the impact of observation error, we

chose s = 20 as an example where both analysis and

forecast of h are improved by reducing ro from 0.27 to

0.10. ro is then varied over a larger range of values (0, 0.1,

0.22, 0.5, 1, and 2; essentially a doubling each time after 0).

Figure 7 shows the rms error in the averaged quantity as a

function of observational error. The plot for instantaneous

h looks remarkably similar, except with larger values.

(Greater variability at the shorter timescales leads to a

control rms error of 0.42 vs. 0.29 for s = 20.) Clearly,

when ro becomes too large, the assimilation has no

noticeable effect. While this is hardly surprising, note that

this threshold is well beyond the climatological uncer-

tainty. In fact, even when the observations have an error

three times that of climatology, i.e. much greater than what

can be expected for observations from actual measure-

ments, the analysis still shows a reduction in rms error by

about one standard deviation (and [10%). With no obser-

vational error the error reduction in the analysis is 57%.

Initially, as ro increases, so does the rms error, with a more

or less linear relationship. Eventually, the analysis rms

error curve levels off. The pattern in the forecast rms error

is similar, although the reduction as ro tends to 0 is far

smaller. These results depend to some extent on the

properties of the observation network, the sensitivity to

which is considered next.

Fig. 5 Percentage reduction in

the average rms error of (a) the

analysis and (b) the forecast of

the s*-averaged state variable

for different observation

averaging times s (see Eq. (11)).

The line s = s* is indicated in

black and corresponds to the

case of a s-averaged state

variable addressed in previous

figures. Each box represents the

s and s* values at its center

Fig. 6 Mean root-mean-square errors Ravg for h of the analyses (red)

and forecasts (blue) as a function of averaging time s. The solid lines
and circles show the baseline results for constant ro; the dashed lines
with triangles are for decreasing ro. Corresponding observational

error is plotted in green lines. The control Rc
avg for ensemble forecasts

is also shown (black, squares), along with the span of ±rR

(grey shading)
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6 Impact of observation number and location

6.1 Observation number

In the experiments discussed so far, the observation network is

fairly dense and evenly distributed (Fig. 1). We found that

assimilating these 100 time-averaged observations signifi-

cantly improves analyses for all averaging periods considered,

as well as the forecasts for s less than 30. Here we address the

sensitivity of the results to the number of observations, an

issue of particular relevance in the context of paleoclimate

where observational networks tend to be relatively sparse.

As in the previous section, to be concise we focus on a

specific case, with s = 20 and ro = 0.10, and consider the

following range of observation number: 0, 4, 10, 25, 50, 100,

and 200. For reference, note that the total number of model

variables is 4,096, providing an upper bound on the degrees of

freedom in the model. Observation locations are randomly

chosen across the ground and tropopause subject to a mini-

mum horizontal spacing. Because location becomes relevant

for smaller numbers of observations, four experiments were

run for N = 4 and two for N = 10, and the errors averaged.

Results show little impact for four observations, with a sharp

drop in error between 10 and 50 observations, which then

levels off for larger numbers of observations (Fig. 8). Forecast

errors exhibit a small improvement for 25 or more observa-

tions, but little change when the number is increased past 50.

6.2 Observation location

As alluded to above, results for small numbers of obser-

vations become sensitive to observation location, which

motivates the notion of designing an optimal network for

small numbers of observations. In order to objectively

determine an optimal network, a metric must be defined to

measure impact. Theoretically, it is possible in the context

of a perfect model experiment such as this to choose the

rms error in the forecast as the metric. However, such an

approach has little relevance for any applications outside

this narrow context, as the ‘‘true’’ forecast has to be known

a priori. Here we choose as a metric the magnitude of the

projection onto the first empirical orthogonal function

(EOF) of the h field, which represents the pattern that

captures the most variability. It also represents the large-

scale oscillations that are likely constrainable by a sparse

observation network.

The theory of ensemble-based optimal network design

we follow is described in Ancell and Hakim (2007), and

example applications are shown in Hakim and Torn (2008)

and Torn and Hakim (2008). A similar methodology is also

described and applied in Khare and Anderson (2006a) and

Khare and Anderson (2006b). Ancell and Hakim (2007)

derive a recursive formula to find the n’th most sensitive

spot, conditional on the assimilation of the first (n - 1)

locations. We extend this work in the special case of

choosing a single location at a grid point in each step,

arriving at a formula that does not rely on matrix calcu-

lations; a summary is provided in Appendix 3. As in pre-

vious experiments, the averaging period is fixed at s = 20

and observation error at ro = 0.10.

