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A computational framework to map species’ distributions (realized density) using occurrence-only data
and environmental predictors is presented and illustrated using a textbook example and two case studies:
distribution of root vole (Microtes oeconomus) in the Netherlands, and distribution of white-tailed eagle
nests (Haliaeetus albicilla) in Croatia. The framework combines strengths of point pattern analysis (kernel
smoothing), Ecological Niche Factor Analysis (ENFA) and geostatistics (logistic regression-kriging), as
implemented in the spatstat, adehabitat and gstat packages of the R environment for statistical computing.
A procedure to generate pseudo-absences is proposed. It uses Habitat Suitability Index (HSI, derived
through ENFA) and distance from observations as weight maps to allocate pseudo-absence points. This
design ensures that the simulated pseudo-absences fall further away from the occurrence points in both
feature and geographical spaces. The simulated pseudo-absences can then be combined with occurrence
locations and used to build regression-kriging prediction models. The output of prediction are either
probabilitiesy of species’ occurrence or density measures. Addition of the pseudo-absence locations has
proven effective — the adjusted R-square increased from 0.71 to 0.80 for root vole (562 records), and from

0.69 to 0.83 for white-tailed eagle (135 records) respectively; pseudo-absences improve spreading of the
points in feature space and ensure consistent mapping over the whole area of interest. Results of cross
validation (leave-one-out method) for these two species showed that the model explains 98% of the total
variability in the density values for the root vole, and 94% of the total variability for the white-tailed eagle.
The framework could be further extended to Generalized multivariate Linear Geostatistical Models and
spatial prediction of multiple species. A copy of the R script and step-by-step instructions to run such

conta
analysis are available via

. Introduction

A Species Distribution Model (SDM) can be defined as a sta-
istical and/or analytical algorithm that predicts (either actual or
otential) distribution of a species, given field observations and
uxiliary maps, as well as expert knowledge. A special group
f Species Distribution Models (SDMs) focuses on the so-called

occurrence-only records’ — pure records of locations where a species
ccurred (Elith et al., 2006). The most frequently used techniques to
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

enerate species’ distribution from occurrence-only records seem
o be various kernel smoothing techniques, the Ecological-Niche
actor Analysis (ENFA) approach of Hirzel and Guisan (2002),
he Genetic Algorithm for Rule-Set Prediction (GARP) approach of
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Stockwell and Peters (1999), and the maximum entropy method
(Maxent) introduced by Phillips et al. (2006). It has never been
proven that any of these techniques outperforms its competitors.
Zaniewski et al. (2002) evaluated performance of General Additive
Models versus ENFA models and concluded that ENFA will likely be
better in detecting the potential distribution hot-spots, especially
if occurrence-only data is used. Tsoar et al. (2007) compared six
occurrence-only methods for modeling species distribution (BIO-
CLIM, HABITAT, Mahalanobis distance method, DOMAIN, ENFA, and
GARP), and concluded that GARP is significantly more accurate than
BIOCLIM and ENFA; other techniques performed similarly. Jiménez-

alverde et al. (2008b) argue whether it is sensible to compare
SDMs that conceptually aim at different aspects of spatial distri-
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

bution at all — there is especially big difference between models
predicting potential and realized distributions (although both are
put under SDM).

So far, geostatistical techniques have not yet been used to gen-
erate (realized) species’ distributions using occurrence-only data,
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ainly for two reasons: (1) absence locations are missing (‘1’s only),
o that it is not possible to analyze the data using, e.g. indicator
eostatistics; (2) the sampling is purposive and points are often
lustered in both geographical and feature spaces, which typically
auses difficulties during the model estimation. Spatial statisticians
e.g. Diggle, 2003; Bivand et al., 2008) generally believe that geo-
tatistical techniques are suited only for modeling of features that
re inherently continuous (spatial fields); discrete objects (points,
ines, polygons) should be analyzed using point pattern analysis and
imilar methods. Bridging the gap between conceptually different
echniques — point pattern analysis, niche analysis and geostatistics

is an open challenge.
Some early examples of using geostatistics with the species

ccurrence records can be found in the work of Legendre and Fortin
1989) and Gotway and Stroup (1997). Kleinschmidt et al. (2005)
ses regression-kriging method, based on the generalized mixed
odel, to predict the malaria incidence rates in South Africa. Miller

2005) uses a similar principle (predict the regression part, ana-
yze and interpolate residuals, and add them back to predictions)
o generate vegetation maps. Miller et al. (2007) further provide a
eview of predictive vegetation models that incorporate geograph-
cal aspect into analysis. Geostatistics is considered to be one of
he four spatially implicit group of techniques suited for species
istribution modeling — the other three being: autoregressive mod-
ls, geographically weighted regression and parameter estimation
odels (Miller et al., 2007). Pure interpolation techniques will often

utperform niche based models (Bahn and McGill, 2007), although
here is no reason not to combine them. Hybrid spatial and niche-
nalysis SDMs have been suggested also by Allouche et al. (2008).
ebesma et al. (2005) demonstrates that geostatistics is fit to be
sed with spatio-temporal species occurrence records. Analysis of
patial auto-correlation and its use in species distribution models
s now a major research issue in ecology and biogeography (Guisan
t al., 2006; Rangel et al., 2006; Miller et al., 2007).

Engler et al. (2004) suggested a hybrid approach to spatial mod-
ling of occurrence-only records — a combination of Generalized
inear Model (GLM) and ENFA. In their approach, ENFA is used
o generate the so-called ‘pseudo-absence’ data, which are then
dded to the original presence-only data and used to improve
he GLMs. In our opinion, such combination of factor analysis and
LMs is the most promising as it utilizes the best of the two tech-
iques. In this paper, we extend the idea of Engler et al. (2004)
y proposing a computational framework that further combines
ensity estimation (kernel smoothing), niche-analysis (ENFA), and
eostatistics (regression-kriging). We implement this framework
n the R statistical computing environment, where various habi-
at analysis (adehabitat package), geostatistical (gstat package), and
oint pattern analysis (spatstat package) functions can be suc-
essfully combined. We decided to use a series of case studies,
tarting from a most simple to some real-life studies, to evaluate
erformance of our framework and then discuss its benefits and

imitations.

. Theory: combining kernel density estimation, ENFA and
egression-kriging

The key inputs to a SDM are: the inventory (population) of ani-
als or plants consisting of a total of N individuals (a point pattern
= {xi}N

1 ; where xi is a spatial location of individual animal or
lant), covering some area BHR ⊂ R2 (where HR stands for home-
ange and R2 is the Euclidean space), and a list of environmental
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

ovariates/predictors (q1, q2, . . . , qp) that can be used to explain
patial distribution of a target species. In principle, there are two
istinct groups of statistical techniques that can be used to map
he realized species’ distribution: (a) the point pattern analysis
echniques, such as kernel smoothing, which aim at predicting den-
 PRESS
lling xxx (2009) xxx–xxx

sity of a point process; (b) statistical, GLM-based, techniques that
aim at predicting the probability distribution of occurrences. Both
approaches are explained in detail in the following sections.

