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Abstract

The nonlinear evolution of a localized layer of buoyant, uniform potential vorticity fluid with depth H,
width w0 and length L released adjacent to a wall in a rotating system is studied using reduced-gravity shallow-
water theory and numerical modeling. In the interior, far from the two ends of the layer, the initial adjustment
gives, after ignoring inertia–gravity waves, a geostrophic flow of width w∞ and layer velocities parallel to
the wall directed in the downstream direction (defined by Kelvin wave propagation). This steady geostrophic
flow serves as the initial condition for a semigeostrophic solution using the method of characteristics. At
the downstream end, the theory shows that the fluid intrudes along the wall as rarefaction terminating at
a nose of vanishing width and depth. However, in a real fluid the presence of the lower layer leads to a
blunt gravity current head. The theory is amended by introducing a gravity current head condition that has
a blunt bore joined to the rarefaction by a uniform gravity current. The upstream termination of the initial
layer produces a Kelvin rarefaction that propagates downstream, decreasing the layer depth along the wall,
and initiating upstream flow adjacent to the wall. The theoretical solution compares favorably to numerical
solutions of the reduced-gravity shallow-water equations. The agreement between theory and numerical
solutions occurs regardless of whether the numerical runs are initiated with an adjusted geostrophic solution
or with the release of a stagnant layer. The latter case excites inertia–gravity waves that, despite their large
amplitude and breaking, do not significantly affect the evolution of the geostrophic flow. At times beyond
the validity of the semigeostrophic theory, the numerical solutions evolve into a stationary array of vortices.
The vortex formation can be interpreted as the finite-amplitude manifestation of a linear instability of the
new flow established by the passage of the Kelvin wave. The Kelvin wave ultimately reduces the flux into
the downstream gravity current and the vortices retain buoyant in the neighborhood of the initial layer.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the classic geostrophic adjustment problem an initial geostrophically unbalanced state is
allowed to relax to a final steady flow whose characteristics are determined by conserving certain
properties of the initial state (e.g., mass, potential vorticity and angular momentum) (Rossby,
1938; Blumen, 1972). Often, the adjustment problem is considered for symmetric situations (e.g.,
the collapse of a cylindrical column) and removed from boundaries. If adjacent to boundary,
the initial state is uniform in the direction parallel to the boundary. These restrictions render the
adjustment process one dimensional, and in the case against a boundary, eliminate the possibility
of Kelvin wave propagation along the boundary.

A notable exception is linear geostrophic adjustment in a channel considered by Gill (1976).
In that problem a layer of fluid of depth h1 is separated from a layer of the same fluid with depth
H > h1 by a dam that runs directly across the channel at x = 0. Removal of the dam excites a Kelvin
wave that propagates downstream (x > 0) along the right-hand wall (looking from the deep to the
shallow layer with anti-clockwise rotation). The Kelvin wave initiates a boundary current that
is fed from upstream by another boundary current on the left-hand wall that is established by a
second Kelvin wave that propagates back upstream from the dam. The two currents are joined by
a cross-channel (y) geostrophic jet at the location of the dam. For an infinitely wide channel this
interior flow is just the one-dimensional geostrophic adjustment solution. One of the effects of
nonlinearity in the presence of the boundary is the downstream advection of the potential vorticity
front established by the fluid depths at t = 0 (Hermann et al., 1989; Tommason and Melville, 1992;
Helfrich et al., 1999). The nose of the potential vorticity front on the right-hand wall moves at a
speed that approaches the Kelvin wave speed from below as h1 → 0. When h1 = 0, the downstream
Kelvin wave and boundary current are replaced by a rotating gravity current with a blunt bore-like
head (Stern et al., 1982; Griffiths and Hopfinger, 1983; Kubokawa and Hanawa, 1984; Helfrich
and Mullarney, 2005).

The motion of the potential vorticity front was further analyzed by Stern and Helfrich (2002).
They were able to eliminate the complications from the cross-channel jet and a stagnation point
on the right wall by taking the initially deeper layer (depth H) to extend only a finite transverse (y)
distance from right wall and upstream of x = 0, and taking the channel width to be infinite. Outside
of this deep layer, the ambient fluid again had a depth h1 < H. The long-time nonlinear evolution of
the potential vorticity front intrusion was found using a long-wave, or semigeostrophic, shallow-
water theory. After release of the layer, only the right-hand wall Kelvin wave and boundary
current remained. The current was fed from upstream by flow parallel to the wall formed by
geostrophic adjustment of the transverse step in layer depth. They also used numerical solutions
of the shallow-water equations and laboratory experiments to test the theory and explore the
effects of a finite-depth lower layer.

The objective is to extend the analysis in Stern and Helfrich (2002) to the case where the depth
of the shallow, ambient layer is zero (h1 = 0). Of interest is the development of the geostrophically
adjusted flow when the initial layer has finite length along the wall. The situation to be considered
is depicted in Fig. 1a. A layer of initially motionless, buoyant fluid with density ρ, depth H, width
w0 and length L is held adjacent to a vertical wall running in the x-direction. The system is rotating
about the vertical axis with frequency f/2. The lower layer has density ρ + �ρ and is taken to be
deep and motionless.

