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Abstract

A goal of animal movement analysis is to reveal behavioural mechanisms by which

organisms utilize complex and variable environments. Statistical analysis of movement

data is complicated by the fact that the data are multidimensional, autocorrelated and

often marked by error and irregular measurement intervals or gappiness. Furthermore,

movement data reflect behaviours that are themselves heterogeneous. Here, we model

movement data as a subsampling of a continuous stochastic processes, and introduce the

behavioural change point analysis (BCPA), a likelihood-based method that allows for the

identification of significant structural changes. The BCPA is robust to gappiness and

measurement error, computationally efficient, easy to implement and reveals structure

that is otherwise difficult to discern. We apply the analysis to a GPS movement track of a

northern fur seal (Callorhinus ursinus), revealing an unexpectedly complex diurnal

behavioural profile, and demonstrate its robustness to the greater errors associated with

the ARGOS tracking system. By informing empirical interpretation of movement data,

we suggest that the BCPA can eventually motivate the development of mechanistic

behavioural models.
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I N T R O D U C T I O N

In recent years, there has been a rapidly growing body of

work devoted to the detailed study of free-ranging animal

movements in the wild, reflecting the increase in the

technological ability to accumulate data (Ferguson et al.

1998; Heide-Jørgensen et al. 2003; Block et al. 2005; Ropert-

Coudert & Wilson 2005; Andrews et al. 2008). Many

fundamental demographic parameters can be directly related

to animal movements, including foraging success, breeding

success, migration and dispersal (Guinet et al. 2001; Mau-

ritzen et al. 2001; Laidre et al. 2003; Matthiopoulos 2003;

Buskirk & Millspaugh 2006). Individual animal movements

are a measurable behavioural response to a combination of

internal states, physiological constraints and environmental

factors. Ideally, analysis of movement data can yield insights

into the behavioural mechanisms that allow organisms to

exploit their temporally variable and spatially heterogeneous

environments (Schick et al. 2008).

Analysis of movement data is far from straightforward

primarily because the data are multidimensional and

autocorrelated in space and time. A common model of

movement is some variety of the correlated random walk

(CRW) model (Skellam 1951; Shigesada 1980; Kareiva &

Shigesada 1983; Marsh & Jones 1988; Bergman et al. 2000;

Bartumeus et al. 2008), which hypothesizes some distribu-

tion of step-lengths and turning angles. Models have been

constructed that successfully relate changes in CRW

parameters to environmental and landscape features

(Morales et al. 2004; Forester et al. 2007; Aarts et al. 2008;

Haydon et al. 2008). CRWs have also been generalized into

diffusion-based approximations used to model movements

in complex environments, such as habitat types in patchy

landscapes (Ovaskainen 2004; Ovaskainen et al. 2008) or

within the framework of mechanistic home range models

(Moorcroft et al. 1999; Moorcroft & Lewis 2006).

There are several important features of movement data

that complicate the straightforward application of CRWs.

The first is error in the measurement process. A fruitful

body of research has emerged recently that addresses

measurement error with the use of state-space models

(Jonsen et al. 2003, 2005; Royer et al. 2005; Patterson et al.
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2008). While these models are effective at separating

mechanistic processes from observation error, their effec-

tiveness is limited by prior specification of the movement

process and their estimation typically involves computa-

tionally intensive Bayesian estimation procedures.

A second important and commonly encountered feature

of movement data that confounds the application of CRWs

is the irregular timing of measurements, or gappiness in the

data. This issue is particularly important for marine species

such as pinnipeds, cetaceans, penguins, turtles and large

pelagic fish (Guinet et al. 2001; Laidre et al. 2004; Block et al.

2005; Jonsen et al. 2007), species that typically spend only a

small fraction of their time close to the surface. Not only are

the intervals unpredictable, but the quality of data that is

obtained while the satellites pass overhead is compromised

by the brief periods of emergence. Estimates of turning

angle distributions and estimated velocities are necessarily

affected by irregular intervals: at very small time intervals,

turning angles are all close to zero and displacements are

locally linear, whereas at very long time intervals the

correlation is completely lost. Typically, researchers deal

with irregular sampling intervals by using interpolation to

estimate a most likely best location at a fixed interval (Laidre

et al. 2004; Jonsen et al. 2005). This has the consequence of

either adding additional complication to a movement

process or of sacrificing potentially informative data points.

Independent of data collection issues, a fundamental

property of animal movements is behavioural heterogeneity.

Over an extended period of observation, a organism�s
movement is often the result of multiple behavioural modes,

such as travelling, searching, feeding, resting, milling.

Previous work on modelling animal movements as mixtures

of different behaviours have limited the behavioural

variability to a few categorical modes (usually �travelling�
and �foraging�) and rely on Bayesian estimation methods to

model probabilities of being in any given mode (Jonsen et al.

2007; Bailey et al. 2008). Alternatively, complex movements

are modelled as responses to environmental covariates such

as habitat type (Morales et al. 2004; Ovaskainen 2004;

Ovaskainen et al. 2008) and predator density (Forester et al.