2.1. Species’ density estimation using kernel smoothing and
covariates

Spatial density (�; if unscaled, also known as “spatial intensity”)
of a point pattern (ignoring the time dimension) is estimated as:

E[N(X ∩ B)] =
∫

B

�(x) dx (1)

In practice, it can be estimated using, e.g. a kernel estimator
(Diggle, 2003; Baddeley, 2008):

�(x) =
n∑

i=1

� · (‖x − xi‖) · b(x) (2)

where �(x) is spatial density at location x, �(x) is the kernel (an
arbitrary probability density), xi is location of an occurrence record,
‖x − xi‖ is the distance (norm) between an arbitrary location and
observation location, and b(x) is a border correction to account for
missing observations that occur when x is close to the border of
the region. A common (isotropic) kernel estimator is based on a
Gaussian function with mean 0 and variance 1:

�̂(x) = 1
H2

·
n∑

i=1

1√
2�

· e−(‖x−xi‖2/2) · b(x) (3)

The key parameter for kernel smoothing is the bandwidth (H),
i.e. the smoothing parameter, which can be connected with the
choice of variogram in geostatistics. The output of kernel smooth-
ing is typically a map (raster image) consisting of M grid nodes, and
showing spatial pattern of species’ clustering.

Spatial density of a point pattern can also be modeled using a
list of spatial covariates q’s (in ecology, we call this environmen-
tal predictors), which need to be available over the whole area of
interest B. For example, using a Poisson model (Baddeley, 2008):

log �(x) = log ˇ0 + log q1(x) + · · · + log qp(x) (4)

where log transformation is used to account for the skewed dis-
tribution of both density values and covariates; p is the number
of covariates. Models with covariates can be fitted to point pat-
terns, e.g. in the spatstat package (this actually fits the maximum
pseudolikelihood to a point process; for more details see Baddeley,
2008). Such point pattern–covariates analysis is commonly run only
to determine, i.e. test if the covariates are correlated with the feature
of interest, to visualize the predicted trend function, and to inspect
the spatial trends in residuals. Although statistically robust, point
pattern–covariates models are typically not considered as a tech-
nique to improve prediction of species’ distribution. Likewise, the
model residuals are typically not used for interpolation purposes.

2.2. Predicting species’ distribution using ENFA and GLM
(pseudo-absences)

An alternative approach to spatial prediction of species’ distribu-
tion using occurrence-only records and environmental covariates is
the combination of ENFA and regression modeling. In general terms,
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

predictions are based on fitting a GLM:

E(P) = � = g−1(q · ˇ) (5)

where E(P) is the expected probability of species occurrence
(P ∈ [0, 1]), q · ˇ is the linear regression model, and g is the link

dx.doi.org/10.1016/j.ecolmodel.2009.06.038


 IN PRESSE

Modelling xxx (2009) xxx–xxx 3

f
o

g

s

o
m
p
J
i
s
a
o
(
p
a
d
G
p
E
d
v
c
o
c
a
i

2
r

c
W
w
o
p
(
t
a
p
o
i
m

m
O
w
h
p
w
t

�

i
(
a
s
w
w
p

ARTICLEG Model
COMOD-5583; No. of Pages 13

T. Hengl et al. / Ecological

unction. A common link function used for SDM with presence
bservations is the logit link function:

(�) = �+ = ln
(

�

1 − �

)
(6)

o Eq. (5) becomes logistic regression (Kutner et al., 2004).
The problem of running regression analysis with occurrence-

nly observations is that we work with 1’s only, which obviously
eans that we can not fit any model to such data. To account for this

roblem, species distribution modelers (see, e.g. Engler et al., 2004;
iménez-Valverde et al., 2008a; Chefaoui and Lobo, 2008) typically
nsert the so-called “pseudo-absences” — 0’s simulated using a plau-
ible models, such as ENFA, MAXENT or GARP, to depict areas where
species is not likely to occur. For practical reasons, we will focus
n ENFA because it is implemented in R via the adehabitat package
Calenge, 2007). ENFA is a type of factor analysis that uses observed
resences of a species to estimate which are the most favorable
reas in the feature space, and then uses this information to pre-
ict the potential distribution of species for all locations (Hirzel and
uisan, 2002). The difference between ENFA and the Principal Com-
onent Analysis is that the ENFA factors have an ecological meaning.
NFA results in a Habitat Suitability Index (HSI ∈ [0–100%]) — by
epicting the areas of low HSI, we can estimate where the species is
ery unlikely to occur, and then simulate a new point pattern that
an be added to the occurrence locations to produce a ‘complete’
ccurrences + absences dataset. Once we have both 0’s and 1’s, we
an fit a GLM as shown in Eq. (5) and generate predictions (prob-
bility of occurrence) using geostatistical techniques as described
n, e.g. Gotway and Stroup (1997).

.3. Predicting species’ density using ENFA and logistic
egression-kriging

We now describe the technique that is advocated in this arti-
le, and that combines the two previously described approaches.
e make several additional steps that make the method some-
hat more complicated, but also more suited for occurrence-only

bservations used in ecology. First, we will assume that our input
oint pattern represents only a sample of the whole population
XS = {xi}n

1), so that the density estimation needs to be standardized
o avoid biased estimates. Second, we will assume that pseudo-
bsences can be generated using both information about the
otential habitat (HSI) and geographical location of the occurrence-
nly records. Finally, we focus on mapping the actual count of
ndividuals over the grid nodes (realized distribution), instead of

apping the probability of species’ occurrence.
Spatial density values estimated by kernel smoothing are pri-

arily controlled by the bandwidth size (Bivand et al., 2008).
bviously, the higher the bandwidth, the lower the values in the
hole map; likewise, the higher the sampling intensity (n/N), the
igher the spatial density, which eventually makes it difficult to
hysically interpret mapped values. To account for this problem,
e propose to use relative density (�r : B → [0, 1]) expressed as

he ratio between the local and maximum density at all locations:

r(x) = �(x)

max {�(x)|x ∈ B}M
1

(7)

An advantage of using the relative density is that the values are
n the range [0, 1], regardless of the bandwidth and sample size
n/N). Assuming that our sample XS is representative and unbi-
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

sed, it can be shown that �r(x) is an unbiased estimator of the true
patial density (see, e.g. Diggle, 2003 or Baddeley, 2008). In other
ords, regardless of the sample size, by using relative intensity we
ill always be able to produce an unbiased estimator of the spatial
attern of density for the whole population (see further Fig. 1).
Fig. 1. Relative density estimated for the original bei data set (a), and its 20% sub-
sample (b). In both cases the same bandwidth was used: H = 23 m.