The first EOF for h with s = 20 exhibits an east–west

asymmetry due to the mountain near the center of the

domain (Fig. 9). The similarity in structure at the ground and

Fig. 7 Mean root-mean-square errors Ravg for h of the analyses (red)

and forecasts (blue) as a function of observational error ro for

averaging time s = 20. The control Rc
avg for ensemble forecasts is

shown (black, squares), along with the span of ±rR (grey shading)

Fig. 8 Mean root-mean-square errors Ravg for h of the analyses (red)

and forecasts (blue) as a function of number of observations for

averaging time s = 20 and observational error ro = 0.10 (green).

The control Rc
avg for ensemble forecasts is shown (black, squares),

along with the span of ±rR (grey shading)
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tropopause reflects an approximately barotropic flow. The

first three locations that produce the greatest reduction in

error variance for the leading EOF are located near extrema

in the EOF, while the fourth is slightly to the south and west

of the center of the domain. The fifth point (not shown) is

located just to the east of point three, and the subsequent

three points either coincide exactly with an earlier obser-

vation or are located at the same horizontal location but on

the other surface. Moreover, the expected error-variance

reduction drops by one order of magnitude from the first to

the second observation, decreases for observations three and

four, and is another order of magnitude less by the fifth

observation. These results suggest that just four observations

may significantly constrain the first EOF.

To determine the importance of observation location, we

compare the coefficient of the first EOF of the ‘‘truth’’ run

with those of the analysis and forecast from each of three

experiments: (a) the 100 baseline observations (see Fig. 1),

(b) four randomly placed observations (repeated four times

to test a variety of configurations), and (c) the four optimal

observations defined above (as marked in Fig. 9). As

Fig. 10 indicates, assimilating four random observations

has little influence on the analysis error of the EOF coef-

ficient (dashed green line). (Note that the variability in this

run is less than that in the ‘‘truth’’ run because an ensemble

mean is taken.) On the other hand, for the four optimal

observations, the analysis (red dot-dashed line) and fore-

cast (not shown) curves track the true state (solid black

line) almost as well as for the case with 100 observations

(solid blue line). More quantitatively, 100 observations

reduce the error in the EOF coefficient of the analysis by

81% from the control case, four random observations by

\1%, and four optimal observations by 62%.

The following strategies are now considered for

extending the optimal network calculation beyond four

observations: eight optimal observations for the first EOF,

four optimal observations for the first EOF plus four for the

second EOF, and an experiment with fifteen optimal

observations for the first five EOFs (four each for the first

and the second, two each for the third and the fourth, and

three for the fifth). The specific numbers for the last

experiment were chosen to include, for each EOF, only

observations with large variance reduction relative to the

next best observation. In all cases, observation locations

are conditional on the assimilation of previously selected

locations. Results are compared in Table 2 in terms of

percentage improvement in rms errors over the control (no

assimilation) case for the coefficients of the first two EOFs

and the rms errors of h and h.

By any measure, assimilating four randomly placed

observations is not effective. However, the error reduction

in the forecast produced by the baseline case (100 random

observation locations) is approximated well by assimilating

just fifteen optimally chosen observations. For the analysis,

100 random observations are better than the fifteen, which

result in about two thirds as much error reduction. Note that

using eight observations for the first EOF does not reduce

rms errors as much as adding four additional observations

for the second EOF, despite the fact that the second EOF

accounts for 12% of the variance as compared to 20% for

Fig. 9 First EOF for h , s = 20, all boundary points; tropopause (top)

and ground (bottom). The marked locations indicate the four

observations to whose assimilation the coefficient of the first EOF

is most sensitive, conditional on the assimilation of the earlier found

locations. The assumed observation error variance is 0.10

Fig. 10 The coefficients of the first EOF at each assimilation time

over the course of each run are compared to the ‘‘truth’’ (black) for

analyses from runs assimilating the 100 baseline observations (blue,

solid), four randomly placed observations (green, dashed), and four

optimal observations (red, dot-dashed). Remarkably, just four well-

placed observations track the ‘‘truth’’ almost as well as 100 random

ones
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the first EOF. Moreover, the reduction in forecast errors in