2007). While both kinds of approaches are versatile and

instructive, they both rely on some structural a priori

assumptions about the movement.

Here we develop a novel, robust and efficient method for

identifying behavioural changes in behaviourally heteroge-

neous and temporally gappy movement data without any

prior assumptions. Step lengths and turning angles are

transformed into orthogonal persistence and turning com-

ponents of velocity and characterized as continuous

autocorrelated time series described locally by three param-

eters: a mean, a variance and a continuous autocorre-

lation. Likelihood estimation can be used to identify

moments where the parameter values change significantly,

corresponding to shifts in behaviour. By sweeping an

analysis window over an entire movement path, an

aggregated behavioural summary of movement is obtained.

The complete suite of steps is termed a behavioural change point

analysis (BCPA). We illustrate the BCPA with an application

to GPS-based data on the foraging tracks of a northern fur

seal (Callorhinus ursinus Linneaus).

M E T H O D S

Orthogonal decomposition of movement data

Raw movement data consist of n + 1 observations (num-

bered from i = 0, 1, 2,...,n) of absolute positions Z = {X,Y}

collected at times T. Rather than analyse the absolute

positions (Z) or absolute compass orientation (F) directly,

we examine two variables directly controlled by the

organism from its reference point: estimated speeds (V)

and turning angles (Y). These are obtained directly via:

V(Ti) = ||Zi ) Zi)1|| ⁄ (Ti ) Ti)1) and Y(Ti) = Fi ) Fi)1.

We further transform the data by decomposing every

speed estimate and turning angle into orthogonal compo-

nents of persistence velocity Vp(t) and turning velocity Vt(t)

defined as

VpðTiÞ ¼ V ðTiÞcosðWðTiÞÞ ð1Þ

VtðTiÞ ¼ V ðTiÞsinðWðTiÞÞ ð2Þ

Vp captures the tendency and magnitude of a movement

to persist in a given direction while Vt captures the tendency

of movement to head in a perpendicular direction in a given

time interval. Thus, the primary descriptive features of

movement, namely speed, directional persistence and

variability are captured in these variables. A further

fundamental advantage of these transformations is that the

resulting variables are well modelled by stationary, Gaussian,

autoregressive time-series models. Empirical explorations of

movement data via histograms or normal Q–Q plots suggest

that both Vp and Vt are well approximated by mixed normal

distributions, with Vt having a mean very close to zero. This

appealing statistical property allows for the application of an

arsenal of more or less standard time-series techniques for

characterizing autocorrelated data.

It should be noted that, though geometrically orthogonal,

these two variables are not independent. The eventual

technique we present is, however, ultimately descriptive, and

as the interpretation of each of these variables is somewhat

unique, we chose to analyse them separately. In practice,

assessing a scatter plot of the two variables either visually or

with some statistical technique is sufficient to determine

whether the assumption of independence is supported by

the data, as is the case in the data analysed further. A deeper
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investigation of the correlation structure between these

variables is the subject of future work, and could lead to an

informed modelling of the joint process.

Autocorrelated time-series model

The basic assumption underlying the analysis of movement

is that the persistence velocity Vp (eqn 1) is a sample from a

continuous space–time, stationary Gaussian process W(t)

with the following properties:

W ð0Þ ¼ W0; ð3Þ

E½W ðtÞ� ¼ l; ð4Þ

Var½W ðtÞ� ¼ r2; ð5Þ

Corr½W ðtÞ;W ðt � sÞ� ¼ qs; ð6Þ
where 0 < q < 1 is the first order autocorrelation at a time

lag 1, i.e. at whatever units the time is measured. (Note, all

subsequent discussion applies analogously to Vt, with the

additional simplification that lt = 0.)

Consider n observations from the continuous process

W = {W0, W1, W2,..., Wn} collected at times T = {t0, t1,

t2,..., tn}. The observation Wi can be described as

Wi ¼ lþ qsi ðWi�1 � lÞ þ ei ; ð7Þ

where i 2 f1; . . . ; ng, si = ti ) ti)1 is the time interval

between subsequent observations, qs
i is the autocorrelation

as a function of the time gap and ei is a stochastic error term.

Given the conditions in eqns 3–6, ei can be shown to have

mean 0 and variance r2(1 ) q2s
i ). The derivation of the

variance is obtained as follows:

Var½ei � ¼ Var½Xi � qsi Xi�1�
¼ r2 þ q2si r2 � 2qsi Cov½XiXi�1�

ð8Þ

Substituting in the correlation structure assumption (6)

into (8) yields

Var½ei � ¼ r2ð1� q2si Þ ð9Þ

The most important statistical assumptions in this

modelling of the movement data are the Gaussian error

structure and the exponential decay in the autocorrelation.