Furthermore, assuming that we actually know the size of the
whole population (N), by using predicted relative density, we can
also estimate the actual spatial density (number of individuals per
grid node):

�(x) = �r(x) · N
M∑

j=1

�r(x)

;
M∑

j=1

�(x) = N (8)

which can be very handy if we wish to aggregate the species’ dis-
tribution maps over some polygons of interest, e.g. to estimate the
actual counts of individuals.

Our second concern is the insertion of pseudo-absences. Here,
two questions arise: (1) how many pseudo-absences should we
insert? and (b) where should we locate them? Intuitively, it makes
sense to generate the same number of pseudo-absence locations
as occurrences. This is also supported by the statistical theory
of model-based designs, also known as “D-designs”. For example,
assuming a linear relationship between density and some predic-
tor q, the optimal design that will minimize the prediction variance
is to put half of observation at one extreme and other at other
extreme. All D-designs are in fact symmetrical, and all advocate
higher spreading in feature space (for more details about D-designs,
see, e.g. Montgomery, 2005), so this principle seems logical. After
the insertion of the pseudo-absences, the extended observations
dataset is:

Xf = {{xi}n
1, {x∗

i}n∗
1 }; n = n∗ (9)

where x∗
i are locations of the simulated pseudo-absences. This is

not a point pattern any more because now also quantitative values
— either relative densities (�r(xi)) or indicator values — are attached
to locations (�(xi) = 1 and �(x∗

i) = 0).
The remaining issue is where and how to allocate the pseudo-

absences? Assuming that a spreading of species in an area of interest
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

is a function of the potential habitat and assuming that the occur-
rence locations on the HSI axis will commonly be skewed toward
high values (see further Fig. 3, left; see also Chefaoui and Lobo,
2008), we can define the probability distribution (�) to generate

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
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ig. 2. Spatial prediction of the species distribution using the bei data set (20% sub
nd altitude above channel network as environmental covariates; (b) Habitat Suit
enerated pseudo-absences using the Eq. (11); (d) input point map of relative inte
ensity produced using regression-kriging (showing number of individuals per grid

he pseudo-absence locations as, e.g.:

(x∗) = [100% − HSI(x)]2 (10)

here the square term is used to insure that there are progres-
ively more pseudo-absences at the edge of low HSI. This way also
he pseudo-absences will approximately follow Poisson distribu-
ion. In this paper we propose to extend this idea by considering
ocation of occurrence points in geographical space also (see also
n interesting discussion on the importance of geographic extent
or generation of pseudo-absences by VanDerWal et al. (2009)). Eq.
10) then modifies to:

(x∗) =
[

dR(x) + (100% − HSI(x))
2

]2

(11)

here dR is the normalized distance in the range [0, 100%], i.e. the
istance from the observation points (X) divided by the maximum
istance. By using Eq. (11) to simulate the pseudo-absence loca-
ions, we will purposively locate them both geographically further
way from the occurrence locations and in the areas of low HSI
unsuitable habitat).

After the insertion of pseudo-absences, we can attach to both
ccurrence-absence locations values of estimated relative density,
nd then correlate this with environmental predictors. This now
ecomes a standard geostatistical point dataset, representative of
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

he area of interest, and with quantitative values attached to point
ocations (see further Fig. 2d).

Recall from Eq. (7) that we attach relative intensities to obser-
ation locations. Because these are bounded in the [0, 1] range, we
an use the logistic regression model to make predictions. Thus, the
le): (a) fitted trend model (ppm) using elevation, slope, topographic wetness index
Index derived using the same covariates; (c) the weight map and the randomly
(includes the simulated pseudo-absences); (e) the final predictions of the overall

s estimated using Eq. (8)); (f) predictions using a binomial GLM.

relative density at some new location (x0) can be estimated using:

�̂+
r (x0) = [1 + exp(−ˇT · q0)]

−1
(12)

where ˇ is a vector of fitted regression coefficients, q0 is a vector
of predictors (maps) at new location, and �̂+

r (x0) is the predicted
logit-transformed value of the relative density. Assuming that the
sampled intensities are continuous values in the range �r ∈ (0, 1),
the model in Eq. (4) is in fact a liner model, which allows us to extend
it to a more general linear geostatistical model such as regression-
kriging (also known as “u niversal kriging” or “kriging with external
drift”). This means that the regression modeling is supplemented
with the modeling of variograms for regression residuals, which
can then be interpolated and added back to the regression estimate
(Hengl, 2007):

�̂+
r (x0) = qT

0 · ˆ̌
GLS + ıT

0 · (�+
r − q · ˆ̌

GLS) (13)

where ı0 is the vector of fitted weights to interpolate the residuals
using ordinary kriging. In simple terms, logistic regression-kriging
consists of five steps:

(1) convert the relative intensities to logits using Eq. (6); if the input
values are equal to 0/1, replace with the second smallest/highest
value;
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

(2) fit a linear regression model using Eq. (4);
(3) fit a variogram for the residuals (logits);
(4) produce predictions by first predicting the regression-part, then

interpolate the residuals using ordinary kriging; finally add the
two predicted trend-part and residuals together (Eq. 13);

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
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5) back-transform interpolated logits to the original (0, 1) scale by:

�̂r(x0) = e�̂+
r (x0)

1 + e�̂+
r (x0)

(14)

After we have mapped relative density over area of interest, we
an also estimate the actual counts using the Eq. (8).

.4. Species’ distribution modeling using a textbook example

At this stage the above introduced theory might seem rather
ifficult to follow (especially because it links to different statistical
heories such as ENFA, geostatistics, D-designs and point pattern
nalysis), hence we will also try to illustrate this theory using a
eal data set and prove our assumptions using a simple example.
or readers requiring more detail, the complete R script used in this
xercise with plots of outputs and interpretation of steps is available
rom the contact authors’ homepage.1

We use the bei dataset, distributed together with the spatstat
ackage, and used in textbooks on point pattern analysis by
addeley (2008) and many other authors. This data set consists of
point map showing locations of trees of the species Beilschmiedia
endula Lauraceae (in this case we deal with the whole popula-
ion) and Digital Elevation Model (5 m resolution) as an auxiliary

ap, which can be used to improve mapping of the tree species.
hat makes this dataset especially suitable for such testing is the

act that the complete population of the trees has been mapped for
he area of interest (let us assume that both N and BHR are known).

e will now implement all steps described in Section 2.3 to pre-
ict spatial density of trees over the area of interest (M = 20,301
rid nodes). We will use a sample of 20% of the original population,
nd then validate the accuracy of our technique versus the whole
opulation.

