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SUMMARY.

Capture-recapture models were developed to estimate survival using data arising from marking

and monitoring wild animals over time. Variation in survival may be explained by incorporating relevant
covariates. We propose nonparametric and semiparametric regression methods for estimating survival in
capture-recapture models. A fully Bayesian approach using Markov chain Monte Carlo simulations was
employed to estimate the model parameters. The work is illustrated by a study of Snow petrels, in which
survival probabilities are expressed as nonlinear functions of a climate covariate, using data from a 40-year
study on marked individuals, nesting at Petrels Island, Terre Adélie.
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1. Introduction

Understanding population structure and changes in that
structure for wild animals is essential for both species conser-
vation and management. Because of human activities, it ap-
pears crucial to explain and forecast the effects of climatic and
environmental perturbations on population dynamics. The
analysis of data arising from observations of marked animals
is an important tool for estimating demographic parameters
that govern population change.

In the last 40 years, a challenging research topic has been
the estimation of wild animal survival, and when possible, to
explain variations in survival using auxiliary variables such
as time, age of animal, or relevant covariates like tempera-
ture or rainfall. Many traditional models exhibit a product-
multinomial likelihood structure, allowing inference in a uni-
fied context by classical maximum likelihood (Lebreton et al.,
1992) through user-friendly software like MARK (White and
Burnham, 1999) or M-SURGE (Choquet et al., 2005). The
Bayesian approach has been proposed as an alternative—see
Brooks, Catchpole, and Morgan (2000) for a review.

To estimate survival probability, the modeling is usually
embedded in the generalized linear model (GLM) framework
(Lebreton et al., 1992). A logit link for survival probabilities
is frequently used but other functions are possible (Williams
et al., 2002); covariates may be readily incorporated, and
here we will focus on environmental covariates that vary over
sampling occasions but remain constant over individuals, as
defined by Pollock (2002). Most frequently, covariates are re-
lated to survival by a linear or a quadratic function, on the
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logit scale. However, in general this may be unrealistic and we
give three examples to motivate a nonlinear alternative. First,
it has been shown that global indices such as the North At-
lantic Oscillation (NAO) could relate to population dynamics
in complex nonlinear ways (Mysterud et al., 2001; see also
Stenseth and Mysterud, 2002 for a general discussion). Sec-
ond, survival can be nonlinearly related to population density
via a threshold effect (Lima, Merritt, and Bozinovic, 2002).
Third, survival as a function of age may exhibit nonlinear pat-
terns, through senescence defined as a reduction in survival
among old individuals (Loison et al., 1999; Catchpole et al.,
2004). In these examples and in many others, a nonparamet-
ric alternative avoids strong parametric assumptions and is
of interest in itself. It might also suggest a new, scientifically
relevant, parametric model if one is needed.

In this article we applied generalized additive models
(GAMs), ideas popularized by Hastie and Tibshirani (1990)
that extend the traditional GLM framework. Rather than
specifying a fixed link between survival and covariates in the
model, the shape of the relationship is determined by the data,
using penalized splines (Ruppert, Wand, and Carroll, 2003).
Our choice has been guided by the equivalence between a pe-
nalized spline formulation of the nonparametric problem and
generalized linear mixed models (GLMMSs) that simplifies fur-
ther extensions.

The article is organized as follows. In the next section, we
give the likelihood for classical survival models, and the non-
parametric regression of survival probabilities on covariates is
established. In Section 3, we consider a natural extension to
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the nonparametric model, when a semiparametric regression
model for survival is introduced. As well as including the non-
parametric component, this allows us to model a parametric
component at the same time. Section 4 gives the details of the
Bayesian inference and its implementation through Markov
chain Monte Carlo (MCMC) simulations. Section 5 gives the
results of a simulation study which validate the ability of our
approach to capture various nonlinearities in survival. Section
6 illustrates our method using data from a 40-year study of
individually marked Snow petrels (Pagodroma nivea), in try-
ing to relate their survival to a climate covariate. The last
section gives general conclusions and discusses the potential
of our approach.