While these assumptions are supported by satellite data

collected on large animals in the marine environment and

other datasets that we have analysed, they are not funda-

mental properties of movement. For example, oscillatory or

zig-zaggy movements have theoretically negative autocorre-

lations at the half-period of the oscillation. The assumptions

can be readily verified empirically: the former by visual

inspection of a normal Q–Q plot and the latter by

discretizing the data at an appropriate interval and inspecting

a discrete autocorrelation function.

Estimating irregular time-series parameters

Estimates for the mean and variance parameters l̂ and r̂ are

given by the mean ( �X ) and standard deviation (S) of the data

respectively. In order to estimate the continuous autocor-

relation parameter q, a likelihood for the process given the

data and the other estimates is needed. Because any Wi

depends only on the previous observed value Wi)1, the

conditional likelihood of q given all W is

LðqjW;T; l̂; r̂Þ ¼
Yn

i¼1

f ðWi jWi�1; si ; q; l̂; r̂Þ ð10Þ

where W and T represent the vector of observations and

times of observation respectively, and the distribution

function f is the probability density function of the condi-

tional distribution Wi|Wi)1. For process (7) with a Gaussian

error structure, f is given by

f ðWi jWi�1Þ¼
1

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�q2si Þ

p exp
ðWi�qsi ðWi�1� l̂ÞÞ2

2r̂2ð1�q2si Þ

� �
ð11Þ

This likelihood (10) is smooth and easily maximized over

the range of possible values for 0 < q < 1. The estimate for

q is denoted as

q̂ ¼ argmax
q

LðqjW;T; l̂; r̂Þ ð12Þ

The precision and accuracy of this estimate were

confirmed with a quick simulation study in which q was

estimated from a gappy series generated by randomly

sampling 100 observations from 100 AR(1) processes with

q = 0.8 and length n = 1000 (Fig. 1a,b). The estimate q̂ had

mean 0.797 with standard error 0.052. Further estimates for

a wider range of values are summarized in the Simulation

study section and Table 2.

The autocorrelation coefficient is a fundamental property

of the movement process and readily interpreted in terms of

what might be termed �movement inertia�. A characteristic

time scale of movement can be defined, for example, as the

expected time duration at which the autocorrelation drops

to 0.5, such that

t1=2 ¼
logð0:5Þ
logðqÞ ð13Þ

For example, if the measurement times in the example

above were collected in units of hours, the characteristic

time scale of the movement is c. 3.1 h.

This time scale also provides a range over which the

estimation method can be considered valid. As means and

variances estimates of time series are affected by the

autocorrelation, the method for estimating the parameters

presented here is only valid if the length of the entire time
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series is much greater than the characteristic time scale of

movement, i.e. tmax >> t1 ⁄ 2. For almost all actual data, this

condition holds.

It should, however, be noted that it is possible and tractable

to estimate all three parameters l, r and q simultaneously

using the likelihood function (10), and the estimates thus

obtained would more correctly be considered maximum

likelihood estimates. As long as the temporal range of the data

is much longer than the time scale of autocorrelation,

however, the differences between the two kinds of estimates

are minor, whereas the existence of directly calculated

estimates for l and r significantly reduces computational

intensity. This is an important consideration, as a typical

application of the complete analysis requires estimating these

parameters tens of thousands of times.

Identifying structural shifts

The likelihood method described above can be expanded

to identify structural shifts, or sudden changes in the

parameters describing the underlying process. The bio-

logical hypothesis underlying this analysis is that behavio-

ural changes can occur discretely and suddenly (e.g. the

transition from a goal-oriented travelling mode of

movement to a search and forage mode). We refer to

the time point at which the structural shift occurs as the

�change point� (CP). The mathematical challenge is to

estimate the change point in a gappy time series.

Consider a continuous stochastic process X(t) for

0 < t < T defined by parameter set Q(t) whose values

change at an unknown time point T* such that

HðtÞ ¼ H1 if 0<t � T �

H2 if T �<t � T

�
ð14Þ

We now take N samples from the continuous process X(t)

to obtain a time series Xi at times Ti. If n is defined as the

number of measurements within the first regime, such that

Tn � maxðTi<T �Þ, then the likelihood of the parametrization

(Q1, Q2, T*) given data Xi is the product of the two likelihoods
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Figure 1 Illustration of the gappy change point estimation method. In the top left plot (a), a simulated AR(1) time series of length 1000 with

autocorrelation coefficient q = 0.8 is plotted in grey, with the black circles indicating a subsampling of 100 points from this time series. Below

that (b), the log-likelihood profile of q yields an estimated value for q of 0.815. The plots on the right (c and d) illustrate estimation of a

single-structural shift. The time series in (c) was generated by sampling 50 values from a time series of length 2000 with a breakpoint at

Tbr = 1000. The true parameter values are l1 = 5, l2 = 2, r1 = 10, r2 = 5, q1 = 0.9 and q2 = 0.2. In this simulation, the resulting

parameter estimates were: l̂1 ¼ 1:6, l̂2 ¼ 0:24, r̂1 ¼ 8:75, r̂2 ¼ 4:73, q̂1 ¼ 0:91 and q̂1 ¼ 0:35. The log-likelihood profile over possible

change points is in the lower right (d), suggesting an MLCP at t = 1025.
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LðHjX;TÞ¼
Yn

i¼1

f ðXi jXi�1;H1Þ
YN

j¼nþ1

f ðXj jXj�1;H2Þ ð15Þ

This likelihood can be maximized by sweeping over all

possible values of n (from 1 to N), and obtaining the

estimates for the remaining parameters at each side of

the possible change point using the method described in the

previous section.