the coefficient of the first EOF is less than half when all

eight observations are chosen to constrain this EOF versus

when four of the eight observations are chosen to constrain

the second EOF. A better estimate of the projection onto the

second EOF helps produce a better forecast of that onto the

first, suggesting that the different patterns are dynamically

coupled. Collectively, the first five EOFs account for 54%

of the variance, and the experiment with 15 optimal

observation locations yields a 30% rms error reduction for h
as compared to a 52% reduction for the baseline case with

100 randomly chosen observations.

7 Accounting for model error

So far we have discussed perfect model experiments, where

the true state is taken to be an independent ensemble

member. The methods described here prove successful in

this idealized context, but the real problem involves an

imperfect model. While a comprehensive study of model

error is beyond the scope of this study, we briefly discuss

two additional experiments that provide some indication of

the robustness of the results to the relaxation of the perfect

model assumption. The first experiment addresses model

resolution, which is especially important for paloeclimate

simulation since the computational expense scales roughly

with the cube of the horizontal grid spacing. The second

experiment addresses a parametric error in the timescale

for the damping of the solution to an assumed background

temperature profile, which may be thought of as an error in

radiative parameterization or solar forcing. In both cases,

observations are drawn from the same truth simulation

employed previously, by the method described in Sect. 3.1.

7.1 Reduced resolution

For the resolution test case, the baseline assimilation case

with 100 random observations is repeated with doubled

horizontal grid spacing. Averaging times considered

include s = 10, 20, 30, and 40, and the assumed observa-

tional error is one third of the control rms error. The effect

of the model error on the rms error in the time-averaged

control variable h increases with averaging time s.

The results show, as expected, that the rms errors for the

reduced-resolution case (red line, Fig. 11) increase relative

to the baseline case (blue line) by about 20–50% for the

analyses. Note, however, that the rms errors for the control

(no-assimilation) experiments differ only by 1–5 % (black

lines with colored squares). While the data assimilation

still produces significant error reduction in the analyses, its

effectiveness is reduced noticeably when this type of res-

olution error is introduced. Forecast errors also increase in

the reduced-resolution run compared to the identical model

case (not shown), leading to insignificant improvement

over the control for s C 30.

7.2 Reduced relaxation time

Here we consider an experiment where the time for

damping back to a prescribed temperature field is reduced

by one third. Effectively, the model variability is reduced,

as the state is forced more strongly towards the background

state. This is reflected in the larger errors in the control

experiments without assimilation when damping is

strengthened (black line with red squares, vs. black line

with blue squares, Fig. 12). Nevertheless, the rms errors

with assimilation compare very closely with the case having

the correct damping timescale (red line, vs. blue line).

Results are similar for forecast errors (not shown) and,

interestingly, the rms errors in the instantaneous h analyses

and forecasts are essentially unchanged from the perfect

model case (not shown). The assimilation counteracts the

parameterization error more effectively than the resolution

deficiency. We hypothesize that although the damping

adversely affects low-frequency features, this effect is

offset by a reduction in amplitude of high-frequency

features that are poorly resolved by observations.

Table 2 Error reduction due to data assimilation

Reduction in Error in 1st EOF coeff Error in 2nd EOF coeff h rms error h rms error

fcst. (%) anal. (%) fcst. (%) anal. (%) fcst. (%) anal. (%) fcst. (%) anal. (%)

100 random 33 81 39 84 11 52 6 23

4 random (avg) 0 0 1 5 0 0 0 0

4 for 1st EOF 10 62 19 21 3 12 2 7

8 for 1st EOF 13 65 26 36 4 16 3 8

4 (1st) ? 4 (2nd EOF) 28 67 26 62 8 22 5 11

15 for 5 EOFs 36 66 34 73 10 30 6 15

Four types of error are evaluated: errors in the coefficient of the first and second EOF of h and rms errors in h and in h. Both analysis and forecast

data from six experiments are compared, as described in the text
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8 Summary and Conclusions

