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Summary

 

1.

 

The study of habitat selection and habitat use are crucial for understanding the biological
requirements of  animals and the strategies they use to fulfil their needs. A variety of  statistical
techniques are available to quantify habitat selection, most of them based on the comparison of
habitat attributes in sites used by the animals and in unused, but available, sites. Because of  the
difficulties in defining what is available from an animal’s perspective for many species, statistical
approaches such as first-passage time (FPT) analysis have been developed, which explore habitat-use
intensities through the areas used by animals.

 

2.

 

In this study, we expand on that approach by using FPT-derived data within the framework of
mixed-effects Cox proportional hazards models (CPH models) to quantify habitat selection. By
modelling FPTs, CPH models evaluate which habitat attributes best explain the ‘risk’ or ‘hazard’ of
the animal leaving an area of a given radius. For quantitative interpretations, the coefficients of the
CPH model can be used to calculate hazard ratios that estimate relative habitat preferences: the
lower the hazard ratio (i.e. the lower the risk of leaving), the higher the preference. Accounting for
individual variability in habitat use by means of  a random-effect term added to CPH models
provides inferences that more appropriately reflect the typical hierarchical structure of telemetric
data on animal space use.

 

3.

 

Synthesis and applications.

 

 In addition to providing inferences about habitat selection based on
the estimated parameters, survival functions of fixed-effects CPH models can be used to construct
spatial predictions, for instance maps of  population-level space use. Such predictions can be
particularly useful for applied purposes, for example as a basis for species conservation plans and
reserve selection. The method is illustrated using two data sets from marine mammal species: ringed
seals 

 

Phoca hispida

 

 and white whales 

 

Delphinapterus leucas

 

, but it is broadly applicable to habitat
selection and prediction studies of other highly mobile animals in marine or terrestrial systems.
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Introduction

 

Habitat use and selection studies are essential for understand-
ing the biological requirements of animals and the strategies
they use to fulfil their needs (Manly 

 

et al.

 

 2002). In addition,
information on habitat use patterns is crucial for conservation
and management purposes (Scott 

 

et al.

 

 2002; Guisan & Thuiller
2005).

A variety of statistical approaches are available to quantify
habitat selection (Manly 

 

et al.

 

 2002; Strickland & McDonald

2006). Commonly, these methods use Resource Selection
Functions (RSFs) that compare resource attributes in areas
where animals are observed and in areas that are considered
available. A major difficulty when comparing used vs. available
areas is the definition of ‘available habitat’, which can critic-
ally alter the results (e.g. Johnson 1980; Hjermann 2000).
Defining areas as available habitat implies that animals know
about this availability and make their movement decisions
based on this information (Fauchald & Tveraa 2003). Alter-
natively, habitat selection can be inferred from the intensity of
use of  habitat conditions only in sites experienced by the
animals. One way to quantify intensity of habitat use along an

 

*Correspondence author. E-mail: carla@npolar.no



 

1214

 

C. Freitas 

 

et al.

 

© 2008 The Authors. Journal compilation © 2008 British Ecological Society, 

 

Journal of Applied Ecology

 

, 

 

45

 

, 1213–1220

 

animals’ movement trajectory is to measure first-passage time
(FPT; Fauchald & Tveraa 2003). FPT is defined as the time
required for an animal to cross a circle of a given radius 

 

r

 

.
Using FPT as a response variable in statistical habitat models
does offer some challenges because it violates the assumptions
underlying traditional parametric models such as Gaussian
Generalized Linear Models (GLMs). However, since FPTs
are continuous event–time measurements, methods which
model time until an event occurs, can be used. The most
popular statistical model used for this purpose is the Cox
proportional hazards model (CPH model, Cox 1972). It has
been used extensively in medical research to model survival
times and in failure–time analysis of industrial products.
CPH models have also been applied in resource selection
studies to model the time until a resource (food or habitat) is
selected (see examples in Manly 

 

et al.

 

 2002, Chapter 6) and to
investigate patch-leaving decisions in foraging studies (e.g.
Wajnberg 

 

et al.