The parameter estimates can be expressed as

n̂ ¼ argmax
n

LðHjX;TÞ ð16Þ

l̂j ¼ �Xj ð17Þ

r̂j ¼ Sj ð18Þ

q̂j ¼ argmax
q

LðqjXj ;Tj ; l̂j ; r̂jÞ ð19Þ

where j 2 ð1; 2Þ indexes the two regimes, such that if j = 1

the data and estimates are taken in the range

i ¼ ð1; 2; . . . ; n̂Þ and if j = 2, they are taken from

(i ¼ n̂þ 1; n̂þ 2; . . . ;N ). We term the estimate for the

change point (cT � ¼ tn̂), the �most likely change point�
(MLCP). The corresponding estimates for the turning

component of velocity Vt = V sin w are simplified by the

fact that the mean can be assumed to be zero.

Identifying models

Each of the parameters used in this approach to characterize

a movement can change, and changes in each parameter

correspond to a different behavioural interpretation. Thus,

for V cos w, an increase in l corresponds to a combination

of faster and more directed movement. An increase in r
indicates more variable movement, e.g. streaky bouts of

movement and stopping and sudden changes in direction.

A higher q indicates more directed and correlated move-

ments, whether fast or slow. For V sin w, higher values of r
indicate more turning or tortuous movements, while higher

values of q indicate longer turning radii. It is consequently

of great interest to be able to identify which, if any, of the

parameters actually change at the MLCP.

There are eight possible models to consider when

analysing a change point. We label these M0–M7 and

define them as follows: M0 is the null hypothesis of no

significant change (l1 = l2, r1 = r2 and q1 = q2); M1, M2

and M3 represent one parameter changing (l1 „ l2,

r1 „ r2 and q1 „ q2 respectively) while the other two

parameters remain constant; M4, M5 and M6 have one

equality each while two other parameters change (l and r, l
and q, r and q respectively); and M7 is the most alternate

hypothesis, in which all parameter values change at the

MLCP.

Because the conditional likelihood is well defined, we can

apply an information-based criterion to select our models.

Two such criteria are the AIC (Akaike�s Information

Criterion) and BIC (Bayesian Information Criterion) defined

as

IAðX;TÞ ¼ �2n logðLðHjX;TÞÞ þ 2d ð20Þ

IBðX;TÞ ¼ �2n logðLðHjX;TÞÞ þ d logðnÞ; ð21Þ
where L(Q|X,T) is the likelihood (15) and d is the number

of parameters in each of the eight models, ranging from

d = 4 for M0 to d = 7 for M7. The value of the criterion

with the more negative value is selected. The BIC is gen-

erally more conservative than the AIC with respect to model

complexity.

Simulation study

Figure 1c,d illustrates an example of the single change point

estimation routine. The simulated data in this example come

from an underlying process of length N = 2000 with a

discrete structural shift at t = 1000 where the mean drops

from 5 to 0, the variance decreases from 10 to 5 and the

autocorrelation coefficient drops from 0.9 to 0.2. This

simulation represents a shift from a highly variable,

positively biased, correlated process associated with directed

movement to a zero mean, lower variance, less-correlated

process that mimics foraging. We randomly sampled 100

points from the complete time series and obtained the

MLCP according to the method described above. The

resulting estimated parameters are listed in the figure

caption.

The plots of the log-likelihood (Fig. 1d) give an idea of

how precise the T * estimate is. It should be noted that the

time series in this example is rather gappy, only 100 points

were sampled out of 2000, and the location of the change

point is difficult to discern by eye.

We explored the properties of this experiment for a

variety of parameter value changes by simulating 100 gappy

processes (true data N = 400, subsampled data n = 50,

T* = 200) for each of eight different models (see Table 1)

ranging from the null model of no change in parameter

values to the most alternate model of change in all

parameter values. Resulting parameter estimates appear

unbiased and precise (Table 2), all falling well within one

standard deviation of the true value. Perhaps most

importantly, the MLCP estimates are highly accurate, with

means between 197 and 203. We also applied AIC and BIC

to assess the eight models and report their results (Table 2).

The BIC performs far better than the AIC at identifying the

true model, with, notably, a 78% rate of correctly

identifying the null hypothesis and 72–94% probabilities

of identifying parameters with a single-parameter changing.
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For those models where two parameters shift, BIC tends to

falsely favour the most complex model. In contrast, AIC

performs poorly, never selecting the null model correctly

and in other cases almost always choosing more complex

models than necessary. The power of the BIC-based model

selection is weakened somewhat for very short time series

(n = 30) and improves for longer (n = 80) time series

(Fig. 2a,c).