The performance of a data assimilation method for time-

averaged observations is evaluated for a quasi-geostrophic

model of a midlatitude atmospheric jet interacting with a

mountain. While the model is simple enough to allow a

large number of simulations, it resolves realistic atmo-

spheric climate phenomena, such as jets, baroclinic waves,

cyclones and fronts, and their nonlinear interaction with a

mountain, which produces lower frequency signals in the

field. This makes the model well suited for addressing the

problem of assimilating time-averaged observations that

are affected by high-frequency transients, even though it

lacks aspects necessary to fully simulate paleoclimate

variability. Assimilation experiments reveal that, over a

wide range of observation averaging times s, significant

reduction in analysis rms error is found relative to an

ensemble simulation without assimilation (18% for

s = 100 to 44% for s = 10 in the averaged variable).

Moreover, errors in the analyses averaged over times

shorter than the observations are also significantly

improved. For observation averaging times shorter than the

model’s predictability timescale (i.e., the time period after

which a model forecast becomes indistinguishable from

climatology, approximately 30 time units), errors in the

instantaneous state are also reduced.

These results suggest that assimilation of paleoclimate

observations, which are typically averages over relatively

long time periods, may successfully constrain a wide range

of timescales. Since averaged quantities tend to have a

spatially more coherent covariance pattern than instanta-

neous ones as well, relatively localized observations typical

of the paleoclimate proxies may suffice to constrain a wide

geographical region. An interesting result is that errors are

reduced for averaging times shorter than the observations,

which derives from the fact that the model physics spread

information from observations in space and time.

Forecast errors show less improvement with observation

assimilation than do analysis errors, particularly at longer

averaging times. Beyond averaging times of about 30 time

units, forecasts have no skill over climatology. In fact, for

these timescales, assimilation using random draws from

climatology to represent the background errors yields

comparable results to the case where ensemble forecasts

are used to estimate background errors. This outcome is

potentially advantageous, since the majority of the EnKF

computational expense is in the forecast step, and since

very large ensembles can be drawn from climatology to

deal more consistently with sampling error as compared to

conventional techniques of inflation and localization.

However, this approach basically reduces to the statistical

reconstruction techniques we wish to improve upon, suf-

fering from stationary statistics and model bias. Future

research will be devoted to addressing this problem.

Experiments indicate limited sensitivity to observation

error and number. Significant rms error reduction is found

even for observations with errors much larger than clima-

tological uncertainty, especially for analyses. Errors

decrease steeply as a function of the number of randomly

located observations from about ten to about fifty, and then

decrease more gradually.

Fig. 11 Mean root-mean-square errors Ravg for h of the original

control ensemble (blue squares on black line), the reduced resolution

control ensemble (red squares on black line), the original model

analyses (blue lines with circles), and the reduced resolution model

analyses (red lines with circles). As a reminder the imposed

observational errors are also shown (green)

Fig. 12 Mean root-mean-square errors Ravg for h of the original

control ensemble (blue squares on black line), the changed back-

ground state control ensemble (red squares on black line), the original

model analyses (blue lines with circles), and the changed background

state model analyses (red lines with circles). As a reminder the

imposed observational errors are also shown (green)
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Optimal observation network design has also been

considered, and we find that, for this model and an

observation averaging time of s = 20, 15 optimally cho-

sen observations recover about half of the error reduction

of a random, evenly spaced network of 100 observations.

These results are compelling, and suggest the possibility

of targeting future proxy measurement campaigns to

optimally reduce reconstruction errors. Clearly, further

work with more sophisticated models is required before

such ideas can be practically pursued, as well as to test

the analysis and forecast results presented here. In par-

ticular, in order to extend the predictability timescale of

the model beyond the annual averaging typical of many

proxy measurements, a coupled ocean–atmosphere model

seems essential. Finally, as many proxy measurements are

chemical or biological, research is needed to construct

methods for robust, adaptive forward models for the

proxies.

Acknowledgments We thank Ryan Torn for discussions on

ensemble filtering, Jeff Anderson for helpful comments on an earlier

version of the manuscript, and Angie Pendergrass for discussions on

literature related to paleoclimate state estimation and for reviewing an

earlier version of the paper. We also thank two anonymous reviewers,

whose comments have made this a better paper. The first author was

supported in part by a National Science Foundation VIGRE grant

and the second author was supported by the following grants:

National Oceanic and Atmospheric Administration CSTAR Grant

NA17RJ1232, Office of Naval Research Grant N00014-06-1-0510,

and National Science Foundation grants 0552004 and 0902500,

awarded to the University of Washington.