 

 2003). A recent development of CPH models
that incorporates random-effect terms (Pankratz, de Andrade &
Therneau 2005) makes these models suitable to perform
analyses on data with more than one stratum of variation.
This makes them more suitable for use with location data
collected in telemetry studies. In such analyses, it is essential
to distinguish between random variation between individuals
versus within-individual variation by including random-
effect terms in the analyses.

This study proposes the use of mixed-effects CPH models
to infer habitat selection from FPTs. It shows how the models
can: (i) identify environmental variables that best explain the
time spent in different areas, taking into account the individual
variability; (ii) measure how animals respond to environmental
conditions, by calculating relative habitat preferences; and
(iii) predict habitat use from survival functions. This novel
combination of methods is illustrated using two data sets
from marine mammal species – ringed seals 

 

Phoca hispida

 

and white whales 

 

Delphinapterus leucas

 

.

 

Materials and methods

 

MODELLING

 

 

 

INTENSITY

 

 

 

OF

 

 

 

HABITAT

 

 

 

USE

 

The first step in the present method consists of calculating FPTs for
the track of each individual animal at regular space intervals (see
Fauchald & Tveraa 2003 and below). Once this information is
available, together with measurements of habitat variables at the
same locations where FPTs were calculated, CPH models can be
used to investigate how FPTs (and hence animal movements) are
influenced by the measured variables. The CPH model is written as:
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) is the hazard function, i.e. the risk that an animal leaves
an area at time 
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 are the coefficients that describe the
contribution of these variables. 
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) is the baseline hazard function
at time 
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 (i.e. the risk of leaving an area where all explanatory
variables are equal to zero or to a defined base value). In order to take
individual variability into account, a random-effect term (

 

b

 

) can be

added to the general CPH model, as described in Pankratz, de Andrade
& Therneau (2005). In this case, the CPH model becomes:
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where 

 

b

 

 is the per-subject random effects, which is assumed to be
normally distributed with a mean of zero. Similar to the case for linear
mixed-effects models (see Pinheiro & Bates 2000), the addition of
this term enables estimation of the response of an average individual
using the population mean (fixed-effects) and in addition provides a
measure of the variability in the response across individuals (random-
effects). The standard CPH model (equation 1) which assesses only
fixed-effects is hereafter referred to as the fixed-effects CPH model,
while models including the individual random effects are termed
mixed-effects CPH models.

In both equations above, the baseline hazard function 

 

h

 

0

 

(

 

t

 

) is
estimated from the 

 

β

 

 coefficients, while the 

 

β

 

 and 

 

b

 

 coefficients, which
are the unknown parameters in the model, are estimated using the
method of maximum likelihood (see Collett 2003; Pankratz, de
Andrade & Therneau 2005). Hazard ratios (HR) can be calculated
from the exponential of 

 

β

 

 (e

 

β

 

) and used to get rigorous interpretations
of covariate effects (Collett 2003; Murray 2006). For a continuous

 

X

 

 variable, an HR equal to 1·8, for example, indicates that the risk
of leaving increases 1·8 times (80%) per unit of 

 

X

 

. For a categorical

 

X

 

 variable with two or more levels, where the first level, for example,
is considered the base level, an HR equal to 0·6 indicates that the
risk of leaving when 

 

X

 

 assumes that level is 0·6 times (40% lower) the
risk of leaving when 

 

X

 

 is equal to the base level. An HR greater than
one represents a higher risk of leaving, while an HR lower than one
is interpreted in the opposite way. Using this approach, the hazard
ratios can be used to infer habitat selection, under the assumption
that lower risk of leaving correspond to increased preference (affinity)
for a given habitat condition.

 

PREDICTING

 

 

 

HABITAT

 

 

 

USE

 

Once 

 

β

 

 coefficients are estimated for equation 1, survival functions,
which describe the probability of being in an area longer than a time

 

t

 

, can be obtained. The estimated survival function for a given 

 

i

 

th
individual is given by:

where 

 

x

 

i

 

 is the vector of values of the explanatory variables for the

 

i

 

th individual, 

 

b

 

 is the vector of estimated coefficients (from equation 1)
and 

 

s

 

0
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) is the baseline survivor function. (cf. for instance Collett
2003). Since 

 

s

 

i

 

(

 

t

 