2. Theory
2.1 Cormack-Jolly-Seber (CJS) Likelihood

We assume here that our capture-recapture study includes
I + 1 sampling occasions at which animals are caught or ob-
served, so that I recaptures or reobservations may actually
be made. On each occasion, new unmarked animals are given
unique marks and then released. Previously marked animals
can also be sampled, and after their identity is recorded they
are also released back into the studied population. This pro-
tocol gives rise to a set of animal encounter histories, made
up of 1 and 0 depending, respectively, on whether an animal
is detected or not. Cormack (1964), Jolly (1965), and Seber
(1965) independently derived the likelihood for such capture—
recapture data, and this model is referred to as the CJS model.
Schwarz and Seber (1999) and Williams et al. (2002) give re-
views of the CJS model and its applications. Note that the
model includes time variation in parameters, but no age vari-
ation. It may, therefore, be appropriate for describing the sur-
vival of adult animals. Data are frequently summarized in an
upper triangular array, m, called the m-array, where m;;, i =
1,...,1,7=1i+1,...,I 4+ 1is the number of animals released
at time ¢; and subsequently recaptured for the first time at
time #;. Also the column vector R contains the R;,i =1,...,1,
which are the numbers of marked animals released into the
population at times ¢;; these comprise newly marked animals
and those previously marked animals that are recaptured at
time ¢;. Under the assumption that animals are independent
(see, e.g., Williams et al., 2002 for a description of CJS model
assumptions and consequences of possible violation), the like-
lihood is product-multinomial
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where [X] denotes the distribution of X, ¢;,7=1,..., 1 is the
probability that an animal survives to time ¢;,; given that
it is alive at time ¢;, and p;,j = 2,...,I + 1 denotes the
encounter probability of being detected at time ¢; (see, e.g.,
Brooks et al., 2000). We adopt the convention that a null
sequence has product 1 so that, for example, H;:Z Pl —

bipj H or(1 —pr)

k=i+1

pp) = 1 for j = ¢ + 1. Other terms involve r; = Z]I':i+1 mij,
the number of animals subsequently recaptured after release
at time ¢; and x;, the probability that an animal, alive at time
t;, is not subsequently encountered. This can be calculated
recursively as x; = 1 — ¢i{1 — (1 = pir1)Xit1}, With xr41 =1
(e.g., Lebreton et al., 1992).
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2.2 Nonparametric Regression of Survival

We consider a nonparametric regression model for the proba-
bility that an animal survives from time t; to time ¢;,; of the
form

logit(¢:) = f(z:) + €,

where z; is the value of the covariate for the ith sampling
occasion, g; are i.i.d. N(0, o), &; is independent of z;, and f
is a smooth function. Here, the random effects {¢;} allow us
to model the residual sampling-occasion-to-sampling-occasion
variation not described by the covariates alone (Barry et al.,
2002). Variations on the model of equation (2) include:

i=1,...,1, (2)

(i) Semiparametric regression models in which some of the
predictors enter linearly in the model, as illustrated in
Section 3, and

(ii) Models including interactions between covariates,
which are discussed in the last section.

Penalized splines using the truncated polynomial basis
(Ruppert, 2002) were used to model the smooth function

K
f@ln) =B+ Bzt -+ Bpa” + > belz—mi)Y,  (3)

k=1

where P > 1 is an integer, n = (B1,...,8p, b1,...,bx)T is a
vector of regression coefficients, (u)? = u?I(u > 0), and K; <
Ky <---< kg are fixed knots. The crucial problem in using
relation (3) is the choice of the number and the position of
the knots. A small number of knots may result in a smooth-
ing function that is not flexible enough to capture variability
in the data, whereas a large number of knots may lead to
overfitting. Similarly, the position of the knots will influence
estimation. We used a penalized splines approach inspired by
the smoothing splines of Green and Silverman (1994). First,
the number of knots is chosen to ensure enough flexibility.
Following Ruppert (2002), we considered K = min{}I,35}
and let k;, be “equally spaced sample quantiles,” that is,
the sample quantiles of the z;’s corresponding to probabilities
k/(K + 1). Other choices are possible, such as equally spaced
knots within the domain of z, and Crainiceanu, Ruppert, and
Carroll (2004) provide a simulation study comparing these
two alternatives with a discussion. Then, following Ruppert
et al. (2003) a quadratic penalty is placed on b, which is here
the set of jumps in the Pth derivative of f(e|n) so that with
equation (3) we associate the constraint

b™b < A, (4)

where A is called the smoothing parameter. Equations (3) and
(4) lead to the so-called P-splines approach (see, e.g., Lang
and Brezger, 2004). Because roughness is controlled by the
penalty term (4), once a minimum number of knots is reached,
the fit given by a P-spline is almost independent of the knot
number and location (Ruppert, 2002).