Appendix 1: Details of the assimilation procedure

We use a version of the ensemble Kalman filter for data

assimilation. Its primary advantage over other methods is

that the model statistics are derived with a Monte Carlo

technique rather than being specified a priori or calculated

explicitly, which allows them to be flow-dependent. The

twist on the method introduced by Dirren and Hakim

(2005) is the application of the filter to time-averaged state

variables instead of the instantaneous ones. Below is an

outline of the resulting procedure.

Let the model estimate of the state of the system at

time t be given by the vector X(t). For each assimilation

step, a background forecast of the state of the system

Xb(t) is generated. The analysis after the assimilation will

be represented as Xa(t). Individual members of an

ensemble will be denoted as Xn(t) for n = 1, 2,..., N.

Each ensemble member can be decomposed into an

ensemble mean Xh iðtÞ and a perturbation from this mean

Xn*(t). Similarly, the state can be decomposed into a

time average X and a perturbation from this average

X0(t).

The observations yo are averages over a time interval

½to; to þ s� . The model estimate of these observations is

given by

ye ¼ HðXðtÞÞ; ð12Þ

for some function H, possibly nonlinear. In our application,

H chooses the potential temperature at a particular location,

but such a simple form is not required by the theory. Note

that the averaging is explicitly excluded from H. This

differentiates our method from a traditional application of

the EnKF to data collected as averages, which subsumes

the averaging into H.

The assimilation algorithm proceeds as follows:

1. The state is advanced from to to to ? s to create an

ensemble of N background state estimates

Xb
nðtÞ; n ¼ 1; 2; . . .;N:

2. For each ensemble member, the model estimate of the

observations is computed,

ye
n ¼ HðXb

nðtÞÞ; n ¼ 1; 2; . . .;N: ð13Þ

3. Each ensemble forecast is decomposed into its time

average and a perturbation:

Xb
nðtÞ ¼ Xb

n þ X0nðtÞ; n ¼ 1; 2; . . .;N: ð14Þ

4. The time averages Xb
n are updated using established

EnKF methods; here we assimilate observations

sequentially, with the square-root filter described by

Whitaker and Hamill (2002). We split time averages

and model estimates of observations into an ensemble

mean and perturbations from this mean:

Xb
n ¼ Xb

D E
þ Xb

n

� ð15Þ

ye
n ¼ hyei þ ye�

n ; n ¼ 1; 2; . . .;N: ð16Þ

Updates are performed for each observation by

X
a� �
¼ Xb
D E

þ K yo � hyeð iÞ ð17Þ

X
a�
n ¼ Xb

n

� þ bK �ye�
n

� �
; n ¼ 1; 2; . . .;N; ð18Þ

where the Kalman gain is given by

K ¼
cov Xb

�
; ye�

	 


var ye�ð Þ þ var yoð Þ
ð19Þ

and the reduced Kalman gain factor by

b ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ye�ð Þ

var ye�ð Þ þ var yoð Þ

s !�1

: ð20Þ

The observations variance, var yoð Þ , is assumed known

and is fixed in our experiments; other variances and

covariances are estimated from the ensemble.
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The analysis ensemble of time averages is then

reconstructed:

X
a
n ¼ X

a� �
þ X

a�
n ; n ¼ 1; 2; . . .;N: ð21Þ

5. An instantaneous analysis is derived by adding the

perturbations from the average over time:

Xa
nðtÞ ¼ X

a
n þ X0nðtÞ; n ¼ 1; 2; . . .;N: ð22Þ

Returning to step 1, these analyses are used as initial

conditions for advancing the state over the next time

period s.

Appendix 2: Equivalence of the Kalman filter applied

to time averages and instantaneous quantities

The first part of the proposition we prove here shows

equivalence of the two Kalman filter implementation under

the assumption that averaged quantities and perturbations

from these averages do not significantly co-vary. In the

application at hand, this is a reasonable assumption (not

shown). The second part concerns the equivalence in the

averaged quantity, even when the assumption is relaxed.

We will continue to use overbars to indicate time

averages and primes for perturbations from time averages.