) predicts the probability of using an area longer
than a time 

 

t

 

 under a given set of variables 

 

x

 

i

 

, it can be used as a
predictive measure of the intensity of use of that area. Survival
functions 

 

s

 

i

 

(

 

t

 

) can be predicted for example for an individual in
different locations with specific values of explanatory variables. The
estimated probability of staying in those locations longer than a
given time 

 

t

 

 (e.g. longer than 24 h) can be extracted from these
functions. If desired, the obtained values can be plotted to obtain a
cartographic prediction of expected habitat-use intensity.
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The ringed seal is an arctic species that usually spends winter and
spring in areas of annually formed sea ice (fast ice) inside fjords and
bays (McLaren 1958; Lydersen & Gjertz 1986). Females give birth
inside snow lairs in March–early April; mating takes place about 1
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month later (Lydersen 1998). Following mating, ringed seals use the
remaining annual sea ice as a platform for moulting (Smith 1987;
Lydersen 1998). In summer, when the moulting season is over and
the annual sea ice has melted, ringed seals leave coastal breeding and
moulting areas to spend the rest of the year elsewhere. Ringed seals,
similar to most ice-breeding seals, are quite nomadic for much of the
year, unlike coastal seals (e.g. grey Halichoerus grypus or common
seals Phoca vitulina) that are colonial and return to familiar, fixed
locations on a regular schedule outside the breeding season. The
present study uses a data set consisting of satellite-tracking locations
from 18 ringed seals that were tagged in Svalbard, Norway, after
the moulting seasons of 2002 and 2003 (Supplementary Material
Table S1). It is a subset of an original data set consisting of 22 seals,
for which two types of movements were observed (inshore and
offshore trips; Freitas et al. 2008a). The present study only presents
coastal movements collected between August and December of 2002
and 2003. Tagging methods and other details regarding the satellite-
relay data loggers (SRDLs) used on the ringed seals can be found in
Lydersen et al. (2004). The SRDLs were programmed to send data
whenever possible, without duty cycling.

The white whale is also an arctic species. This species can be found
in coastal and estuarine areas and in some seasons also in offshore
areas, sometimes along ice-edges; large-scale movement patterns
seem to vary markedly among populations from different regions
(Smith & Martin 1994; Richard, Heide-Jørgensen & St Aubin 1998;
Richard, Martin & Orr 2001; Lydersen et al. 2001). The data set
used here consists of satellite-tracking locations for 12 adult animals
tagged in Svalbard from 1997 to 2001 (Table S1). Field methods and
tag specifications can be found in Lydersen et al. (2001, 2002). As
for the ringed seals, SRDLs deployed on the white whales were set
to send data at any time, with no duty cycling.

Both ringed seal and white whale satellite locations were filtered
using the algorithm described in Freitas et al. (2008b) and available
at the  software package ‘argosfilter’ (http://cran.r-project.org/;
function sdafilter with all default settings). Filtering aimed to
remove locations requiring unrealistic swimming speeds (> 2 m s–1)
and unlikely turning angles (> 165 degrees or > 155 degrees, depend-
ing on the length of such path deviations). The post-filter paths had
a mean (± SE) distance between locations of 3·5 ± 0·07 km. White
whale paths had a mean distance between locations of 3·9 ± 0·04 km.
Mean time between locations was 1·6 ± 0·28 h for ringed seals and
1·2 ± 0·06 h for white whales.

FPTs were then calculated from the filtered tracks, at 5-km
intervals. For ringed seals, FPTs were calculated for radii ranging
from 5 to 100 km, at 5-km increments from 5 to 20 km and 10-km
increments thereafter. FPTs for white whales were calculated for
radii ranging from 5 to 80 km, at 5-km increments. The variance of
FPT (log-transformed) was then plotted for each individual as a
function of radii, in order to find the radius of maximum variance.
This radius corresponds to the spatial scale at which animals con-
centrate their search effort (Fauchald & Tveraa 2003), and it is also
the scale that best differentiates between low FPT areas (transitory
areas) and high FPT areas (intensive search areas). Although the
scale may vary among different individuals, finding a common
spatial scale SR (Fauchald & Tveraa 2006) is recommended. This is
because all estimates derived from the hazard and survival functions
must be scaled to a specific unit area. The radius corresponding to
the mean maximum variance is a natural choice for a common SR.
This was found to be 10 km for ringed seals and 15 km for white
whales; both values corresponded to distinct peaks in the mean
variances (Fig. 1). In cases of flat or multi-modal variance profiles,
there may be a need to stratify data and analyse individuals separately

with different scales and associated ecological characteristics (e.g.
ringed seals with different large-scale movement tactic; see Freitas
et al. 2008a).