P-spline models can be fruitfully expressed as GLMMs,
which facilitates their implementation in standard software
(Ngo and Wand, 2004; Crainiceanu, Ruppert, and Wand,
2005), and above all provides a unified framework for gen-
eralizations of the nonparametric model. Indeed, we first note
that the P-splines approach is equivalent to minimizing
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where D is a known positive semidefinite penalty matrix. The
truncated spline penalty matrix is

D— |:0P><P 0P><K:| 7
Oxxp Qxk

where a standard choice for Qk is Ix. To avoid overfitting,
the matrix D penalizes only the coefficients of the spline basis
functions (z — k). Let ¢ = (¢1,...,¢r)T, X be the matrix
with the ith row X; = (1, z;,...,2F)T, and Z be the matrix
with ith row Z; = {(z; — k)T, ..., (z; — sx) T} If we divide

equation (5) by the error variance o2 we obtain

1, , 1
;Hloglt(@ — X3 - Zb|* + ol
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bTb,

where 3 = (Bo,...,8p)T and b = (by,..., bg)T. Define o2 =
Ao?, consider the vector 3 as fixed parameters and the vector
b as a set of random parameters with E(b) = 0 and cov(b) =
oIk If (bT, eT)T is a normal random vector and b and ¢ are
independent, then an equivalent model representation of the
P-spline model in the form of a GLMM is

logit(¢) = X3+ Zb +e, cov = O]
3 0 O'E:I[

for which E(logit(¢)) = X8 and cov(logit(¢)) = 02V, where
V = 1I; + A?ZZT (Brumback, Ruppert, and Wand, 1999).

Note that the connection between the P-spline model and
the mixed model of equation (6) allows us to extend the non-
parametric model to incorporate other nonparametric com-
ponents as well (Ruppert et al., 2003).

3. Semiparametric Regression of Survival

In the preceding section, a regression model for survival over a
continuous predictor modeled as a smooth function was con-
sidered. In this section, we extend this model by including
quantitative predictors assumed to enter the model linearly.
Without loss of generality, we considered only one parametric
categorical component s with one nonparametric component
smoothing a continuous predictor x by linear P-splines. We
want to let the relationship between logit(¢;) and z; vary dif-
ferently but in parallel according to the variable s; taking
discrete values, that is,

logit(¢;) = Bo + vs: + Bz

The GLMM representation can also be used to handle the
semiparametric model. Let us adjust the matrix X so that its
ith row is X; = (1, s;, ;)T and 8 = (Bo, v, 81)T, while the ith
row of matrix Z is Z; = {(z; — k1)4,---, (z; — kx )1 }*. Then
the mixed model defined by equation (6) can still be used to
describe the semiparametric regression defined in equation (7)
(Ruppert et al., 2003).
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4. Bayesian Inference

In this section, we focus on the Bayesian analysis of the non-
parametric model defined in Section 2.2. However, within the
GLMM framework introduced before, the extension to addi-
tive and semiparametric models is straightforward (see Sec-
tion 6).

The frequentist approach would require maximizing the
likelihood, which is obtained by integrating the distribution
[m| ¢, p, R] over the random effects €, and by. This is, there-
fore, a problem involving a high-dimensional integral that
could be handled by using approximations like Laplace’s
method (Chavez-Demoulin, 1999; Wintrebert et al., 2005) or
asymptotic arguments (Burnham, 2002). For fitting our mod-
els, we opted for a Bayesian approach through Gibbs sam-
pling. Invoking conditional independence properties, a first
step is achieved by recursively factorizing the posterior distri-
bution to give:

[@b,s,ag,ag,p,R ’ m]
x [m|¢,p,R][¢|8,b,e][B][b|0?] [e| 0] [07] [02] ] (8)