First consider the infinitely long case L → ∞. Once released, the layer will spread offshore
(y > 0) due to gravity until rotation begins to arrest the motion on a timescale ∼f−1. Ignoring for
the moment high-frequency inertia–gravity waves excited by the release, conservation of volume



K.R. Helfrich / Dynamics of Atmospheres and Oceans 41 (2006) 149–171 151

Fig. 1. (a) Sketch of the initial condition. (b) Interior geostrophic flow.

and potential vorticity give the x-independent steady, geostrophically adjusted flow

h(y) = H

(
1 − cosh(y/LR)

cosh(w∞/LR)

)
(1)

u(y) = (g′H)1/2 sinh(y/LR)

cosh(w∞/LR)
. (2)

The width of the adjusted current w∞ is related to the initial width w0 by

w0 = w∞ − LR tanh

(
w∞
LR

)
, (3)

and

h∞ = H

[
1 − sech

(
w∞
LR

)]
(4)

is the layer depth at the wall, y = 0. The deformation radius LR = √
g′H/f , g′ = g �ρ/ρ is the

reduced gravity and g is the gravitational acceleration. This adjusted state is shown in Fig. 1b.
When L is finite, there will be additional adjustment processes at both ends of the layer. At the

downstream end, x = 0 (defined by the Kelvin wave propagation direction), the fluid will slump
due to gravity and, as in the channel case, form a rotating gravity current that propagates along the
wall in the positive x-direction. At the upstream end, x = −L, initial gravitational slumping will
also occur, but it cannot lead to a gravity current moving in the negative x-direction since there will
be no “right-hand” wall (looking in the negative x-direction) to support a geostrophic boundary
current. Instead, the upstream adjustment produces a Kelvin wave that propagates in the positive
x-direction. As will be shown below, disturbances from the downstream end cannot propagate
back upstream. Thus, provided L � w0 these two end adjustment processes will initially proceed
independently and the interior geostrophic flow (1)–(2) will remain unchanged until the arrival of
the Kelvin wave from the upstream end. The subsequent evolution of the interior and the properties
of downstream gravity current are the subjects of this study.

The dynamics of geostrophic adjustment and rotating boundary currents are fundamental geo-
physical fluid dynamics problems. Possible applications include the relaxation of a downwelling
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ocean front of finite length along the coast after the cessation of the wind and the generation of
waves and gravity currents in the marine atmospheric boundary layer along the west coast of the
United States (Dorman, 1987). Another example is the relaxation of a pool of dense fluid beneath
a coastal polynya after the heat loss has stopped (Chapman and Gawarkiewicz, 1997). These
situations are more complicated than the idealized problem outlined above due to the possibility
of an active second layer and bottom topography. However, they do share the basic features of
the simplified model. Thus, this model should provide some insight into the dynamics and act as
a building block for further work.

A reduced-gravity semigeostrophic theory for the evolution at both the downstream and
upstream ends is developed in Section 2. In Section 3 the theoretical solutions are compared
to numerical solutions of a reduced-gravity shallow-water model including cases where the full
adjustment with inertial oscillations is considered. The results are briefly discussed in Section 4.

2. Semigeostrophic theory

A complete theory for the adjustment of the finite-length layer would be very difficult to obtain
as the flow is fully nonlinear and time dependent. However, progress can be made if the following
assumptions are made. The first, as discussed above, is to consider evolution on times t > f−1

after the initial geostrophic adjustment is nearly complete. In the interior, the geostrophic flow in
Fig. 1b has developed and the initial state in −L ≤ x ≤ 0 is given by (1) and (2). This assumption
ignores time-dependent, and possibly dissipative, dynamics that occur as the flow adjusts to the
balanced state (Killworth, 1992; Kuo and Polvani, 1997) and also the possible interaction between
the inertia–gravity waves and the evolving geostrophic flow.

The role of inertia–gravity waves in geostrophic adjustment has been explored in the weakly
nonlinear, small Rossby number, limit by Reznik et al. (2001) and Reznik and Grimshaw (2002).
They showed that the initial state can be uniquely split into slow and fast components. The slow,
nearly geostrophic, component of the flow is unaffected by the fast inertia–gravity waves on a
long timescale proportional to the inverse of the Rossby number. The non-interaction follows from
the fact that the inertia–gravity waves do not carry potential vorticity. The Reznik and Grimshaw
(2002) study is especially relevant as it considered adjustment adjacent to a wall and found that
the presence of a Kelvin wave did not prevent this splitting. This suggests that the assumption
to ignore the inertial motions in constructing the solution is reasonable. One caveat is that the
problem under consideration has order-one Rossby number and highly nonlinear inertia–gravity
waves. This reduces the timescale at which wave–geostrophic flow interaction becomes important.

Additional support for ignoring the inertia–gravity waves comes from the fact that the ini-
tial condition has uniform potential vorticity. There are no potential vorticity gradients for the
inertia–gravity advect and hence no interaction. This has been discussed by Hayasha and Young
(1987) for wave–mean flow interactions in unstable semigeostrophic flows. This implies that the
problem here may be a special case. However, Stern and Helfrich (2002) also assumed that the
geostrophic adjustment phase could be separated from, and provide the initial condition for, the
subsequent nonlinear long-wave evolution in a problem with a potential vorticity front. Some of
the inertia–gravity wave energy rapidly radiated away from the adjustment region, though not all.
They found comparisons with full numerical solutions of the shallow-water system showed gave
good agreement with the semigeostrophic theory.

The second assumption involves the flow at both ends of the initial pool of fluid. Clearly,
even the geostrophic flow cannot be valid at either x = −L or 0, since both ends must undergo
independent adjustments. However, any disturbances propagating from the ends move with a
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speed ≈√
g′H , so they can only get a distance ∼LR on a timescale f−1. As long as LR/L 
 1 the

interior solution at t ∼ f−1 is valid over most of the length of the patch. The last assumption is
that the lengthscale of the motion in the x-direction, λ, is long with respect to LR. This long-wave
assumption will not be valid for short times in the vicinity of either the upstream or downstream
ends, or at the downstream head of the gravity current at later times. Similar application of the
long-wave approximation gave excellent results when compared to numerical solutions of the full
shallow-water equations for dam-break problems in rotating channels (Helfrich et al., 1999; Stern
and Helfrich, 2002; Helfrich and Mullarney, 2005).

There are two non-dimensional numbers that govern the flow. The first is the initial width of
the flow divided by the Rossby radius w0/LR (or w∞/LR) which is the square root of the Burger
number Bu. The second is the aspect ratio L/w0. In the analysis below there are no restrictions
on Bu1/2 = w0/LR. However, the aspect ratio L/w0 � 1.