When analysing actual data, a researcher may have greater

interest in identifying the location and direction of

significant, detectable structural shifts than in estimating

the parameters themselves. For this reason, we prefer the

more conservative criterion. A complete power analysis is

very difficult to perform for the selection mechanism, as the

ability of the method to correctly identify the model

depends in complicated ways on the magnitude of the

difference between the parameters, the extent of the

gappiness in the dataset and the length of the series.

However, an effort was made in the simulation study to look

at differences in parameter values that are comparable to or

smaller than those observed in real movement data (see

application below). The ability of the BIC to pick the

appropriate level of complexity inspires confidence in this

method of model selection.

Multiple change points

Heretofore, we have only discussed the identification of

a single most likely breakpoint. Within a single track,

an organism likely exhibits multiple behaviours. Rigorously,

a continuous process W(t) can be defined such that any

interval between 0 < t < sm is defined by parameter set Q(t)

whose values change at unknown time points T = {T1,...,

Tm}. Thus,

HðtÞ ¼

H1 if 0<t � T1

H2 if T1<t � T1

..

. ..
. ..

.

Hm if Tm�1<t � Tm

8>><
>>: ð22Þ

Estimating the parametrization Q for the multiple change

point model is a computationally non-trivial problem that

has been discussed in the literature, though only for

regularly sampled time series and with applications primarily

to financial markets (Chib 1998; Hawkins 2001). An

important complication is determining the number of

change points to select in a long, structurally complex

process. Our solution to this problem is to pass a window

over the complete time series and apply the single change

point analysis described above at each window. The

complete procedure can be summarized as follows:

Table 1 Parameter values in a simulation study used to explore the

accuracy and power of the single structural break estimates and the

model selection criteria

l1 l2 r1 r2 q1 q2

S0 0 0 1 1 0.5 0.5

S1 )1 1 1 1 0.5 0.5

S2 0 0 0.5 2 0.5 0.5

S3 0 0 1 1 0.2 0.9

S4 )1 1 0.5 2 0.5 0.5

S5 )1 1 1 1 0.2 0.9

S6 0 0 0.5 2 0.2 0.9

S7 )1 1 0.5 2 0.2 0.9

Time series of length 400 were generated with a breakpoint at

Tbr = 200 for eight models, ranging from a null model of no

change in l, r and q, to a model where all three parameters

change value. Boldface indicates the parameters that undergo a

shift. From these series, 50 points were randomly selected,

generating gappiness, and estimates were obtained using the

method described in the text. The process was repeated 100

times for each of the eight models. The results are presented in

Table 2.

Table 2 Parameter estimates obtained from the simulation experiment described in text

Tbr l̂1 l̂2 r̂1 r̂2 q̂1 q̂2 NA NB

S0 206 (113) 0.0 (0.21) 0.0 (0.17) 1.0 (0.11) 1.0 (0.11) 0.48 (0.16) 0.47 (0.15) 0 78

S1 197 (13.2) )1.0 (0.18) 1.0 (0.19) 1.2 (0.21) 1.2 (0.22) 0.59 (0.25) 0.63 (0.19) 1 84

S2 203 (10.3) )0.03 (0.12) )0.04 (0.27) 0.50 (0.04) 2.0 (0.19) 0.46 (0.16) 0.47 (0.16) 28 72

S3 201 (26.1) )0.02 (0.22) 0.04 (0.43) 1.0 (0.08) 1.0 (0.12) 0.23 (0.21) 0.92 (0.056) 29 92

S4 199 (5.49) )1.0 (0.08) 1.1 (0.33) 0.5 (0.04) 2.0 (0.17) 0.47 (0.2) 0.53 (0.17) 22 40

S5 199 (12.0) )0.96 (0.17) 1.0 (0.51) 1.0 (0.12) 1.0 (0.14) 0.19 (0.18) 0.92 (0.033) 7 15

S6 200 (8.51) 0.0 (0.09) 0.02 (0.93) 0.49 (0.05) 2.0 (0.17) 0.20 (0.19) 0.92 (0.036) 22 40

S7 201 (15.6) )0.99 (0.08) 0.94 (0.87) 0.50 (0.05) 2.0 (0.18) 0.19 (0.18) 0.93 (0.033) 97 97

True values are tabulated in Table 1. Nearly all estimates are within one standard error of the true value. The last two columns (NA and NB)

are the number of times that AIC and BIC respectively select the correct model out of 100 attempts. The experiment was repeated for the

BIC with 30 and 80 points, as illustrated in Fig. 2.
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(1) Select a window of length 30 £ l < N.

(2) Find the MLCP in a subsample of the data X1,...,Xl.

(3) Use the BIC criterion to accept or reject the �signifi-

cance� of the change point for each of the parameters

l, r and q.