Even if one is only interested in the marginal posterior dis-
tribution of a subset of parameters, high-dimensional integra-
tions have to be carried out. In general, such complex inte-
grals are intractable analytically and we made use of MCMC
methods, which provide powerful computer-intensive methods
for making approximations (e.g., Brooks, 1998). We employed
Gibbs sampling (e.g., Casella and George, 1992); however,
in the context of capture-recapture model parameter esti-
mation, generally full conditional distributions are nonstan-
dard (Brooks et al., 2000; Barry et al., 2003; Johnson and
Hoeting, 2003), so that usual random variate generation al-
gorithms cannot be used. Instead, more elaborate algorithms
are needed such as adaptive rejection sampling or Metropolis-
within-Gibbs sampling (see Gilks, 1996 for a review). We
therefore used software WinBUGS (Spiegelhalter et al., 2003),
which performs the latter.

5. Simulation Study

Before turning to the real example, we conducted a simula-
tion study to provide empirical support for our approach. We
considered two scenarios with different forms for the underly-
ing nonlinear regression function f of equation (2). Study 1
used the regression function f(z) = 2.2 if z < —0.06 and
f(z) = 2.08 — 2z otherwise. This function is a broken line
which mimics a threshold effect, for instance the covariate
might represent an environmental constraint on resources
which negatively affects survival only above a given level. The
z's were equally spaced on [—1.5, 1.5], and the error vari-
ance o2 was equal to 0.1. Study 2 used the regression func-
tion f(z) = 1.5g((z — 0.35)/0.15) — g((= — 0.6)/0.1) where
g(z) = exp(—=x2/2)/(2m)'/2. This function exhibits nontrivial
nonlinear patterns, which could correspond to complex rela-
tionships between climatic conditions and survival. The s
were equally spaced on [0, 1], and the error variance o2 was
equal to 0.02. For both studies, we simulated 50 capture—
recapture data sets covering 26 sampling occasions, so that
25 survival probabilities had to be estimated, with 100 newly
marked individuals per occasion. The capture probability was
set constant and equal to 0.7.
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For five randomly chosen data sets, we first ran two overdis-
persed parallel MCMC chains to check whether convergence
was reached. As a result, we decided to use 100,000 iterations
with 50,000 burned iterations for posterior summarization.
Details on the priors used and the convergence assessment
can be found in Section 6. We then applied our nonparamet-
ric approach on each data set, using linear P-splines with six
knots. For each z value, we computed the median along with
a 95% confidence interval for the posterior medians of f and
then back-transformed in order to compare the estimated sur-
vival curve to its true counterpart.

The results are shown in Figure 1. For each of the two
examples, our approach was successful in capturing the non-
linearities in the survival function. Note that in Study 1, a
relatively simple regression function was specified, resulting,
for the same number of knots and sample size, in better pre-
cision than for Study 2.

6. Application to Snow Petrels Data

We illustrate the approach of the article with data from a
40-year study on individually marked Snow petrels, nesting
at Petrels Island, Terre Adélie, from 1963 to 2002. Two pre-
vious studies have shown that a large part of the variation in
annual survival was explained by climatic covariates such as
the extent of sea ice and air temperature (Barbraud et al.,
2000; Jenouvrier, Barbraud, and Weimerskirch, 2005). Here,
for illustration, we used only a subset of the whole data set,
from 1973 to 2002 (I = 29, 630 males and 640 females),
and considered the southern oscillation index (a covariate de-
noted by SOI) as a summary of the overall climate condition,
with positive (respectively, negative) values of the SOI corre-
sponding to cold (respectively warmer) climatic conditions.
While the NAO is a useful synthesis of climatic variables
that might affect ecology in the Northern hemisphere (see
Section 1), the SOI provides its counterpart for the Southern
hemisphere (see Stenseth et al., 2003 for a general discus-
sion). The SOI is available from the Climatic Research Unit
(http://www.cru.uea.ac.uk/cru/data/soi.htm).
Preliminary analysis of goodness of fit of the CJS model
identified lack of fit due to the presence of transients
(146 males and 169 females were seen only once) (Pradel et al.,
1997) and trap dependence (Pradel, 1993). The transients
were removed, and trap dependence was handled by consid-
ering different capture probabilities depending on whether a
capture occurred or not at the previous sampling occasion.
We modeled the survival probability nonparametrically as
a function of the SOI using P-splines. The effect of this co-
variate was additively differentiated according to the sex of
individuals. We used linear splines (P = 1) but quadratic
or even cubic splines could have been used instead, result-
ing mainly in a smoother estimated survival curve (Ruppert
et al., 2003). We used K = 6 knots chosen so that the kth knot
is the sample quantile corresponding to probability k/(K + 1).
Note that the covariate SOI was first standardized in order
to avoid numerical instabilities and to improve MCMC mix-
ing (Gilks and Roberts, 1996). We therefore considered the