With these assumptions, the motion of the active upper layer is governed by the reduced-gravity
shallow-water equations (in non-dimensional form)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v = −∂h

∂x
(5)

δ2
(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ u = −∂h

∂y
(6)

∂h

∂t
+ ∂

∂x
(uh) + ∂

∂y
(vh) = 0. (7)

Here y has been non-dimensionalized with LR, x with λ, time t with λ/
√

g′H , h with H and
the velocities u with

√
g′H and v by δ

√
g′H . The parameter δ = LR/λ 
 1, where λ is a length-

scale for the flow in the x-direction. The limit δ → 0 gives the long-wave, or semigeostrophic,
equations (Stern, 1980; Pratt, 1983). The semigeostrophic equations are formally not valid in the
times immediately following the release since δ = O(1) at both ends, but do become increasingly
appropriate as the flow propagates along the wall and λ increases (Helfrich et al., 1999; Stern and
Helfrich, 2002).

The potential vorticity

q = 1 − ∂u/∂y + O(δ2)

h
, (8)

is conserved following fluid parcels. Substitution of (6), with δ = 0, into (8) gives

∂2h

∂y2 − qh = −1. (9)

The potential vorticity is scaled with f/H so that q = 1. The solution to (9), with h = hw(x, t) at
y = 0 and h = 0 at y = w(x, t), is

h(x, y, t) = 1 − hw(x, t)

2

sinh(y − w(x, t)/2)

sinh(w(x, t)/2)

+
(

1

2
hw(x, t) − 1

)
cosh(y − w(x, t)/2)

cosh(w(x, t)/2)
. (10)
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The along-wall velocity

u(x, y, t) = hw(x, t)

2

cosh(y − w(x, t)/2)

sinh(w(x, t)/2)
−
(

1

2
hw(x, t) − 1

)
sinh(y − w(x, t)/2)

cosh(w(x, t)/2)
,

(11)

follows from (6).
The initial geostrophic adjustment gives, from (3) and (4), w(x, 0) = w∞ and hw(x, 0) = h∞

for −L < x < 0. The subsequent evolution of hw(x, t) and w(x, t) can be found by the method of
characteristics after reduction of the governing equations to a standard form (Pratt, 1983; Helfrich
et al., 1999). This is accomplished by first evaluating the x-momentum equation (5) at y = 0

∂uw

∂t
+ ∂

∂x

(
1

2
u2

w + hw

)
= 0, (12)

and at y = w(x, t)

∂ue

∂t
− ∂w

∂t
+ ∂

∂x

(
1

2
u2

e

)
= 0. (13)

Here uw and ue are, respectively, the velocities at the wall and current edge. The kinematic
boundary condition at y = w(x, t),

ve = ∂w

∂t
+ ue

∂w

∂x
,

the chain rule

∂φ

∂ξ

∣∣∣∣
e
= ∂φe

∂ξ
− ∂φ

∂y

∣∣∣∣
e

∂w

∂ξ
,

and (6) have been used to obtain (13). With uw and ue found from (11), (12) and (13) can be
reduced to a 2 × 2 quasi-linear system

∂v

∂t
+ A

∂v

∂x
= 0, (14)

where

v =
(

hw

T

)
, (15)

A =

⎛
⎜⎜⎝

3hw + 2T 2 + T 4(hw − 2)

4T

T 4(hw − 2) − (1/2)h2
w

2T 2

(T 2 − 1)
2
[hw − (2 − hw)T 2]

4[hw + (2 − hw)T 2]

(1 − T 2)[hw − (2 − hw)T 2]

4T

⎞
⎟⎟⎠ , (16)

and T = tanh(w/2).
The eigenvalues of A are the wave speeds

c± = 1

2
hwT−1 ±

(
1

2
hw

)1/2[
1 −

(
1 − 1

2
hw

)
T 2
]1/2

, (17)
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Fig. 2. Downstream rarefaction solution hw (dashed) and w/w∞ (solid) vs. x/t for (a) w∞ = 1 and (b) w∞ = 3. The nose
speeds, cnose, are indicated by the circles.

and correspond to a Kelvin wave (c+) and a frontal wave (c−). When the system (14) is diagonalized
using the left eigenvectors of A, the relationship

dhw

dT

∣∣∣∣± = a11 − c±
a21

(
= a12

a22 − c±

)
(18)

must hold on each of the characteristic curves dx/dt|± = c± (Whitham, 1974). Integration of (18)
gives the Riemann functions R± that are constants along their respective characteristics. Here aij

are the elements of A.

2.1. Downstream end

The geostrophically adjusted flow with hw = h∞ and w = w∞ has, from (17), c+ > 0 and c− = 0.
The initial state is critical in the hydraulic sense and long wavelength disturbances from the
downstream end cannot propagate back upstream. Thus, until a disturbance from the upstream
end reaches x = 0, the flow there is given by (1) and (2), which will serve as the boundary condition
for the downstream flow. The initial uniform flow for −L < x < 0 implies that one of the Riemann
invariants R± is the same for all fluid parcels as they flow downstream. It can be shown that taking
R− uniform gives u < 0 along the wall (y = 0) and w > w∞ when hw < h∞. This is physically
unrealistic since we expect fluid to flow in the positive x-direction in a boundary current that
decreases in both width and depth downstream of x = 0. Therefore, R+, which does give these
properties, is taken to be uniform.

Uniform R+ gives one relation between hw and T (or w) that is found by numerical integration
of (18) with c+, and the initial condition T = T∞ = tanh(w∞/2) at hw = h∞. A second relation
between hw and T comes from consideration of the R− Riemann function. Recall that R−(hw, T)
is constant along c−(hw, T) characteristics. Since T = T(hw) has already been determined from R+,
this implies that R− = R−(hw) and c− = c−(hw). Thus, R− is a constant on c− only if hw is constant
along the characteristic. Therefore, each c− characteristic is constant: c−(hw, T(hw)) = x/t. The
solution for hw and T can be written in terms of a similarity variable x/t.
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Fig. 3. The downstream rarefaction nose speed cnose vs. w∞. Also shown is w0 (dashed).