We start by estimating a suitable bandwidth size for kernel den-
ity estimation (Eq. (3)). For this, we use the method of Berman and
iggle (1989) (as described in Bivand et al. (2008, pp. 166–167)) that

ooks for the smallest Mean Square Error (MSE) of a kernel esti-
ator. This only shows that we should not use bandwidths sizes

maller than 4 m (which is below grid cell size of input maps);
igher values seem plausible. We also consider the least squares
ross validation method to select the bandwidth size using the
ethod of Worton (1995), and as implemented in the adehabitat

ackage. This does not converge, hence we need to set the band-
idth size using some ad hoc method (this is unfortunately a very

ommon problem with many real point patterns). As a rule of
humb, we can start by estimating the smallest suitable range as the
verage size of block (

√
area(BHR)/N), and then set the bandwidth

ize at two times this value. There are 3605 trees (N) in the area
f size 507,525 m2, which means that we could use a bandwidth of
4 m (H).

We next derive a relative kernel density map (Eq. (7)), which
s shown in Fig. 1a. If we randomly subset the original occurrence
ocations and then re-calculate the relative densities, we can notice
hat the spatial pattern of the two maps does not differ significantly,
either do their histograms. This supports our assumption that the
elative density map (Eq. (7)) can be indeed reproduced also from
representative sample (n = 721).
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

We proceed with preparing the environmental predictors and
esting their correlation with the density values. We can extend the
riginal single auxiliary map (DEM) by adding some hydrological
arameters: slope, topographic wetness index and altitude above
hannel network (all derived in SAGA GIS). The result of fitting a

1 http://spatial-analyst.net.
Fig. 3. Correlation plot HSI versus relative density with occurrence-only locations
(left) and after the insertion of the pseudo-absence locations (right). Note that the
pseudo-absences ensure equal spreading around the feature space (below).

non-stationary point process with a log-linear density using the
ppm method of spatstat shows that density is negatively correlated
with wetness index, and positively correlated with all other pre-
dictors. A comparison between the Akaike Information Criterion
(AIC) for a model without predictors and with predictors shows
that there is a slight gain in using the covariates to predict the spa-
tial density. Visually (Fig. 2a), we can see that the predicted trend
seriously misses some hot-spots, i.e. clusters of points. This shows
that using point pattern analysis techniques only to map (realized)
species’ distribution with covariates will be of limited use.

We proceed with ENFA. It shows that this species generally
avoids the areas of low wetness index, i.e. it prefers ridges/dry
positions (Fig. 2b; see also supplementary materials). This spatial
correlation is now more distinct (compare with the trend model in
Fig. 2a). This demonstrates the power of ENFA, which is in this case
more suited for analysis of the occurrence-only locations than the
regression analysis, i.e. the point pattern analysis.

By combining HSI and buffer map around the occurrence
locations (Eq. (11)), we are able to simulate the same amount
of pseudo-absence locations (Fig. 2c). Note that the correlation
between the HSI and density is now clearer, and the spreading of
the points around the HSI feature space is symmetric (Fig. 3, right).
Consequently, the model fitting is more successful: the adjusted
R-square fitted using the four environmental predictors jumped
from 0.07 to 0.28. This demonstrates the benefits of inserting the
pseudo-absence locations. If we would randomly insert the pseudo-
absences, the model would not improve (or would become even
noisier).

We proceed with analyzing the point data set indicated in Fig. 2d
using standard geostatistical tools. We can fit a variogram for the
residuals, and then run the regression-kriging, as implemented in
the gstat package. For a comparison, we also fit a variogram for
the occurrence–absence data but using the residuals of the GLM
modelling with binomial link function, i.e. 0/1 values (Fig. 4). As
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

with any indicator variable, the variogram of the binomial GLM will
show higher nugget and less distinct auto-correlation then the var-
iogram for the density values. This is also because the residuals of
the density values will still reflect kernel smoothing, especially if

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
http://spatial-analyst.net
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absence locations: (left) density values (logits), and (right) probability values.
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Fig. 4. Variogram models for residuals fitted in gstat using occurrence–

he predictors explain only a small part of variation in the density
alues.

The resulting map of density predicted using regression-kriging
Fig. 2e) is indeed a hybrid map that reflects kernel smoothing (hot
pots) and environmental patterns, thus it is a map richer in con-
ents than the pure density map estimated using kernel smoothing
nly (Fig. 1), or the Habitat Suitability Index (Fig. 2b). Note also that,
lthough the GLM-kriging with a binomial link function (Fig. 2f)
s statistically a more straight forward procedure (it is completely
ndependent from point pattern analysis), its output is limited in
ontent because it also misses to represent the hot-spots. GLM-
riging in fact only shows the areas where a species’ is likely to
ccur, without any estimation of how dense will the population
e. Another advantage of using the occurrences + absences with
ttached density values is that we are able not only to generate
redictions, but also to generate geostatistical simulations, map the
odel uncertainty, and run all other common geostatistical analysis

teps.
In the last step of this exercises we want to validate the model

erformance using cross-validation and the original complete pop-
lation. The 10-fold cross validation (as implemented in gstat) for
he intensities interpolated with regression-kriging shows that the

odel is highly precise — it explains over 99% of the variance in the
raining samples. Further comparison between the map shown in
ig. 2e and 1a shows that, with a 20% of samples and four environ-
ental predictors, we are able to explain 96% of the pattern in the

riginal density map (R-square = 0.96). Fig. 5 indeed confirms that
his estimator is unbiased.

One last point: although it seems from this exercise that we
re recycling auxiliary maps and some analysis techniques (we use
uxiliary maps both to generate the pseudo-absences and make
redictions), we in fact use the HSI map to generate the pseudo-
bsences, and the original predictors to run predictions, which not
ecessarily need to reflect the same features. Relative densities,
o not have to be directly correlated with the HSI, although a sig-
ificant correlation will typically be anticipated. Likewise, we use
ernel smoother to estimate the intensities, but we then fit a vari-
gram, which is obviously controlled by the amount of smoothing,
.e. value of the bandwidth, hence the variogram will often show
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

rtificially smooth shape, as shown in Fig. 4. The only way to avoid
his problem is to estimate the bandwidth using some objective
echnique (which we failed to achieve in this example), or to scale
he variogram fitted for the indicator variable (Fig. 4; right) to the
ensity values scale.
Fig. 5. Evaluation of the mapping accuracy for the map shown in Fig. 2e versus the
original mapped density using 100% of samples (Fig. 1a).

3. Methods and materials

The computational framework used in this article follows the
example described in the previous Section 2.3, except it implies a
larger number of predictors and several additional processing steps.
A general workflow, as implemented in the R environment for sta-
tistical computing, is presented in Fig. 6. In order to fully understand
all processing steps in detail, the interested readers can look at the
R script provided via the contact authors’ website.