following model
6

logit (¢}) = fy +7SEX + 3,SOI, + Z by (SOL; — ki), + &4,
k=t ()
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Figure 1. Performance of the nonparametric approach for

estimating nonlinearities in the survival probability (top:
Study 1, and bottom: Study 2; see text for details). For
both scenarios, 50 simulated capture-recapture data sets were
used. The solid line is the true regression function, the dashed
line is the median of the 50 estimated posterior medians,
and the dotted lines indicate the associated 95% confidence
interval.

where ¢! is the survival probability over the interval [#;, ¢;1]
for | = male (SEX = 0) or [ = female (SEX = 1) and SOI,;
denotes the SOI in year 4,7 = 1,...,1. The random effects
{b;} are independent as well as the {e;}.

Let us denote ¢ = (glomale . glmale  gmale = gpmaleyT
Then, in matrix notation, equation (9) can be expressed in
the form of equation (6) using
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T
B = (50 Y ﬁl)
1 1 SO
1 1 SOI
¥ 28 7
1 0 SOI
1 0 SOl
for the fixed effects and
b= (b bs) "
(SOI; — k1), (SOT; — k),
Z = :

(SOIzg — Kl)Jr (SOIzg — :‘16)+

for the random effects.

The model proposed here differs from the semiparametric
approach presented before in that the sex parametric com-
ponent acts at the individual level rather than on sampling
occasions. The likelihood is therefore slightly modified, con-
sisting of the product of two subcomponents, one for each sex,
based on the product-multinomial structure of the m-array
(e.g., Lebreton et al., 1992).

To completely specify the Bayesian nonparametric model,
we need to provide prior distributions for all parameters.
Specifically, we chose

[piH] = Beta(Ap, Bp)y
[60] ’ [ﬁl] ) [’7] = N(Ov J?})v
[bx] = N(0,0%),

] =N(0,02), i=1,....1

k=1,...,K,

where the parameter o, controls the degree of smoothing for
the covariate. Following Brooks et al. (2000), we chose A, =
B, = 1, which leads to a uniform distribution, while follow-
ing Ruppert et al. (2003), 0% was set to 10°, and priors for
hyperparameters were chosen as

(03], [02] =T"(0.001,0.001).

All priors were selected as sufficiently vague in order to induce
little prior knowledge, but can be easily refined if required.
We generated two chains of length 100,000, discarding the
first 50,000 as burn-in. These simulations took approximately
25 hours on a PC (512 Mo RAM, 2.6 GHz CPU). Conver-
gence was assessed using the Gelman and Rubin statistic,
also called the potential scale reduction, which compares the
within to the between variability of chains started at different
and dispersed initial values (Gelman, 1996). We found that
the Markov chains exhibit moderate autocorrelation but poor
mixing regarding the parameters b;’s and 3’s. We thus tried
low-rank thin-plate splines because in that case the poste-
rior correlation of the parameters is generally smaller than
for other bases. However, in our example, this only improved
the mixing slightly, so that we decided to retain the truncated
polynomial basis throughout, coupled with chains of adequate
length to achieve convergence. According to our experience,
inference based on P-splines within the Bayes framework may
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Table 1
Posterior medians, standard deviations, and 95% credible
intervals for the semiparametric model applied to the Snow
petrels data set (see equation (9)).