Solutions for w and hw for w∞ = 1 and 3 are shown in Fig. 2. The fluid flows downstream along
the wall as a thinning wedge, or rarefaction, that terminates at a nose with vanishing width and
depth. Since both w and hw vanish at the nose, the speed cnose is found by applying L’Hospital’s
rule to (17)

cnose = lim
hw,T→0

c− = 1

2

dhw

dT
.

To evaluate cnose, dhw/dT is given by dhw/dT|+ from (18). The numerical evaluation is done for
T = 10−6. The result is not sensitive to smaller values of T. The nose speed cnose is shown in Fig. 3
as a function of w∞. As w∞ → ∞, cnose approaches an asymptote of ≈3.80. Also shown is w0
from (3).

2.1.1. Solutions with a gravity current head
The rarefying nose solution is equivalent to the classic non-rotating dam-break solution under

air in which a rarefying nose moves at the (dimensional) speed cnose = 2
√

gH (Stoker, 1957).
However, experimental studies demonstrate that these rarefying intrusions are not realized in
two-layer systems with small g′, even if the lower layer is very deep (cf. Huppert and Simpson,
1980). The participation of the lower layer in the momentum and energy budgets of the flow gives
a blunt, shock-like, gravity current head, or bore, followed by a nearly uniform current. For an
infinitely deep lower layer, the theoretical non-rotating bore speed cb = (2g′hb)1/2, where hb (<H)
is the height of layer immediately behind the gravity current head (Benjamin, 1968; Klemp et al.,
1994, 1997). The situation with rotation is similar, with the thinning rarefaction nose replaced by
a blunt rotating gravity current (Stern et al., 1982; Griffiths and Hopfinger, 1983; Kubokawa and
Hanawa, 1984; Helfrich and Mullarney, 2005).

Following Abbott (1961) for the non-rotating case, and Helfrich and Mullarney (2005) with
rotation, a uniform gravity current will be joined to the rarefaction. Details of the gravity current
head condition and the matching for the case of a dam-break in a rotating channel have been
discussed in detail in Helfrich and Mullarney (2005). Thus, the analysis will only be outlined.
The resulting solutions for the gravity current are qualitatively similar to those obtained in the
channel case. The principal difference is the upstream conditions which lead to some quantitative
changes.
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Fig. 4. Schematic of the gravity current. The sketch in the lower-left shows the plan view of the gravity current. The
dashed line indicates the rarefaction solution and the solid line shows the blunt gravity current correction. The inset at the
right shows a close-up, oblique view of the idealized structure of the gravity current head. The symbols are defined in the
text.

The conceptional situation is as depicted in Fig. 4. The gravity current head propagates at a
steady speed cb that, in general, will be a function of the local properties of the gravity current
such as hb and wb, and possibly other parameters such as f. Here wb is the width and hb is the
wall depth of the gravity current. Both are constant from the head back to the junction point at
xA, that moves at the constant speed cA.

The first step is to specify the gravity current head conditions. For reduced-gravity semi-
geostrophic flow Helfrich and Mullarney (2005) showed that a Rankine–Hugoniot solution to the
semigeostrophic continuity equation and the x-momentum equation evaluated on the wall leads
to the (non-dimensional) conditions

Qb = Abcb (19)

cb = 1

2
ub + hb

ub
. (20)

Here

Ab =
∫ wb

0
h dy = wb + Tb(hb − 2) (21)

is the cross-sectional area of the gravity current and

Qb =
∫ wb

0
uh dy = 1

2
h2

b (22)

is the gravity current transport, both evaluated with (10) and (11), and Tb = tanh(wb/2). The
current speed on the wall ub is found from (11) with y = 0, hw = hb and w = wb. As with all shock
joining solutions, (19) and (20) are integrated closures that do not resolve details of the flow within
the gravity current head. They simply guarantee conservation of mass, momentum and energy.
Note that energy conservation is a consequence of the infinitely deep lower layer (see Benjamin,
1968; Hacker and Linden, 2002). Fig. 5 shows cb and wb from (19) and (20) as functions of
hb. Over the range 0 < hb < 1, cb ≈ 1.42h

1/2
b , only slightly greater than the non-rotating result

cb = √
2hb. The gravity current width wb ≈ 0.67h

1/2
b .

An alternative to (20) is the empirical result

cb = βh
1/2
b , (23)

that can be used along with the mass condition (19). Here β ≈ 1.2 from studies of both non-
rotating (Huppert and Simpson, 1980) and rotating gravity currents (Stern et al., 1982; Griffiths
and Hopfinger, 1983; Kubokawa and Hanawa, 1984; Helfrich and Mullarney, 2005). The reduction
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Fig. 5. Gravity current head speed cb (solid) and width wb (dashed) vs. wall height hb from (19) and (20).

in speed from the theoretical model is apparently due to the turbulent mixing and dissipation in
the bore head. As a consequence of the slower speed, the gravity current width, wb ≈ 0.78h

1/2
b ,

is greater than with (20).
Both of these gravity current head conditions give cb and wb as functions of the local value

hb. It is necessary to join the gravity current solution to the upstream rarefaction to determine
hb as a function of the upstream conditions. Since R+ must be uniform, the matching requires
that wb = wb(hb) from the gravity current head solution also satisfy the relation between w and
hw from the rarefaction solution. The simultaneous solution of these two relations gives the bore
properties wb and hb. The speed of the bore cb and the junction point cA = c−(hb, wb) (<cb)
follow. The flow in 0 ≤ x ≤ xA is given by the rarefaction solution.