A set of explanatory variables that could potentially influence
FPTs was obtained for the same locations where FPTs were calculated.
These included: sea bottom depth; distance to the coast; and distance
to the nearest glacier front. Additionally, sea surface temperature
was recorded for ringed seals and presence or absence of sea ice for
white whales. No sea ice information was available for the coastal
areas where the ringed seal tracks were obtained. Seabed depths
were extracted from 2·5 km resolution grid data from IBCAO
(International Bathymetric Chart of the Arctic Ocean, Version 1·0,
2001). Distances to the coast and to the nearest glacier front were
calculated from digital maps produced by the Norwegian Polar
Institute (updated using aerial photographs of glacier fronts and
coastlines taken from 1993 to 1998). Sea surface temperatures were
obtained from the temperature data collected by the ringed seals
themselves (see Lydersen et al. 2004). Temperatures, collected at
irregular points along the seals tracks, were linearly interpolated to
the positions of interest (5-km intervals along the tracks of the
seals). The presence or absence of sea ice along the white whale

Fig. 1. Mean variance (±SE) in log-transformed first-passage time
(FPT) as a function of the radius for 18 ringed seals satellite-tracked
in Svalbard in 2002 and 2003 (a), and for 12 white whales tracked in
Svalbard between 1997 and 2001 (b). The peak in variance occurred
at the radius of 10 km for ringed seals and 15 km for white whales.

http://cran.r-project.org/


1216 C. Freitas et al.

© 2008 The Authors. Journal compilation © 2008 British Ecological Society, Journal of Applied Ecology, 45, 1213–1220

tracks was obtained from daily sea ice maps produced by the
Norwegian Meteorological Institute. These charts are constructed
using DMSP/SSM/I satellite data having a resolution of 25 km,
NOAA/AVHRR satellite data with a 1·5-km resolution and
observations from ships and aircraft.

Using FPTs at the SR radii as survival times, and the environmental
variables listed above as explanatory variables, mixed-effects CPH
models were fitted. Standard fixed-effects CPH models were also
fitted for comparison. Although FPTs and environmental variables
were calculated at intervals of 5 km along the individual tracks, only
a subset of those locations, at intervals equal to SR was used. We
recommend not using intervals larger than SR because this could
result in high FPTs being missed (unless the highest FPTs are
previously selected, as performed by Suryan et al. 2006). On the
other hand, the use of smaller intervals, especially smaller than the
resolution of the environmental data (2·5 km in this case) would
cause serial autocorrelation in the data. This latter problem appeared
not to be prevalent when using intervals equal to the SR radii.

All possible combinations of variables were used during model
selection, since the number of explanatory variables was not high.
The following interaction terms were also considered for white
whales: depth × presence of ice; distance to coast × presence of ice;
and distance to glacier × presence of ice. These interactions were
considered in order to investigate whether FPTs at different depths,
distances to the coast and distances to glaciers were different
depending on whether sea ice was present or not.

Selection between the candidate models was done using the AIC
corrected to the effective sample size (AICc)

where n is the sample size (see Burnham & Anderson 2002), in this
case the total number of FPT locations. AICc values in the mixed-
effects CPH models were calculated using penalized log likelihoods
(as log(L)), which are the log likelihoods from the standard CPH
model, treating β and b as ordinary covariates minus a quadratic
penalty on b (see Pankratz, de Andrade & Therneau 2005). In addition,
penalized degrees of freedom were used as the number of parameters
in the model (k). Coefficients of determination (R2) were also

calculated using the penalized log likelihoods. The assumption of
proportional hazards, required by CPH models (see Therneau &
Grambsch 2000; Collett 2003), was verified from fixed-effects
CPH models, since it is not yet implemented for mixed-effects
CPH models. This verification was done by checking the scaled
Schoenfeld Residuals, both visually and by testing if their slope was
zero (see Collett 2003). All variables used in the models satisfied this
assumption.