(4) Based on the result of the test, record the location of

the behavioural change point and the resulting esti-

mated parameter values: l̂1, r̂1, q̂1, l̂2, r̂2 and q̂2.

(5) Shift the window forward by one data point, and repeat.

Throughout the running of this analysis, the estimates

according to the model chosen by the BIC are stored. Thus,

if M0 is chosen, no significant shifts are detectable and a

single value is reported for each of the parameters for the

entire window. If M7 is chosen, we separately estimate

parameters at each side of the MLCP. All of the estimates

are logged and averaged after the sweep is performed.

This analysis has the important innovation of being able

to capture any range of behaviours determined by location

in the three-dimensional parameter space of l, r and q. By

returning and averaging the model estimated parameters at

every time step multiple times, both gradual shifts in

behavioural parameters and potentially dramatic jumps can

be identified. The aggregated information including both the

parameter estimates, the significant change points and their

nature and direction (i.e. increasing l, decreasing q, etc.) can

be considered a distilled behavioural model of movement.

We term the aggregated output, with estimated change

points, model specifications and recorded averaged param-

eter estimates, a behavioural change point analysis of animal

movement data, or BCPA.

It should be noted that the appropriate window size is the

sole parameter specified by the user. The greater the size of

the window, the greater the power of the model selection

(Fig. 2) at a cost of identifying smaller-scale behavioural

shifts. A smaller window size will reveal finer-scale structure

in the data, but the risk of spurious change points increases.

Based on the results of the BIC simulation and experimen-

tation with datasets, a window size of 30 is the minimum

recommended window size for obtaining reasonable statis-

tical power for model selection.

Essential sections of code in the R programming language

(R Development Core Team 2008) are provided in

Appendix S1.

A P P L I C A T I O N T O D A T A : N O R T H E R N F U R S E A L

We applied the BCPA to global positioning system (GPS)

data collected from a female northern fur seal tagged in

summer 2007 in the central Kuril Islands (Fig. 3). The

female was instrumented with a Fastloc GPS data-logging

device (MK10-F; Wildlife Computers Inc., Redmond, WA,

USA). The tag allows for quick satellite fixes and high
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Figure 2 Results of model selection simulation using BIC for

gappy time series of length N = 30, 50 and 80, (Fig 2a, b and c

respectively) subsampled from a true process of length T = 200.

The simulated time series are parameterized as in Table 1, ranging

from the null model (S0) of no difference before and after the gap

to the extreme model (S7) with differences in all three parameters.

Gappy time series were simulated for each parameter set and the

BIC used to select a most parsimonious model (M0–M7). The area

of the circles is proportional to the number of times a model is

selected for a given simulation out of 100 repetitions. Larger circles

along the x–y diagonal indicate more correct model selections.
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accuracy, with at least 60% of the locations within 100 m

(Bryant 2007).

The animal was monitored for 38 days, during which

seven foraging trips occurred. A total of 763 position fixes

were obtained over all seven trips, with individual trips

ranging from 30 to 205 position fixes each. The time

intervals between the fixes ranged widely from less than a

minute to 700 min, with the majority (over 80%) between

15 and 45 min. The data were filtered to exclude implausible

swim speeds (> 11 km h)1). Geographic positions were

converted to displacements in kilometres, velocities were

estimated by dividing displacements by time intervals and

turning angles were calculated directly from the positions.

The BCPA was applied to five trips (those with more

than 70 location fixes) with window sizes of 30 and 50. The

results presented here (Figs 4–6) are for the 30 datapoint

window, which covered an average period of 18 h. The

output of analyses with window size 50, corresponding to

about a 24-h period on average, provided fewer and more

robust change points, but masked changes that occurred

more frequently than once a day.

In order to more clearly describe the complex output of

the BCPA, it is worthwhile to look closely at a few trips.

Trip 1 is the longest (5.1 days long) and furthest (maximum

distance from rookery 96 km, Fig. 4), as is typical for female

fur seals taking their first feeding trip after a fasting period

immediately post-parturition. The initial departure from the

rookery was marked by high values of Vp (l̂, c. 5 km h)1)

and a high estimated per-hour autocorrelation q = 0.36.

Note, because the time data are in hours, q̂ estimates what

the first order autocorrelation coefficient would be if the

movement data were collected at exactly 1-h intervals

without gaps.

The first significant change point was selected as the

MLCP by all the windows that passed over it. The models

chosen by the BIC were split about evenly between Model

4 (M4: l and r change) and Model 7 (M7: all three

parameters change), with all three parameters values

decreasing. Similarly strong support was given for a

change point that occurred at 19:00 h before the last

night of the trip (Fig. 4b,c), where values for all three

parameters increased significantly. Referencing this change

point against the track (Fig. 4a) indicates that this final

change point is associated with a sudden turn south, and a

fairly correlated, moderately fast (c. 3 km h)1) return

journey to the rookery.

The interim period between these two travelling bouts

was marked by lower autocorrelation (bluer colours between

CP1 and CP2 in Fig. 4a,b), < 0.14 during the entire period.