Downstream gravity current solutions for w and hw for w∞ = 1 and 3 computed with the bore
conditions (19) and (20) are shown in Fig. 6. The gravity current properties are summarized in
Fig. 7 as functions of w∞ for both choices of head conditions (19) and (20), and (19) and (23)

Fig. 6. Downstream gravity current solutions for hw (dashed) and w/w∞ (solid) vs. x/t: (a) w∞ = 1 and (b) w∞ = 3.
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Fig. 7. Gravity current speed cb, height hb and width wb as functions of w∞. The semigeostrophic solution with the
bore conditions (19) and (20) is shown by the solid lines. The dashed lines are for the bore conditions (19) and (23). The
dash-dot line is the offshore width of the gravity current where h = 0.1 from theory with (19) and (20). The reduced-gravity
shallow-water numerical model results for cb, wb and hb are indicated by the circles, and w at h = 0.1 by the squares.

with β = 1.2. The bore properties cb, hb and wb all increase with w∞. The empirical speed relation
(23) with β = 1.2 leads to slower, deeper and wider gravity currents.

2.2. Upstream end

The solution at the upstream (x = −L) end is found by again considering that the initial adjust-
ment has produced the basic flow given by hw(−L, 0) = h∞ and w(−L, 0) = w∞. In this case the
solution is a Kelvin wave that propagates downstream. Again, one of the Riemann functions is
uniform, and now it is R−. Integrating the inverse of (18), with c− from (17), from hw = h∞ to
0, with the boundary condition T = T∞ = tanh(w∞/2) at hw = h∞, gives a relation T = T(hw).
Since R− is uniform, c+ must be a constant (=x/t) for each hw in the range 0 ≤ hw ≤ h∞. The
relations between w, hw and c+ = x/t for w∞ = 1 and 3 are shown in Fig. 8. The solution is a
Kelvin rarefaction whose leading edge propagates downstream at speed cK = c+(h∞, T∞), which
increases with w∞ to a maximum of cK = 1 for w∞ → ∞. Behind this leading edge, hw decreases
monotonically to zero at the initial upstream end x = −L. The increase of w after passage of the
wave is greatest for narrow currents, consistent with a Kelvin wave trapped to the wall.

Since c− < 0 for −L < x < −L + cKt, the interaction of the Kelvin wave with the transition to
the downstream solution at x = 0 will generate a reflected frontal wave that moves back upstream.
Thus, this upstream solution is valid until t = L/cK. The arrival of the Kelvin wave at x = 0 will
also initiate a decrease in the flux into the downstream gravity current.



160 K.R. Helfrich / Dynamics of Atmospheres and Oceans 41 (2006) 149–171

Fig. 8. Upstream Kelvin rarefaction solutions for hw and w/w∞ vs. x/t for w∞ = 1 (solid) and w∞ = 3 (dashed). The
circles indicate the leading edge of the wave.

An example of the complete semigeostrophic solution for w∞ = 2 and L = 30 is shown in
Fig. 9. In this and subsequent figures the lengthscale λ has be set to LR. Contours of the
layer depth h(x, y, t) are shown at t = 0 (the initial geostrophically adjusted state), 12.5 and
25. At a fixed x in −L ≤ x ≤ 0, the passage of the Kelvin rarefaction causes the depth on
the wall to decrease with time. This, in turn, causes the fluid adjacent to the wall to flow

Fig. 9. Complete semigeostrophic solution for w∞ = 2 and L = 30. Contours of h(x, y, t) are shown at t = 0, 12.5 and 25.
The contour interval is 0.1. The arrows indicate the flow direction.
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back upstream, creating a bidirectional flow. At x = −L, hw = 0 and thus the net geostrophic
transport in the current is zero. However, there is upstream flow adjacent to the wall, and
downstream flow in the offshore half of the current. The semigeostrophic solution does not
address how the upstream flow turns to join the offshore downstream flow, or if it even can.
This transition must occur in an area with δ = O(1) where the long-wave approximation is not
valid.

3. Shallow-water numerical modeling

The theoretical model hinges on two significant assumptions. The first is that δ 
 1, a condition
that is violated by the initial condition. The second is that the fast inertia–gravity waves excited in
the initial release can be ignored. These assumptions will be tested by comparing the theoretical
solutions to those obtained from a numerical solution of the full shallow-water equations. The
numerical modeling will also explore the evolution for t > L/cK.

One requirement of the model is the ability to develop blunt bores. When the momentum
equations are written in flux form (i.e., with dependent variables U = uh and V = vh) the shallow-
water equations do not admit a blunt bore-like gravity current because the Rankine–Hugoniot
shock solution gives cb → ∞ for u = h = 0 ahead of the bore. Thus, the numerical model solves
the shallow-water equations in the advective form, (5)–(7) (with δ = 1), which naturally develop a
blunt gravity current head. Both mass and momentum will be conserved across a bore (Benjamin,
1968). If a locally steady bore is observed in a frame moving at the bore speed, the advective form
of the equations will conserve the Bernoulli function across the bore. However, when viewed
in the fixed frame, energy will be lost since the flow is unsteady. The Bernoulli function is no
longer a conserved quantity. Thus, the bore, and any other wave breaking that might occur in the
calculations, result in a loss of energy from the system. Potential vorticity is conserved unless the
breaking induces non-uniform energy loss along the breaking face. Fluid parcels that pass through
the breaking wave then undergo a change in potential vorticity (Pratt, 1983). One deficiency of
the advective form of the equations is that should the flow develop a shock joining regions of
finite depth, the shock properties will not be modeled correctly. Momentum is not a conserved
quantity.