The framework comprises six major steps. First, the occurrence
locations are used to derive the density of a species for a given area
based on the kernel smoother. Kernel density can be estimated in R
using several methods; here we use the density.ppp method, as
implemented in the spatstat package (Baddeley and Turner, 2005).
In R, the smoothing parameter (bandwidth) can be estimated objec-
tively; when it does not converges to a local minimum we use
an ad hoc bandwidth selected as two times the average length of
the block occupied by an individual (2 ·

√
area(B)/N). The output

kernel density image can be coerced to the widely accepted spa-
tial R format (SpatialGridDataFrame) of the maptools/sp package
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

(Bivand et al., 2008); coercion to this format is important for further
geostatistical analysis and export to GIS.

The second step is ENFA, which we run using the occurrence-
only records. For ENFA, we use the adehabitat package, which is a
collection of tools for the analysis of habitat selection by animals

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
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marsh2km), and flooded2km.
The occurrence records (562) of root vole were obtained from

the Dutch organization for mammals (VZZ) (http://www.vzz.nl/
soorten/noordsewoelmuis/). The records and environmental maps
refer to the 1995–2007 period.
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Hirzel and Guisan, 2002; Calenge, 2006). Third, the resulting Habi-
at Suitability Index map (HSI, see further Figs. 8b and 11b) are used
o generate the pseudo-absence locations. To achieve this, we use
he rpoint method of the spatstat package (Baddeley, 2008). This

ethod generates a random point pattern with the density of sam-
ling proportional to the values of the weights map derived using
q. (11).

In the fourth step, where possible, the simulated absence loca-
ions are reprojected to the Latitude/Longitude WGS84 system,
xported to Google Earth (writeOGR method in rgdal package) and
alidated by an expert, e.g. by doing photo-interpretation of high
esolution satellite imagery.

Once we produce an equal number of occurrence and simulated
bsence locations, they can be packed together and used to build
egression models using the ecological predictors. The residuals
f the regression model are then analyzed for auto-correlation by
tting a variogram (fit.variogram method in gstat).

In the last, sixth step, after both the regression model and the
ariogram parameters have been determined, final predictions are
enerated using the generic predict.gstat method (Eq. (13)) as
mplemented in the gstat package (Pebesma, 2004; Bivand et al.,
008). More details on how to run regression-kriging and interpret

ts outputs can be found in Hengl (2007).
For a comparison, we also map the distribution of a species

ased on the occurrences + absences by fitting a binomial GLM.
his is possible using the glm method in R, by setting a binomial link
unction (binomial(link=logit)). By using library mgcv, one can
lso fit Generalized Additive Models (GAM), using the same type of
ink function (family=binomial); in this paper we focus on fit-
ing linear models only. The output of running binomial GLM are
robabilities, ranging from 0 to 1 (see further Figs. 8c and 11c).

The final results of running regression-kriging can be evaluated
sing the leave-one-out cross validation method, as implemented

n the krige.cv method of gstat package (Pebesma, 2004). The
lgorithm works as follows: it visits a data point, predicts the
alue at that location by leaving out the observed value, and pro-
eeds with the next data point. This way each individual point is
ssessed versus the whole data set. The results of cross-validation
re used to pinpoint the most problematic locations, e.g. exceeding
he three standard deviations of the normalized prediction error,
nd to derive the summary estimate of the map accuracy (Bivand
t al., 2008, pp. 222–226).

We have tested this framework using occurrence-only records
or two different species: distribution of root vole (Microtes oecono-
us) in the Netherlands, and distribution of nests of white-tailed

agle (Haliaeetus albicilla) in Croatia. In both cases, we have jointly
un analysis and then made the interpretation of the results and
iscussed strength and limitations of this framework.

. Case studies

.1. Root vole (M. oeconomus) in the Netherlands

The root vole (M. oeconomus) is a widespread, holarctic mouse
pecies that inhabits the northern regions of Europe, Asia and
laska. In Europe six subspecies are described (Mitchell-Jones et al.,
002). One of these subspecies, M. oeconomus arenicola is endemic
o the Netherlands and listed as a species of conservation concern
n the Habitats Directive of the European Union (van Apeldoorn,
002). Its presence in the Netherlands is seen as a relict from the
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

ce Age and the Dutch population has no contact anymore with
ther European populations of the root vole. It is a good swim-
er and well adapted to wetlands with varying water tables and

as a high reproductive power. Therefore, root voles can swiftly
ecolonize wetlands after flooding.
 PRESS
lling xxx (2009) xxx–xxx

It is thought that the Dutch root vole suffers heavily from compe-
tition with two other Microtus-species: the common vole (Microtus
arvalis) and the field vole (Microtus agrestis) (van Apeldoorn et al.,
1992; van Apeldoorn, 2002). On the isle of Texel, for example, the
root vole was until recently the only occurring mouse species, which
enabled it to occupy a wider variety of habitats. Root vole popu-
lations are known to co-exist with populations of the other two
Microtus-species on various locations in the country. Since these
competitive species are not good swimmers, islands and large wet-
lands are the core areas of root voles, while smaller habitat patches
in the vicinity of wetland throughout the country are places where
the three species co-occur.

Following this knowledge about the biology of root vole, we
selected two groups of environmental predictors to explain the
distribution of root vole in the Netherlands: (1) habitat vari-
ables (wetland areas): marsh — marshland areas (0/1), island
— island areas (0/1), flooded — regions flooded in 1953 (0/1),
freat1 — duration of primary drainage in days (obtained from
the http://rijkswaterstaat.nl), and fgr — map of the Physical
Geographic Regions (denoting the same characteristics in physiog-
raphy); (2) biological factors: nofvole — indicator variable showing
the areas in the north-west of the country where field voles are
absent, nofvole25 — 25 km wide band where root and field voles
co-occur (all variables at 1 km resolution). Since the species are not
mutually exclusive in most of the country on a landscape and/or
local scale, other variables were sought fore that relate to the
great ability of the root vole to recolonize adjacent areas from core
areas. Hence, in addition to the maps showing locations of marsh-
lands (marsh) and islands (island), we also used their density for
1 and 2 km search radiuses: (island1km, island2km, marsh1km,
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

Fig. 7. Biplot showing the multicolinearity of the environmental predictors used to
map distribution of root vole in the Netherlands: marsh — marshland areas (0/1),
island — island areas (0/1), flooded — flooded regions (0/1), freat1 — dura-
tion of primary drainage in days, island1km, island2km, marsh1km, marsh2km,
and flooded2km — density of marshlands and flooded areas for 1 and 2 km search
radiuses.

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
http://rijkswaterstaat.nl
http://www.vzz.nl/soorten/noordsewoelmuis/
http://www.vzz.nl/soorten/noordsewoelmuis/
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ig. 8. Spatial prediction of root vole in the Netherlands: (a) the kernel density ma
bsence locations; (c) probabilities predicted using the Binomial GLM-based regres
riginal occurrence records are not shown for security reasons.