The mean persistence velocity and standard deviations,
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Figure 3 Trips taken by Northern fur seal

female (NFS07-03) in Summer 2007 in the

Kuril Islands, Russia. The square in the inset

map indicates the study area.
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Figure 4 Plots of northern fur seal (NFS07-03) foraging trips 1 and 7 and BCPA output. The tracks are in (a) and (d) respectively. Plots (b, c)

and (e,f ) show the time series of velocity and turning angles decomposed into persistence (Vp = V cos w) and turning (Vt = V sin w)

components. The black line is the estimate for the mean l̂, the red line represents the estimate for the standard deviation r̂ around the mean,
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autocorrelated movement. Vertical orange lines indicate change points. Thicker lines correspond to a higher number of selected shifts. Wide
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however, varied considerably and significant change

points were identified at dusk and dawn on all three interim

nights. Mean velocities tended to increase at night, while

standard deviations and autocorrelations were generally

constant.

The analysis of turning velocity Vt for Track 1 proved

less informative than the analysis of Vp with relatively few

significant change points identified (Fig. 4c). The general

patterns of trip 1, i.e. higher velocities and autocorrelations

during the outbound and inbound portions of the foraging

trip and higher general activity at night, were also reflected

in trips 2, 3 and 4.

Trip 7 (Fig. 4d–f) displayed a markedly different pattern.

Notably, the fur seal�s persistence velocity was much higher

(an aggregate Vp mean of 3.8 km h)1 compared to

2.0 km h)1 for trip 1, see Fig. 6) and there were fewer

highly significant change points. The fur seal left the rookery

in the evening, at high velocities but low autocorrelation and

made several hairpin-like changes in direction identified by

the MLCPs. High autocorrelations (up to 0.11) in the turning

velocity (Fig. 4f) on the return portion of the trip reflects the

large turning radius as the fur seal adjusted its trajectory.

The greater values for all three parameters in trip 7 are

visible in the behavioural phaseplot (Fig. 5). The phaseplot

further summarizes the complex range of behaviours

demonstrated by the fur seal within any given single track.

Kernelized distribution estimates of aggregated BCPA

parameter outputs (Fig. 6) indicate bimodality in the

persistence velocity means and, to a lesser extent, in the

persistence velocity autocorrelation. Furthermore, aggre-

gated differences between night- and daytime movement

parameters suggest that movement during the day is

generally faster and more autocorrelated.

We used the time to half-correlation t1 ⁄ 2 (eqn 13) to

characterize the time scale of the movement process. For

trip 1, this value ranged between 30 and 40 min for the

travelling modes, and between 4 and 15 min during the

remainder of the trip. Similar patterns held broadly for

the remaining trips.

D I S C U S S I O N

Top marine predators are extremely well adapted to

exploiting the heterogeneous environment of the open

ocean to fulfil their survival needs. Their movements are

complicated, measurable manifestations of behavioural

responses to environmental cues and physiological con-

straints. In practice the data collected on movement is an

irregular and often imprecise subsampling of a structurally

complex, continuously autocorrelated, multidimensional

process. Analysis of such data requires a method that is

robust, flexible, holds few assumptions and outputs

biologically interpretable and useful synthesis, requirements

that are largely satisfied by the BCPA.
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Figure 5 A mapping of all three parameters
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observation: l̂ on the x-axis, r̂ on the y-axis
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ated with the most significant structural

shifts in the behaviours.
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The fundamental contribution of the BCPA is the ability

to detect and characterize significant behavioural shifts

without a priori assumptions. The framework permits not

only the identification of discrete shifts, but also the

detection of gradual changes in the parameter values. While

similar movement analyses have presupposed a few distinct

behaviours and classified behaviour into categories (Morales

et al. 2004; Forester et al. 2007; Jonsen et al. 2007; Bailey et al.

2008), the BCPA reveals striking complexity in behavioural

modes, both within a single movement track and in

comparisons between tracks of a single individual (Fig. 5).

Autocorrelation is an important and often overlooked

intrinsic feature of movement data, and its rigorous estima-

tion and accounting in our method is an important

innovation. The autocorrelation is readily interpreted in

terms of time scales at which an organism�s basic movement

patterns (persistence and turning) change. For example, the

most significant distinction between the travelling modes and

non-travelling behavioural modes in the northern fur seal

tracks was associated with a greater increase in the autocor-

relation than in the persistence means (Fig. 4). The associated

characteristic time scales of movement are 30–40 min

compared to 4–15 min for travelling and searching respec-

tively. The existence of modes of movement with high mean

persistence but low autocorrelation indicates a fast and active

searching mode likely associated with rapid but erratic

movements, punctuated by dives, turns and loops, but

covering a large average distance. This is contrasted both with

the slower, uncorrelated movements associated with drifting

or milling and the more correlated, but not necessarily faster,

oriented movement associated with directed travel.