Survival functions [s(t)], predicting the probabilities of using an
area longer than a time t, were also calculated from fixed-effects h(t)
as the calculation of these functions from mixed-effects CPH models
is not yet implemented. In order to do that, a grid with cell size of
2·5 km was created for the area of interest (Svalbard Archipelago)
and all environmental variables used in h(t) were obtained for the
central point of each grid cell i. A si(t) function was then estimated
for each location i. The probability of being in the surrounding SR
kilometres for longer than 24 h [si(24)] was extracted from each
survival function si(t) and plotted on a map, in order to generate a
cartographic prediction of habitat-use intensities for those areas.
Survival functions and CPH models were fitted using  software
(packages kinship and survival).

Results

RINGED SEAL HABITAT USE

The ranking of  alternative models (mixed-effects CPH
models) for the ringed seal data set showed that habitat use
was significantly affected by distance to glaciers, depth,
distance to the coast, as well as time of  year (Supplement-
ary Material Table S2). The best model also included sea sur-
face temperature although its effect was not significant when
taking other variables and individual variability into account
(see confidence intervals in Table 1). Distance to the nearest
glacier front was the variable with greatest influence on habitat
use; this variable explained 34% of the variability in the data
(Table S2). The best model according to the AIC was the fol-
lowing:

AICc L k
k k

n k
   log( )    

(   )
    

,= − + +
+

− −
2 2

2 1
1

Table 1. Estimated coefficients (β), hazard ratios (eβ) and 95% confidence intervals [CI (β)] of the CPH models (with and without random
effects) for the covariates being selected according to AICc for ringed seals (Table S2). Number of locations in each category is also given (N )

Variable N

Random-effects included No random-effects included

β eβ CI (β) β eβ CI (β)

glac (0–5 km) 2945 – – – – – –
glac (> 5–10 km) 880 0·983 2·671 0·88 1·09 1·060 2·885 0·97 1·15
glac (> 10–20 km) 998 0·922 2·515 0·81 1·04 0·932 2·538 1·00 1·25
glac (> 20 km) 543 1·072 2·921 0·91 1·23 1·069 2·912 0·94 1·20
coast 5366 0·014 1·014 0·00 0·02 0·019 1·019 0·01 0·03
depth 5366 0·008 1·008 0·01 0·01 0·006 1·006 0·00 0·01
month (August) 1304 – – – – – –
month (September) 1535 0·301 1·352 0·22 0·39 0·107 1·113 0·03 0·18
month (October) 1555 0·321 1·379 0·21 0·43 0·045 1·046 −0·05 0·14
month (November) 601 −0·207 0·813 −0·35 −0·06 −0·378 0·685 0·50 −0·25
month (December) 371 −0·700 0·496 −0·87 −0·53 −0·732 0·481 −0·88 −0·58
temp 5366 −0·011 0·989 −0·04 0·01 −0·036 0·964 −0·05 −0·02

Model abbreviations: glac is distance to nearest glacier front; coast is distance to the coast (km); depth is sea bottom depth (m); month is the 
calendar month and temp is sea surface temperature (°C).
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h(t) = exp(βi glaci + 0·014 coast + 0·008 depth 
+ βj monthj – 0·011 temp + b) h0(t),

where glaci is the distance to the nearest glacier in the i
category, coast is the distance from the coast (km), depth is the
water depth (m), monthj is the time of year in the j category
(month), temp is sea surface temperature (°C) and b is the
per-individual random effect. All β coefficients for models
with and without the random effects are presented in Table 1.
The same best model structure was found in both cases, and in
general, there was good consistency between β coefficients
(Table 1). The biggest difference between the model types
concerned the effect of sea surface temperature, which appeared
to be much weaker and uncertain in the mixed-effects than in
the fixed-effect model (Table 1). Fitting separate fixed-effects
models to individual seals (not shown here) revealed that this
discrepancy was due to contradictory responses among the
individual seals to sea surface temperature. Apparently, this
discrepancy was, to some extent, extracted by the random-
effect term of the mixed model.