Proposition 1 Let H be the linear map from the state to

the unaveraged observations. Let y denote the averaged

observations.

(a) Assume covðX; yÞ ¼ covðX; yÞ, or equivalently

cov(X0, y) = 0. Then applying the Kalman filter to

instantaneous quantities or to averaged quantities

results in the same analysis (within numerical

accuracy).

(b) If the assumption does not hold, then the time average

of the analyses will be identical, but the perturbations

therefrom may differ.

Proof Since the result is not dependent specifically on the

ensemble implementation of the Kalman filter, we will

keep the proof general and only stipulate that variances and

covariances are derived consistently.

A background state Xb(t) is given for t [ [to, to ? s],

along with observations yo. Let A denote the time-

averaging operator on the state space, and let P = I - A

be the perturbation operator. We define Ĥ ¼ HA . Note

that, by linearity of H, the estimates of the observations

from the background state ye become

ye ¼ H XbðtÞð Þ ¼ H XbðtÞ
	 


¼ Ĥ XbðtÞ
� �

: ð23Þ

Also provided are the background covariance matrix B

for the augmented state vector containing variables for all

t [ [to, to ? s] and the observation covariance matrix R.

Note that the covariance matrix of the averaged state is

given by BA = A B AT.

The traditional application of the Kalman filter to

instantaneous quantities results in the analysis

Xa
1 ¼ Xb þ K yo � yeð Þ; ð24Þ

where

K ¼ BĤT ĤBĤT þ R
� ��1

: ð25Þ

Equation (24) can be separated in the update of the

average and the update of the perturbation: Xa
1 ¼ Xa

1 þ
Xa

1
0 ¼ AXa

1 þ PXa
1 with

Xa
1 ¼ Xb þ AKðyo � yeÞ; ð26Þ

Xa
1
0 ¼ Xb0 þ PKðyo � yeÞ; ð27Þ

With our approach, the time average alone is updated:

Xa
2 ¼ Xb þ ~K yo � yeð Þ; ð28Þ

where

~K ¼ BAHT HBAHT þ R
� ��1¼ AK; ð29Þ

yielding the full analysis

Xa
2 ¼ Xa

2 þ Xb0: ð30Þ

Substituting Eq. (29) into Eq. (28) and comparing to Eq.

(26) shows that Xa
1 ¼ Xa

2 , proving part (b). It follows that

Xa
1 ¼ Xa

2 () Xa
1
0 ¼ Xb0 ð31Þ

() PK yo � yeð Þ ¼ 0: ð32Þ

The assumption in part (a) is cov(X0, y) = 0, i.e.,

PBĤT ¼ 0, which gives us (32). h

Appendix 3: Observation sensitivity theory

The following is based on the sensitivity theory described

in Ancell and Hakim (2007). We will briefly state those

results needed here and then discuss the extension to a

formula without matrix calculations for finding the n’th

most sensitive observation location, conditional on the

assimilation of the previous (n - 1) observations. An

alternative derivation for a similar approach can be found

in Khare and Anderson (2006a).

Let x denote the state (column) vector and X the

ensemble state matrix formed from N ensemble members.

Further, let J be the scalar forecast metric of interest.

The sensitivity of J is measured in terms of the reduction

of its variance r2 (or, equivalently, its error variance) that is

expected from the assimilation of one or more new obser-

vations. Note that the variance is independent of the actual

observed values, which determine the change in the mean of
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J. Forming the ensemble of forecast metric values into the

row vector J, an estimate of the variance is given by

r2 ¼ 1

N � 1
dJdJT : ð33Þ

Approximating the change in J from a leading-order

Taylor-series truncation,

dJ ¼ oJ

ox


 �T

dX; ð34Þ

it follows that

r2 ¼ oJ

ox


 �T

B
oJ

ox


 �
; ð35Þ

where B ¼ 1=ðN � 1ÞðdXÞðdXÞT is the ensemble estimate

of the state error covariance matrix.