The numerical solution technique is derived from the second-order finite-volume method for the
conservative form of the single-layer shallow-water equations described in Helfrich et al. (1999).
The only modification necessary for the present problem is a change in the computation of the
nonlinear terms in the momentum equations from a conservative formulation to the advective
form of (5) and (6). These are handled using the scalar advection (or ‘color’) scheme described
in Leveque (2002, Sections 9.3 and 20.5). The flux form of the continuity equations requires the
related conservative advection scheme (Section 9.5.2). The pressure gradient and Coriolis terms
are handled via Strang splitting. The model is exactly mass conserving, but will not conserve
energy or potential vorticity in the situations just described. The shallow-water model has been
successfully tested in a number of rotating flow problems involving shocks, hydraulic jumps, the
presence of zero layer depths and gravity currents (e.g., Pratt et al., 2000; Helfrich and Mullarney,
2005).

The runs were conducted in rectangular channels of various lengths in the x-direction and
widths large enough to avoid flow interaction with the offshore boundary. A no-flux boundary
condition was employed at y = 0 and radiation boundary conditions in x. The calculations had
grid spacing dx = 0.1 and dy = 0.0125–0.05. The layer is considered to have zero thickness where
h ≤ 10−3. The results are insensitive to small values for the cutoff. No explicit diffusion or friction



162 K.R. Helfrich / Dynamics of Atmospheres and Oceans 41 (2006) 149–171

Fig. 10. Solutions for the downstream gravity current for w∞ = 2. (a–c) The reduced-gravity numerical solution computed
with the adjusted initial condition at t = 5, 20 and 40. (d) The semigeostrophic solution at t = 40. (e) Numerical solution at
t = 40 computed with the still initial condition w0 = 1.03. All panels show contours of h(x, y, t).

terms were included in the present calculations. There is, of course, some numerical dissipation,
but it is relatively unimportant except in vicinity of a discontinuity.

3.1. Downstream gravity current

The downstream gravity current evolution is explored first in a series of numerical runs with
the initial condition given, as in the semigeostrophic theory, by the adjusted geostrophic flow
(1) and (2) for x ≤ 0. The solution for w∞ = 2 at t = 5, 20 and 40 is shown in Fig. 10a–c. The
corresponding semigeostrophic characteristic solution at t = 40 is shown in Fig. 10d. The overall
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agreement between the numerical solution and the theory is quite good. Both the rarefaction and
uniform gravity current emerge in the numerical solution. The gravity current head propagates at
a constant speed cb = 1.0, slightly slower than the theoretical prediction cb = 1.03. The height of
the gravity current on the wall just behind the head is hb = 0.51 and the predicted height is 0.529.

The largest difference between the theory and the numerical solution is the width of the gravity
current. In the numerical solution the gravity current width is not uniform and is significantly
wider than predicted. The average width wb = 0.88, compared to wb = 0.486 from the theory.
This discrepancy is due to details of the ageostrophic flow in the numerically computed gravity
current head and has been discussed in Helfrich and Mullarney (2005) (see their Fig. 8). In
summary, in the reference frame traveling with the gravity current head, fluid adjacent to the wall
flows towards the head to form an offshore jet in a narrow boundary layer just behind the leading
edge of the gravity current. The jet squirts fluid offshore to produce the shallow and wide layer
with upstream flow relative to cb. Recall that the semigeostrophic gravity current model, like all
shock-joining theories, does not resolve the details of the flow within the gravity current head and
so cannot capture this effect. The numerically determined flow is qualitatively similar to some
rotating gravity currents observed in the laboratory (Stern et al., 1982; Griffiths and Hopfinger,
1983; Kubokawa and Hanawa, 1984) and to the ageostrophic boundary layer jet that connects a
Kelvin shock to a trailing geostrophic flow (Fedorov and Melville, 1996; Pratt et al., 2000).

The numerical results for the gravity current properties cb, hb and wb are summarized in Fig. 7.
The overall agreement between the theory and numerical model for cb and hb is very good. As
explained above, the numerical results for wb are larger than the theoretical values. However, the
width of the gravity current at the point where h = 0.1 agrees with the theory.

If the initial condition is the dammed region of width w0 (Fig. 1a), instead of the geostrophically
adjusted state, the gravity current properties are essentially unchanged. This is illustrated in
Fig. 10e where the solution at t = 40 for a run with w0 = 1.03 (w∞ = 1.994) is shown. In this
case, cb = 0.98, hb = 0.49 and the average wb = 0.87 are all within a few percent of the values
found with the geostrophically adjusted initial condition. This agreement extends to other initial
values of w0 ≤ 3 (w∞ ≤ 4). The only substantial differences between Fig. 10c and e are in the
region x < 5. Overshoot and inertial oscillations produced by the initial gravitational slumping
lead to a very thin offshore layer of depth h ≈ 0.01 extending from y ≈ 2.2 to 3.4.

3.2. Upstream flow

The numerical solution for a case with a finite upstream length L = 30 is shown in Fig. 11.
The run was made with the geostrophic solution (1) and (2) with w∞ = 2 as the initial condition
in −L ≤ x ≤ 0. At t = 20 the solution is in qualitative agreement with the semigeostrophic theory
(Fig. 9). The Kelvin rarefaction has decreased the depth along the wall and initiated an upstream
flow. At the upstream end, the fluid turns to rejoin the offshore flow back towards the gravity
current. However, the current width at the upstream end is wider than predicted and exhibits
damped oscillations in x.

Fig. 12 shows a companion run, but now initiated with the stagnant pool. Here w0 = 1.03
(w∞ = 1.994) and L = 30. The differences between this solution and Fig. 11b are minor. All the
important qualitative features are present.