The derived kernel density is shown in Fig. 8a. The habitat suit-
bility analysis shows that the potential spreading of the species
s much larger than the actual locations show. The HSI map shown
n Fig. 8b mainly follows the pattern of the primary drainage dura-
ion (freat1) and physiographic regions (fgr). The target variable
kernel density) is heavily skewed toward small values, so we
sed a log-transform for further modeling. The biplot graph of the
rincipal component analysis output (Fig. 7), calculated using the
ampling locations, shows four clusters of variables (a) flooded,
ofvole and fgr (b) marsh, (c) islands and (d) freat1. Fur-
her Principal Component transformation of the original grid maps
hows that PC1 explains 30% of total variance, PC2 20%, PC3 18%,
C4 10% and PC5 still 8% of the variation. The stepwise regression
hows that the most significant predictors are now PC1 (islands)
nd PC3 (flooded and marsh). The PCA based-model is not statisti-
ally different from the model fitted using the original variables. The
stat fitted an exponential variogram model with a zero nugget, sill
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

arameter of 0.00625 and a range parameter of 3.7 km to remaining
esiduals.

Regression analysis showed that, if occurrence-only data is
sed, the tailored predictors explain 71.0% of the variation. After

ncluding the simulated absence-observations the explained vari-
tched to min–max range); (b) the Habitat Suitability Index and simulated pseudo-
riging; (d) the final predictions of densities produced using regression-kriging. The

ation increases to 80.2%. The most significant predictors of root
vole density are marsh2km, flooded2km, freat1, island2km, and
nofvolebuf25.

The final result of regression-kriging of 0/1 values and observa-
tion densities for root vole is shown in Fig. 8c and d. The root mean
square prediction error at the leave-one-out validation points for
model in Fig. 8d is 23% of the original variance; the regression-
kriging model explains 98% of the original variance, which is quite
high.

4.2. Nests locations of white-tailed eagle (H. albicilla) in Croatia

In the second case study we focus on modeling the distribu-
tion of white-tailed eagle (H. albicilla) in Croatia. At the beginning
of the 1990s, about 80 pairs were recorded in Croatia (Tucker et
al., 1994); a decade after, Croatia had 80–90 pairs. Some most
recent records by Radović and Mikuska (2009) indicate a contin-
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

uous increase in population number in the period 2003–2006.
This makes Croatia a country with the second largest popu-
lation of H. albicilla among the neighboring central European
countries (Schneider-Jacoby et al., 2003; BirdLife International,
2004).

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
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The step-wise regression shows that the most significant predic-
tors of the nest density are PC2 (reflecting position of the wetlands
and elevation) and PC1 (reflecting distance to roads and urban
areas). Step-wise regression has much less problems in selecting
ARTICLEG Model
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H. albicilla breeds in various habitats but commonly needs sea
oasts, lake shores, broad rivers, island and wetlands with high
roductivity. It breeds in different climates ranging from conti-
ental to oceanic. In Norway and Iceland nests are rarely placed
bove 300 m above sea level (Cramp, 2000). Normally, only one
r two alternate nests are built in a breeding territory (Helander
nd Stjernberg, 2002), which makes the nests most interesting for
opulation distribution assessments. The highest breeding densi-
ies are concentrated in the large intact floodplains of the Sava and
he Danube rivers in central and eastern part of Croatia (Radović
nd Mikuska, 2009).

Following the habitat characteristics of H. albicilla, we have
repared a total of 13 environmental predictors (all at 200 m res-
lution): dem — a Digital Elevation Map showing height of land
urface; canh — derived as the difference between the topo-map
EM and the SRTM DEM, so that it reflects the height of canopy;
railroad — distance to rail roads; droads — distance to roads;
urban — distance to urban areas; dwater — distance to water
odies; pcevi1-4 — PCs from 12 MODIS Enchanced Vegetion Index
EVI) images obtained for the year 2005; slope — slope map derived
sing the DEM; solar — incoming solar insolation derived using the
EM; wetlands — boolean map showing location of the wetlands.
he proximity maps (drailroad, droads, durban and dwater)
ere derived from the vector features from the 1:100k topo-maps.
em and derivatives (canh, slope and solar) and EVI components
re standard exhaustive predictors used for geostatistical mapping
f environmental variables. The wetland habitats distribution map
as obtained from the Croatian State Institute for Nature Protec-

ion (http://www.cro-nen.hr/map/). This is a Boolean map (1/0)
howing locations of the wetland areas, covered by both forests
nd swamps.

The nest positions used in this paper were recorded in the
eriod 2003–2006. Altogether, 155 nest locations were recorded,
ut of which 125 locations showed clear signs of breeding (Radović
nd Mikuska, 2009). An additional 10 presumably active territo-
ies were detected but without knowing the exact position of the
ests. Because of some problems during the fieldwork (minefields,
ooded areas and extreme sensitivity of birds to our presence)
he exact coordinates were taken for a total of 135 nests. We
ssume that this number represents about 80% of the total nests
N = 169, BHR = 330 km2), but this is hard to validate. Grlica (2007)

ost recently discovered some new breeding territories along
rava river coasts, but without recording the exact position of the
ests.

The nest density estimated using a Gaussian kernel smoother
ith bandwidth set at 75% of the distance to the nearest neigh-

ors (3.4 km) is shown in Fig. 11a. The areas with nest density close
o zero are masked and 135 absence points generated using the

ethod described in Section 2.3 are shown in Fig. 11b. From these,
1 were found to fall in areas where potentially the species might
ccur, and were masked out from further analysis. We start by cor-
elating the nest density estimated at observation points with the
cological predictors. If occurrence-only data are used, the eco-
ogical predictors explain 69% of variation of the target variable.

erging of the occurrence and absence observations gives 259
oints in total, and the regression model explains 83% of variation.
he most significant ecological predictors are droads, wetlands,
em, pcevi3 and dwater (Fig. 9). Adding simulated absence loca-
ions was relatively inexpensive as it took only one day to validate
imulated 135 locations.

The ecological predictors are highly inter-correlated and with
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

kewed distributions. The biplot graph (Fig. 10) calculated at sam-
ling locations shows that there are four clusters of predictors:
a) dem is correlated with dwater and slope; (b) droads, dur-
an, pcevi3, canh and with wetlands; (c) solar and pcevi4; (d)
cevi.
Fig. 9. Correlation plots between the log of nest densities and ecological predictors:
dem — digital elevation model in meters; droads — distance to roads in meters;
dwater — distance to water in meters; pcevi — the third component of the MODIS
Enhanced Vegetation Index for year 2005.

The Principal Component transformation of the original predic-
tors produces somewhat different picture. In this case, PC1 explains
80.1% of total variance and reflects mainly pcevi01, PC2 explains
7.9% of variance and reflects the position of wetlands and dem, PC3
explains 4.5% of variance, PC4 2.0%, PC5 1.4%, etc.
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

Fig. 10. Biplot showing the multicolinearity of the environmental predictors used
to map distribution of white-tailed eagle: dem — digital elevation model; canh —
height of canopy; drailroads — distance to rail roads; droads — distance to roads;
durban — distance to urban areas; dwater — distance to water bodies; pcevi1--4

— four PCs from 12 EVI images for year 2005; slope — slope map; solar — incoming
solar insolation; wetlands — boolean map showing location of wetlands.