For the Kalman filter, the relationship between the

background error covariance matrix Bi�1 and the analysis

error covariance matrix Bi is given by

Bi ¼ ðI�KiHiÞBi�1; ð36Þ

where Hi is the map from the state to the new (i’th)

observation and Ki is the Kalman gain associated with the

new observation

Ki ¼ Bi�1HT
i ½HiBi�1HT

i þ Ri��1: ð37Þ

Ri here represents the i’th observation error covariance

matrix. To simplify the notation, let us further define Ei as

the total innovation error covariance matrix

HiBi�1HT
i þ Ri, so that

Bi ¼ Bi�1 � Bi�1HT
i E�1

i HiBi�1 ð38Þ

The reduction in variance, which we seek to maximize,

is then

dr2
i ¼

oJ

ox


 �T

ðBi�1 � BiÞ
oJ

ox


 �
ð39Þ

¼ oJ

ox


 �T

Bi�1HT
i E�1

i HiBi�1

oJ

ox


 �
: ð40Þ

Note that the formula (40) can always be reduced to a

function of the original covariance matrix Bo, using suc-

cessive substitutions from Eq. (38).

In particular,

dr2
1 ¼

oJ

ox


 �T

BoHT
1 E�1

1 H1Bo
oJ

ox


 �
ð41Þ

and

dr2
2 ¼

oJ

ox


 �T

BoðHT
2 �HT

1 E�1
1 H1BoHT

2 ÞE�1
2 . . .

ðH2 �H2BoHT
1 E�1

1 H1ÞBo
oJ

ox


 �
; ð42Þ

where

E2 ¼ H2B1HT
2 þ R2 ð43Þ

¼ H2BoHT
2 �H2BoHT

1 E�1
1 H1BoHT

2 þ R2: ð44Þ

Formulae like these can, theoretically, be written down for

any i, but they quickly get rather complicated. Instead, we

consider how these calculations simplify in the case of each

‘‘set’’ of observations consisting of a single one taken

directly from the state vector.

In this special case, Hj simplifies to a row vector of

zeros with a single entry of 1, say the i(j)’th entry: Hj ¼
½0. . .010. . .0� . To simplify the notation, we will denote this

element chosen as the j’th observation by xj rather than xi(j),

even though, of course, it does not necessarily occupy the

j’th position in the state vector. Let Rj be the error variance

of the observation of xj, and define a function f such that

fiðxj; xkÞ ¼ HjBi�1HT
k and ð45Þ

fiðJ; xjÞ ¼
oJ

ox


 �T

Bi�1HT
j : ð46Þ

Note that f1(a, b) = cov(a, b) for any a, b.

At the i’th step, we want to maximize (rewriting Eq. 40)

dr2
i ðxiÞ ¼

fi J; xið Þ½ �2

Ei xið Þ
ð47Þ

over all xi, where

Ei xið Þ ¼ fi xi; xið Þ þ Ri: ð48Þ

Note that, at this stage, xi is the independent variable, but x1

through xi-1 are already chosen and fixed in previous steps.

For i = 1, (47) and (48) are trivial to determine, yielding

dr2
1 ¼

covðJ; xiÞ½ �2

varðxiÞ þ R1

: ð49Þ

For larger i, the following calculations have to be carried

out, relying on the results from previous steps:

f1ðxi�1; xiÞ ¼ covðxi�1; xiÞ
ðM � iþ 1 new covariance calculations)

ð50Þ

fkðxi�1; xiÞ ¼ fk�1ðxi�1; xiÞ � fk�1ðxk�1; xiÞ
fkðxi�1; xk�1Þ
Ek�1ðxk�1Þ

for k 2 f2; . . .; i� 1g (2M + 1 operations/value of k)

ð51Þ

fiðJ; xiÞ ¼ fi�1ðJ; xiÞ � fi�1ðxi�1; xiÞ
fi�1ðJ; xi�1Þ
Ei�1ðxi�1Þ

ð2M þ 1 operationsÞ
ð52Þ

fiðxi; xiÞ ¼ fi�1ðxi; xiÞ �
½fi�1ðxi�1; xiÞ�2

Ei�1ðxi�1Þ
ð3M operationsÞ

ð53Þ
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EiðxiÞ ¼ fiðxi; xiÞ þ Ri

ðM additionsÞ
ð54Þ

dr2
i ðxiÞ ¼

fiðJ; xiÞ½ �2

EiðxiÞ
ð2M operationsÞ

ð55Þ

The total computational cost consists of M - k ? 1

covariances, (4M - 1) ? (2M ? 1)k arithmetic opera-

tions, and the maximization.
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