On closer inspection there are differences between the upstream solutions with the two initial
conditions as highlighted in Fig. 13. The temporal evolution layer depth at the wall hw(x, t) at
x = −22.5 is shown in Fig. 13a. The profile of hw versus x at several times, and the offshore
structure of the layer depth at x = −15 are given in Fig. 13b and c, respectively. First, in all three
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Fig. 11. The numerical solution for the geostrophically adjusted initial flow with w∞ = 2 and L = 30. Contours of h(x, y,
t) are shown at several times. The contour interval is 0.05. (a) t = 0; (b) t = 20; (c) t = 100; (d) t = 400.

panels the semigeostrophic solution (dashed line) is in very good agreement with the numerical
solution computed with the geostrophically adjusted initial condition. Inertial oscillations excited
by the release of the stagnant layer are clearly evident in the plot of hw(t) at x = −22.5 in Fig. 13a.
However, the oscillations are essentially superimposed on a slower adjustment that is very close
to both the other numerical solution and the theoretical solution. This is also the case in Fig. 13b
and c. Note that the large departures of hw in the uniform region of Fig. 13b are due to the phase
of the inertial oscillation at the particular times shown.

The evolution of the domain integrated energy,

E =
∫ ∫

1

2
(h(u2 + v2) + h2) dx dy,

for these two model runs is shown in Fig. 14. The kinetic (ʃʃh(u2 + v2)/2 dx dy) and potential
(ʃʃh2/2 dx dy) energy components are also shown. Note that only a portion of the model domain
is shown in Figs. 11 and 12; however, the head of the gravity current is in the numerical domain
at the times in Fig. 14. Also shown in the figure is the energy of the semigeostrophic solution
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Fig. 12. The numerical solution with the stagnant layer initial condition with w0 = 1.03 and L = 30. Contours of h(x, y,
t) are shown at several times. The contour interval is 0.05. (a) t = 0; (b) t = 20; (c) t = 100; (d) t = 400.

for t < L/cK ≈ 31.1. The numerical solution with the geostrophically adjusted initial condition
experiences a slow energy decay due to the breaking at the bore head. The energy decay is
somewhat faster than in semigeostrophic solution, but otherwise the behavior is similar. With the
stagnant pool initial condition, the energy undergoes a period of rapid decay, 0 < t < 2, associated
primarily with the sharp front that propagates in the offshore (y > 0) direction along the entire
length −L < x < 0. The breaking and rapid energy dissipation occur several more times at the
inertial period. For t > 15 the energy decays slowly and is associated with the continual dissipation
at the gravity current head. The inertial oscillations continue beyond the initial rapid dissipation
phase as is clear in the exchange between the kinetic and potential energies. At longer times the
total energy in the run with the inertia–gravity waves is less than the initially geostrophically
adjusted case. This is an irreversible effect of the early wave breaking. However, the energy
difference is relatively small, less than 6% at t = 35, and does not play a substantial role in the
evolution of the flows for longer times. These results are typical of other values of w0 (w∞).

The long-time evolution of the flow is shown in Figs. 11c and d, and 12c and d for the still initial
condition. In both cases the flow rolls up into a train of anticyclonic vortices. The vortices first
emerge at the upstream end, and then for increasing x as t increases. At t = 400, in −30 ≤ x ≤ −10,
there are four nearly identical vortices. Further downstream, the vortex radius decreases nearly
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Fig. 13. Comparison of the upstream rarefaction from semigeostrophic solution (dashed) with the numerical solutions
from Figs. 11(solid) and 12(dash-dot): (a) hw vs. time at x = −22.5, (b) hw at the indicated times and (c) h(y) at x = −15
at the indicated times.

uniformly. Once formed, the large upstream vortices are stationary. They have shallow depths
and weak velocities near the wall. As a consequence, image vortices required to satisfy the no
normal flow condition are correspondingly weak, and thus do not advect the primary vortices.
Runs with different L (�1) and w0 (or w∞) give similar results, though the number of large
vortices decreases with L (Fig. 15).

Fig. 14. The kinetic energy KE, potential energy PE and total energy E = KE + PE for the numerical runs in
Figs. 11(solid) and 12(dash-dot). At the times shown, the leading edge of the gravity current is still within the model
domain. The energies calculated from the semigeostrophic solution (dashed) are shown for t < L/cK ≈ 31.1.
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Fig. 15. Numerical solutions h(x, y, t) with the still initial layer w0 = 1 at t = 400: (a) L = 5, (b) L = 10 and (c) L = 20. The
contour interval is 0.05.

A possible explanation for the vortex formation is that it results from the inertial turning of
the flow at the upstream end. As each vortex pinches off, a new vortex is initiated by the inertial
turning of the flow just downstream. However, if that were the case, the vortex radius should scale
with the (dimensional) inertial radius u/f, where u is some measure of the velocity. A choice for u
is the value at y = 0 from (11) with hw = 0 and w = w∞. However, the large upstream vortex radii
do not scale systematically with this inertial radius.

The vortex roll-up can, however, be interpreted as a consequence of an instability of the new
flow established by the Kelvin wave. The Kelvin wave passage causes the layer depth along the
wall to approach zero for large time. If this new flow, with the layer depth vanishing at each edge,
were uniform in x, it would be identical to a coupled front flow considered by Griffiths et al.
(1982) and given by (10) and (11) with hw = 0 and w(x, t) constant. They showed that this parallel
flow was linearly unstable to a mixed baroclinic–barotropic ageostrophic instability. The most
unstable wavenumber kmax from their linear calculations is shown as a function of the current
half-width L1/2 (=w/2) in Fig. 16. Also shown in the figure is the “vortex wavenumber” 2π/λV,
where λV is the center-to-center spacing of the largest upstream vortices in −L ≤ x ≤ 0. These

Fig. 16. The wavenumber of maximum linear growthrate kmax vs. the current half-width L1/2 = w∞/2 from Griffiths
et al. (1982) is shown by the line. The circles show the vortex wavenumber, 2π/λV, from the numerical solutions of the
adjustment problem. The vortex wavenumbers from numerical solutions of the coupled front parallel flow are indicated
by the squares.
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Fig. 17. The fraction of fluid in x < 0, V/V0, vs. scaled time tcK/L.

values are plotted versus w∞/2, the approximate half-width of the flow established by the Kelvin
wave propagation, and were found from runs with L large enough to give at least four large nearly
identical vortices. The vortex wavelength is given quite well by the wavelength of the fastest
growing linear wave from the Griffiths et al. (1982) theory.