Parameter Median Std. dev. 95% Cred. int.
B, 2.93 0.40 [1.93; 3.55]
o1 —0.26 0.10 —0.45; —0.06]
061 —0.47 0.38 —1.39; 0.07
oy, 0.23 0.36 [0.03; 1.15
o, 0.56 0.14 [0.35; 0.91
by 0.01 0.23 —0.52; 0.51
by 0.00 0.33 —0.83; 0.62
bs 0.08 0.35 —0.29; 1.01
by 0.08 0.42 —0.39; 1.38
bs 0.02 0.45 —1.43: 0.75
b 0.03 0.44 —0.50; 1.23

be sensitive to the choice of priors, especially regarding o, (see
Crainiceanu et al., 2004 for a discussion of prior distributions
for nonparametric P-spline regression). In order to check for
the robustness of our results, we ran our model using different
priors and in all cases there were only minimal changes.

We used the software WinBUGS (downloadable freely from
http://wuw.mrc-bsu.cam.ac.uk/bugs/) by calling it from
software R through the package R2WinBUGS (see R web site
at http://r-project.org/ and Crainiceanu et al., 2005
for implementation examples of nonparametric Bayesian
P-splines in WinBUGS). Priors and likelihood are specified with
WinBUGS, while it appears more useful in practice to process
data, set initial values, check for convergence, and draw in-
ference after the model is fitted using R. The codes used for
fitting the model are available from the first author on request.

Posterior medians, standard deviations, and 95% credible
intervals are given in Table 1.

Because it does not contain 0, the posterior credible interval
for parameter ~y suggests that the sex of individuals affects the
survival probability. As demonstrated by other studies, male
petrels survive better than females, whatever the climatic con-
ditions (see Figure 2).

Of particular interest, it appears that survival is nonlin-
early related to the SOI covariate (Figure 2). When the SOI
increases, survival first decreases and then stabilizes. From
a biological point of view, lower values of the SOI may fa-
vor access to prey, whereas higher values may improve prey
abundance (Loeb et al., 1997), resulting in the nonlinearity
found.

In order to know whether the nonparametric part of our
model was needed, we compared the nonparametric model
with the simple standard approach in which the SOI is just
entered linearly on the logistic scale. From Figure 2, the lin-
ear curve (dotted line) differs clearly from the nonparamet-
ric curve (solid line), but the 95% credible interval (dashed
lines) for the latter partly contains the former, which means
that this difference is only marginal. This conclusion was sup-
ported by the DIC values (Spiegelhalter et al., 2002) and the
credible intervals for the b,’s, which include zero. However the
nonlinearity has a biological explanation, and as we can see
from Figure 2, in this example we require more years of data
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corresponding to large values of SOI in order to discriminate
better between the two models.

Note that the mean encounter probabilities were 67% for
males and 61% for females if a capture occurred at the previ-
ous occasion, and 62% for males and 58% for females if not.
This sex-dependent positive trap effect is in agreement with
a recent study on Snow petrels.

7. Discussion

This article presents a Bayesian approach for nonparametric
modeling of survival estimated using capture-recapture data,
where smooth functions were modeled as penalized splines.
Extensions such as additive and semiparametric models are
straightforward within the unified framework based on the
mixed model representation. In addition, due to the hierarchi-
cal structure of our Bayesian approach, the degree of smooth-
ness is data driven and controlled by the smoothing parameter
estimated jointly with the unknown regression parameters.

The modeling of this article does not include interactions
between covariates. For example, an interaction between sex
and a climatic covariate would involve considering different
smooth functions for males and females (Coull, Ruppert, and
Wand, 2001). Following the suggestion of a referee, we con-
sidered this interaction for the real data but it did not ap-
pear to improve the fit. An interaction between two continu-
ous covariates can be achieved by using bivariate smoothing
(Ruppert et al., 2003). For example, it would be interesting to
include an interaction between population density and climate
in a model (Coulson et al., 2001), requiring an extension of
the power truncated function basis to a tensor product basis
(Green and Silverman, 1994).

In this article we dealt with goodness of fit by first of all
applying standard procedures to the CJS model, which identi-
fied transients, which were excluded, and the presence of trap
dependence, which was included in the semiparametric model.
Any further lack of fit was accommodated in part through the
inclusion of the random effect terms in equation (2), which are
seen to be needed from the estimate of o, in Table 1.

This work has wider applications than just to the CJS
model, for example, in models with age dependence of sur-
vival, including modeling senescence (e.g., Catchpole et al.,
2004).
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