In principle, the BCPA should be able to pick out

behavioural shifts in more error-ridden data as long as their

changes are greater than the noise. For example, much

remotely tracked animal movement data are obtained via the

ARGOS system (Ferguson et al. 1998; Heide-Jørgensen et al.

2003; Block et al. 2005; Ropert-Coudert & Wilson 2005).

ARGOS data is reported with location classes (3, 2, 1, 0, A and

B) associated with spatial errors varying from 100 m to several

kilometres (Hays et al. 2001; Vincent et al. 2002; CLS Argos

2008). In a typical dataset on marine organism movements,

over 80% of the locations have errors greater than a kilometre.

In order to test the robustness of the procedure

against ARGOS-like error, we simulated a behaviourally
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heterogeneous movement process that emulated the

behaviour of narwhals (Monodon monoceros) based on results

reported and quantified using fractal dimension by Laidre

et al. (2004). Movement data were generated by simulating

a high resolution (15-min intervals) dataset with four

different behaviours ranging from highly tortuous, slower

feeding like movement to high-speed migratory-type

movement over a 100-day period. The entire time series

of observations was randomly subsampled and ARGOS-

like errors were attributed to the simulated data according

to proportions characteristic of real narwhal movement

data. The BCPA was capable of identifying all three

breakpoints using the higher location classes 3, 2 and 1

(accounting for only 140 of 1200 datapoints) and estimated

most parameter values within one standard deviation. The

addition of LC 0 locations, while increasing the number of

data points to 422, made the data too noisy to detect any

changes. However, a very coarse filtering of the data that

eliminated velocities > 250 km day)1 allowed for an

identification of the largest shift from migration to

tortuous movements. The actual parameters values, in

particular q and r, were less precisely estimated with the

error; however, the direction of the behavioural shifts was

well captured.

This experiment suggests that the BCPA can identify

large-scale shifts in movement processes that occur on

the order of months and over distances of hundreds of

kilometres and are measured with ARGOS-like error.

While the method works best with the top three locations

classes, it is possible to include LC0 if some filtering is

applied. Thankfully, many sophisticated filtering methods

exist and are routinely applied (Coyne & Godley 2005).

The BCPA, however, does not require any further

interpolation or discretization of the data.

The appropriate application of the BCPA depends on

the temporal scale, resolution and error structure of the

data. The assumptions that underlie the continuous time-

series model need to be tested and a window size selected

that balances the minimum temporal scope within which

changes are expected against the desired power. Perhaps

most importantly, meaningfully interpreting the output of

the analysis depends very much on the goals of the

application. In the fur seal example, we present several

ways to visualize complex analysis output in order to

highlight the high level of behavioural heterogeneity within

a single animal�s movement profile. In other applications,

single-parameter values can be simplified by estimating the

parameters between the most significant behavioural

change points, or narrowing the question. For example,

dates at which feeding or breeding behaviour of whales

turns into migratory behaviour can be almost unambigu-

ously identified and compared between individuals or

years.

It should be reemphasized that the BCPA provides an

empirical, descriptive distillation of movement data rather

than an explanatory model of the factors that influence

movement behaviour. Its power lies in revealing underlying

structures in movement data that are otherwise difficult to

discern. Deeper analysis of behavioural processes would

relate movement to environmental covariates and associated

behavioural measurements. For marine mammals, for

example, diving behaviour and foraging success can

occasionally be measured, and information can be obtained

about bathymetry, currents, ice cover or other potentially

relevant environmental factors. Once a movement profile is

distilled and parallel time series of observed behaviours and

immediate environmental cues are obtained, sophisticated

mechanistic models can be developed incorporating such

processes as foraging strategies, bioenergetic constraints and

intrinsic forcings such as homing and orientation or, as in

the case of the northern fur seal, the need to return to a

colony and nurse.

While the development of the BCPA was motivated

primarily by addressing some of the practical limitations of

data on marine organisms, the underlying autocorrelated

change point model can be productively implemented on

terrestrial movements where missing data is less of an issue.

Indeed, because the terrestrial environment is much better

mapped and observable than the marine environment,

obtaining useful parallel time series is generally easier. Thus,

the behavioural phases of a large herbivore or carnivore can

be compared to various kinds of habitat types and seasonal

variables. In this context, the BCPA can be used to

empirically explore the validity of some of the structural

hypotheses that underly mechanistic movement models

such as those of Moorcroft et al. (1999), Ovaskainen (2004),

Morales et al. (2004) and Forester et al. (2007). Given an

appropriate hierarchical framework, models that hypothe-

size responses in movement behaviour to certain stimuli can

be estimated, compared and assessed against the output of

the BCPA. These are all important avenues for future work.

On a final note, the BCPA can be adapted to a variety of

ecological data not directly related to movement. Many time

series in ecology are opportunistically and irregularly

sampled, yet practical recommendations in the ecological

literature on analysing gappy time series are scant. The

methods described here provide a versatile, robust and

efficient framework with which to investigate a wide range

of temporally heterogeneous autocorrelated processes,

regardless of the regularity of sampling intervals.
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