As a further test of the connection between these results and the Griffiths et al. (1982) instability,
a set of numerical calculations was conducted to explore the finite-amplitude development of the
instability in a parallel flow well removed from the boundary. The initial condition was given by
given by (10) and (11) with hw = 0 and w(x, t) = w∞ plus small random fluctuations in x. The
domain was periodic in x with length 60 and extended in y so that the current never encountered
a boundary. Runs with w∞ = 0.5–4 were made. In all cases the flow evolved to a train of nearly
identical, stationary anticyclonic vortices. The vortex wavenumbers from these runs are also shown
in Fig. 16 and are very close to the results from the localized adjustment problem. While the flow
established by the Kelvin wave in the adjustment problem is neither steady nor uniform in x as
required by the linear theory, it seems reasonable to interpret the development of the vortices as
the finite-amplitude manifestation of the linear instability found by Griffiths et al. (1982).

Finally, the development of the stationary vortex array leads to the trapping of some of the initial
volume, V0 = w0L, in the neighborhood of the initial layer. For example, in Fig. 11d just under
42% of V0 remains in x < 0 at t = 400. Fig. 17 shows the fluid volume in x < 0, V = ∫ 0

−∞
∫∞

0 h dy dx,
as a function of time for a number of runs with w0 = 0.5–2 and L = 5–30. When t is scaled by
L/cK, the time for the Kelvin wave to reach the downstream end of the initial layer, and V by
V0, the data collapse reasonably well. About 40–45% of the fluid remains in x < 0 and occurs by
t ≈ 10L/cK. The trapped mass fraction increases slightly with w0, but is essentially independent
of L.

4. Conclusion

The semigeostrophic theory and numerical calculations have explored the nonlinear, long-
time evolution of a finite layer of buoyant, uniform potential vorticity fluid released adjacent
to a wall in a rotating system. Far from the two ends of the layer the interior flow is ini-
tially given by the classic one-dimensional geostrophic adjustment solution. The main results
address the additional processes associated with adjustment at the upstream and downstream
ends of the layer and touch on the role of inertia–gravity waves excited in the initial adjustment.
The resulting flow produces a gravity current at the downstream end and a Kelvin rarefaction
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from the upstream end. The latter modifies the interior geostrophic flow, setting the conditions
for an instability that ultimately leads to a train of stationary, anticyclonic vortices along the
boundary.

The inertia–gravity waves excited by the adjustment are highly nonlinear and break, but do not
significantly affect the slower geostrophic flow. This somewhat surprising result may, though, be
a consequence of the uniform potential vorticity of the initial condition. The strong anisotropy
inherent in the initial condition and resulting flow may also be a factor (cf. Hayasha and Young,
1987). It would also be interesting to consider initial conditions that promote strong gradients in
wave breaking which then give rise to potential vorticity changes and thus a more direct and faster
interaction.

Despite the simplifications inherent in the reduced-gravity model, the results here should pro-
vide some guidance when considering the evolution of similar flows in the ocean and atmosphere.
There are, however, several aspects of the model that perhaps restrict direct application. The first
is the limitation to one active layer. In the coastal ocean the lower layer can rarely be considered
dynamically inactive. An active lower layer will not eliminate the generation of a gravity current,
but may change its properties. In principle it should be possible to include an active lower layer
in the semigeostrophic theory, though this would greatly complicate the analysis. In addition to
following the evolution of the upper layer front defining the gravity current, the model would
need to include the motion of a potential vorticity front in the lower layer. The upstream Kelvin
rarefaction should also proceed essentially as discussed here. However, any instability, and sub-
sequent finite-amplitude development, of the flow will be modified by the presence of the lower
layer (Paldor and Ghil, 1990; Reszka and Swaters, 1999). For example, upper layer anticyclones
could couple with lower layer cyclones and propagate away from the wall. Indeed, some pre-
liminary numerical calculations with a two-layer version of the model indicate that this is the
case.

One might also wonder if friction, specifically no-slip boundaries, alters the results. The ques-
tion of lateral friction on rotating gravity currents was considered in Helfrich and Mullarney
(2005) where it was shown that a no-slip wall causes a slow decay of the gravity current speed
and a tapering, rather than uniform width gravity current. The effect of a no-slip condition on the
upstream flow can be anticipated to be weak, provided that the Reynolds number is not too large.
This is because the geostrophic flow (2) already satisfies the no-slip condition. The upstream
Kelvin rarefaction could be affected. But a numerical test (not shown) with Laplacian friction
with a Reynolds number

√
g′HLR/ν = 103 still produced a train of standing vortices, though

they were weaker than the equivalent inviscid case.
Perhaps the most important aspect of any realistic flow absent in this reduced-gravity model is

topography. Topography could enter as a bottom sloping away from a vertical wall. In that case,
if the upper layer did not contact the bottom, the downstream gravity current evolution would
probably be unaffected by the bottom slope, though any instability of the upstream flow would
be (Reszka and Swaters, 1999). Of even more relevance is a sloping bottom that intersects the
free surface, eliminating the vertical boundary. Then nearly all aspects of the evolution would be
modified, though the qualitative aspects would likely remain. The interior geostrophic adjustment
would depend on the slope (Hsueh and Cushman-Roisin, 1983) and be fundamentally influenced
by bottom Ekman processes (Chapman and Lentz, 1994). The downstream flow would evolve
into a gravity current, but as shown by Lentz and Helfrich (2002), the gravity current response
can vary from the Kelvin wave-like gravity current regime against a vertical wall to a slower and
wider topographic wave controlled gravity current for small bottom slopes. These roles of an
active lower layer and a bottom slope are the subjects of ongoing work.
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