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
http://www.cro-nen.hr/map/
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ig. 11. Spatial prediction of white-tailed eagle in Croatia: (a) the kernel density ma
ccurrence locations; (c) probabilities predicted using the Binomial GLM-based reg
ecords are not shown for security reasons.

he significant predictors if they are uncorrelated. The number of
ignificant predictors after the principal component transformation
as reduced from 9 to 6; the adjusted R-square stays unchanged.

Further analysis of the residuals shows that they are spatially
uto-correlated. We fitted an exponential variogram with 0 nugget,
.263 sill parameter and range parameter of 5.2 km. The variogram
or binomial GLM residuals is noisier than the variogram derived for
ensities. As expected, continuous variables (densities) are more
uited for geostatistical modeling than the binary variables — the
ariograms show lower nugget; the regression models can be fitted
ore efficiently using the same set of predictors.
The accuracy of the map shown in Fig. 11a evaluated using

he leave-one-out cross validation method shows that the map
s fairly accurate: the root mean square prediction error at the
alidation points is only 16% of the original variance, or in other
ords, the regression-kriging model explains 94% of the original

ariance.

. Discussion and conclusions

The results of the case studies described in this paper demon-
trate that more informative and more accurate maps of the actual
pecies’ distribution can be generated by combining kernel smooth-
ng, ENFA and regression-kriging. In order to improve estimation of
egression model and final interpolation results, we advocate simu-
ation of pseudo-absence data using inverted HSI and distance maps
Eq. (11)). This has shown to improve the regression models — the
djusted R-square increased from 0.69 to 0.83 for white-tailed eagle
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

nd from 0.71 to 0.80 for root vole — while improving the spreading
f the points in feature space (see Fig. 12). This confirms the results
f Chefaoui and Lobo (2008).

We believe that the method proposed in this article, as described
n Section 2.3, has several advantages over the known species’ dis-
ribution modeling methods:
etched to min–max range); (b) the Habitat Suitability Index and simulated pseudo-
n-kriging; (d) densities predicted using regression-kriging. The original occurrence

• The pseudo-absence locations are generated using a model-based
design that spreads the points based on the geographical distance
from the occurrence locations and the potential habitat. Compare
with the purely heuristic approaches to generate the pseudo-
absence by Chefaoui and Lobo (2008) or Jiménez-Valverde et al.
(2008a).

• Both spatial auto-correlation structure and the trend component
of the spatial variation are used to make spatial prediction of
species’ distribution. This leads to the Best Linear Unbiased Pre-
diction of the presence, i.e. density values. Compare, for example,
with the heuristic approach by Bahn and McGill (2007).

• Final output map shows distribution of a real physical parameter
(number of individuals per grid cell) and can be directly vali-
dated using measures such as RMSE and similar. Compare with
the often abstract evaluation measures (e.g. Kappa, MaxKappa,
AUC, adjusted D2, AVI, CVI, Boyce index, etc.) used in predictive
habitat mapping (Hirzel et al., 2006).

• The whole mapping process can be automated in R, which is
attractive for projects where the maps need to be constantly up-
dated. The only interventions expected from a user is to provide
an estimate of the total population of the species (N), the size of
the area occupied (the home range area area(BHR)), and a list of
environmental predictors.

Although we primarily advocate regression-kriging of relative
densities, we are convinced that a species’ distribution analyst
should aim at producing all three types of maps: (1) the ENFA-based
HSI map showing the potential habitat (Fig. 2b); (2) the species’ dis-
tribution (probability) map (Fig. 2f); (3) the species’ distribution
(density) map (Fig. 2e). ENFA can help understand the relation-
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

ship between species and environmental conditions and generate
pseudo-absence locations. The probability-based species’ distribu-
tion map can be used to delineate home range areas (probability
¿0.5), and the actual species’ distribution map (density) quanti-
fies the spreading of the species and can be used to estimate the

dx.doi.org/10.1016/j.ecolmodel.2009.06.038
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ig. 12. Position of the occurrence (+) and the pseudo-absence (©) locations when
left) and white-tailed eagle (right). The plot was produced using the hist2D functio

umber of individuals per area. Certainly, both binomial GLM using
ndicators and logistic regression-kriging using intensities are valid
eostatistical techniques to handle this type of data.

In addition, visual validation of the simulated absence locations
sing Google Earth TM is fast, convenient and leads to more useful
eostatistical models. The simulated absence points that are hard
o validate visually (in the case of mapping the white-tailed eagle,
ny area close to wetlands and within natural forests), can be either
mitted from the analysis or visited on the field. For example, in the
ase of mapping the white-tailed eagle in Croatia, only 11 simulated
bsence points (out of 135) were evaluated as unreliable and hence
mitted from further analysis.

The proposed technique to generate pseudo-absences could
e improved further. First, one could also build models that
lowly increase the size of pseudo-absences until the prediction
ccuracy stabilizes. In this approach, we simply use a single num-
er (number of pseudo-absences = number of presences), which is
omewhat naïve approach. More absences can be generated for
pecies that have narrow niche. Second, we ignore the fact that
ur pseudo-absences might be biased, so that our fitted model
ecomes over-optimistic. In the case of narrowly distributed species

n a wide region, the selection of absences by our approach will
enerate absences far from the environmental conditions of pres-
nces, and possibly artificially increase the coefficient of variation.
oth Chefaoui and Lobo (2008) and VanDerWal et al. (2009) clearly
emonstrate that the way the pseudo-absences are generated has a
ignificant impact on the resulting maps. Finally, we focused on the
NFA approach of Hirzel and Guisan (2002) to generate the pseudo-
bsences. One could also try generating multiple HSI maps via, e.g.
he openModeller SDM library (Sutton et al., 2007). More research
s certainly needed to analyze impacts of techniques used to derive
seudo-absence, and the impacts they make on the success of pre-
iction models.

Although the cross-validation statistics shows that we have pro-
uced fairly accurate maps, in the case of mapping the distribution
f root vole, it appears that the output map mainly reflects geom-
try of the points (note that even the buffer-based predictors we
Please cite this article in press as: Hengl, T., et al., Spatial prediction o
point pattern analysis, ENFA and regression-kriging. Ecol. Model. (200

elected, also reflect geometry rather than environmental features).
o prove this, we have excluded occurrence records from the most
ensely populated area (Biesbosch), only to see if the model would
e able to predict the same pattern (extrapolation). The result of
his exercise showed that our model is not successful in predict-
yed in feature space (as defined using the most significant predictors): for root vole
e R package gplots.

ing the area that has been masked out, which finally means that
the predictions by regression-kriging will be highly sensitive to
how representative the sample data set is, considering the whole
population of this species.

Why does regression modeling performs poorer if only pres-
ence data is used? Obviously, the sampling designs are typically
extremely biased considering the spreading of points in the feature
space (Sutherland, 2006), which makes it very hard to estimate
the true relationship between the distribution of a species and
the ecological factors. It would be as if we would like to fit a
model to estimate people’s weight using their height, and then
sample only extremely tall people. We illustrate this problem in
Figs. 3 and 12, which shows that the occurrence-only samples for
specialized species are heavily clustered in the feature space (this
is more distinct for the white-tailed eagle than for root vole). After
addition of the absence locations, the feature space is much bet-
ter represented, so that the output prediction maps become more
reliable.

The geostatistical technique used in this paper could be
expanded to accommodate even more complex data: spatio-
temporal observations, multiscale predictors, clustered observa-
tions, trajectory-type of data, observations of multiple species and
similar. In this article, we rely on the state-of-the-art geostatisti-
cal mapping techniques as implemented in the R package gstat. To
run a GLM and then explore the residuals, e.g. via variograms, is a
routine practice, but it does not always tell the whole story. In the
case of multiple regression, covariance matrix is used to account
for spreading (clustering) of the points in the space. In our exam-
ple (Fig. 11c), we fit a GLM that completely ignores location of the
points, which is obviously not statistically optimal. In comparison,
fitting a Generalized Linear Geostatistical Model (GLGM) can be
more conclusive since we can model the geographical and regres-
sion terms more objectively (Diggle and Ribeiro, 2007). This was,
for example, the original motivation for the geoRglm and spBayes
packages (Ribeiro et al., 2003). However, GLGMs are not yet opera-
tional for geostatistical mapping purposes and R code will need to
be adapted.
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

Automated retrieval and generation of distribution maps from
biodiversity databases is possible but tricky. The biggest problem
for such applications will be the quality of the occurrence records
— especially their spatial reference that is extremely variable (from
few meters to tens of kilometers), but also the sampling bias, and
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hematic quality of the records (incorrect taxonomic classification,
ncompleteness). Although Jimenez-Valverde and Lobo (2006) in
eneral do not see the sampling bias as a big problem for the success
f spatial prediction, in the case of regression-kriging the output
aps will be heavily controlled by the sampling bias. Hence if you

re considering implementing this framework, have in mind that
our input data (point sample) should be a good spatial represen-
ation of the whole population (it is not so much about the size, but
bout how well are all presence locations represented geographi-
ally). Another issue is the computational burden of the framework
e propose in Fig. 6 that can easily grow beyond the capacities of

tandard PCs. In fact, we could imagine that multiple species (all
pecies in the GBIF database?) could be handled at the same time
hrough a co-kriging framework, which would result in large quan-
ity of models and combinations of models that would need to be
tted. The benefits of running the models jointly versus isolated
odeling are obvious — this is rather a technical than conceptual

roblem. At this moment, we simply can not foresee when would
uch type of analysis become a reality.
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Radović, A., Mikuska, T., 2009. Population size, distribution and habitat selection
of the white-tailed eagle Haliaeetus albicilla in the alluvial wetlands of Croatia.
Biologia 64 (1), 1–9.

Rangel, T.F.L.V.B., Diniz-Filho, J.A.F., Bini, L.M., 2006. Towards an integrated computa-
tional tool for spatial analysis in macroecology and biogeography. Global Ecology
& Biogeography 15 (7), 321–327.

Ribeiro, P.J., Christensen, O.F., Diggle Jr., P.J., 2003. geoR and geoRglm: software for
model-based geostatistics. In: Hornik, K., Leisch, F., Zeileis, A. (Eds.), Proceedings
of the 3rd International Workshop on Distributed Statistical Computing (DSC
2003). Technical University Vienna, Vienna, pp. 517–524.

Schneider-Jacoby, M., Mohl, A., Schwarz, U., 2000. The white-tailed eagle in the
Danube River Basin. In: Helander, B., Marquiss, M., Bowermann, W. (Eds.), Sea
Eagle. Swedish Society For Nature Conservation/SSF and Atta, Stockholm, pp.
133–140.

Stockwell, D., Peters, D., 1999. The GARP modelling system: problems and solutions to
automated spatial prediction. International Journal of Geographical Information
Science 13 (2), 143–158.

Sutherland, W.J. (Ed.), 2006. Ecological Census Techniques: A Handbook, 2nd edition.
Cambridge University Press, Cambridge.

Sutton, T., de Giovanni, R., de Siqueira, M., 2007. Introducing openModeller—a fun-
damental niche modelling framework. OSGeo Journal 1, 2–6.

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., Kadmon, R., 2007. A comparative eval-
uation of presence-only methods for modelling species distribution. Diversity &
Distributions 13 (9), 397–405.

Tucker, G.M., Heath, M.F., Tomialojc, L., Grimmett, R.F.A., 1994. Birds in Europe: pop-
ulation estimates, trends and conservation status. BirdLife Conservation Series
No. 3. BirdLife International, Cambridge, UK.

van Apeldoorn, R.-C., 2002. The root vole (Microtus oeconomus arenicola) in the
Netherlands: threatened and (un)adapted? Lutra 45 (2), 155–166.

van Apeldoorn, R.C., Hollander, H., Nieuwenhuizen, W., Van Der Vliet, F., 1992. The
Root vole in the Delta area: is there a relation between habitat fragmentation and
competition at landscape scale? Landschap: Tijdschrift Voor Landschapsecologie
en Milieukunde 9 (3), 189–195 (in Dutch).

VanDerWal, J., Shooa, L.P., Grahamb, C., Williams, S.E., 2009. Selecting pseudo-
absence data for presence-only distribution modeling: how far should you stray
f species’ distributions from occurrence-only records: combining
9), doi:10.1016/j.ecolmodel.2009.06.038

from what you know? Ecological Modelling 220, 589–594.
Worton, B.J., 1995. Using Monte Carlo simulation to evaluate kernel-based home

range estimators. Journal of Wildlife Management (4), 794–800.
Zaniewski, A.E., Lehmann, A., Overton, J.M., 2002. Predicting species spatial distri-

butions using presence-only data: a case study of native New Zealand ferns.
Ecological Modelling 157 (2–3), 261–280.

dx.doi.org/10.1016/j.ecolmodel.2009.06.038

	Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regr...
	Introduction
	Theory: combining kernel density estimation, ENFA and regression-kriging
	Species’ density estimation using kernel smoothing and covariates
	Predicting species’ distribution using ENFA and GLM (pseudo-absences)
	Predicting species’ density using ENFA and logistic regression-kriging
	Species’ distribution modeling using a textbook example

	Methods and materials
	Case studies
	Root vole (M. oeconomus) in the Netherlands
	Nests locations of white-tailed eagle (H. albicilla) in Croatia

	Discussion and conclusions
	References