Based on the estimated coefficients (Table 1) several
quantitative inferences could be made regarding ringed seal
habitat selection. The risk of leaving an area was ~2·5–2·9
times higher when seals were located at more than 5 km from
a glacier front than when this distance was less than 5 km
(Table 1). For constant distances from a glacier, the risk of
leaving an area increased with distance from the coast (at a
rate of 14% 10 km−1) and with water depth (at a rate of 8%
10 m−1). Lower risks of leaving an area were observed in
November and December relative to August (18·7% lower in
November and 50·4% lower in December), while higher risks
for leaving were found in September (35·2% higher) and
October (37·9% higher) in relation to August.

The most parsimonious mixed-effects CPH model for
ringed seals explained 40·9% of the variability in the data from
all animals (Table S2). The variance component attributed to
individual variability (b) was 0·271. The standard deviation of
the per-individual random effects (√0·271 ≈ 0·521), indicates
that the average spread of  relative risk of  leaving among
individuals is e0·521 ≈ 1·68, meaning that the per-individual
variability in the risk of leaving is on average 68% higher or
lower than the overall risk.

WHITE WHALE HABITAT USE

The ranking of alternative models (Supplementary Material
Table S3) and model coefficients (Table 2) indicate that white
whale FPTs were affected significantly by distance to glacier
fronts, depth and presence of sea ice. Two models had similar
fits to the data (see AICc values and Akaike weights on
Table S3). An additional interaction term included in one of
the models (distance to the coast × presence of ice) did not
seem to affect the fit of the model. Distance to the coast itself
did not have a significant effect upon the risk of leaving when
other variables were taken into account (see confidence inter-
vals for this variable in Table 2). Distance to glacier fronts was
again the most important explanatory variable, accounting
for 21% of the variability (Table S3). The best model explained
27·5% of the variability in the data. Similar to ringed seals,
lower risk of leaving was found in areas located less than 5 km
from a glacier front. Probabilities of leaving increased 2·1
times in areas 5–10 km away from a glacier, 2·9 times when
10–20 km from glaciers and 3·7 times when the whales were at
distances greater than 20 km from a glacier (Table 2). Depth
also significantly affected the risk of leaving, with maximum
preferences being found for depths of less than 10 m (significant

Table 2. Estimated coefficients (β), hazard ratios (eβ) and 95% confidence intervals [CI (β)] of the CPH models (with and without random
effects) for the covariates being included in the selected model for white whales (Table S3). Number of locations in each category is also given (N)

Variable N

Random-effects included No random-effects included

β eβ CI (β) β eβ CI (β)

glac (0–5 km) 2116 – – – – – –
glac (> 5–10 km) 669 0·76 2·13 0·64 0·87 0·77 2·15 0·65 0·88
glac (> 10–20 km) 625 1·07 2·91 0·94 1·19 1·02 2·76 0·89 1·14
glac (> 20 km) 410 1·31 3·71 1·15 1·48 1·30 3·69 1·15 1·46
depth (0–10 m) 2161 – – – – – –
depth (> 10–20 m) 431 0·58 1·78 0·45 0·70 0·67 1·95 0·55 0·79
depth (> 20–50 m) 576 0·49 1·63 0·36 0·61 0·54 1·72 0·42 0·66
depth (> 50 m) 652 0·23 1·26 0·06 0·39 0·30 1·35 0·15 0·46
coast 3820 0·00 1·00 −0·01 0·02 0·00 1·00 −0·01 0·01
no_ice 3116 – – – – – –
ice 704 0·42 1·52 0·23 0·61 0·82 2·26 0·64 0·99
glac (> 5–10 km) × ice 144 −0·81 0·45 −1·08 −0·53 −0·79 0·45 −1·06 −0·52
glac (> 10–20 km) × ice 183 −0·94 0·39 −1·25 −0·63 −0·83 0·44 −1·14 −0·53
glac (> 20 km) × ice 166 −1·10 0·33 −1·48 −0·71 −1·02 0·36 1·40 −0·65
depth (> 10–20 m) × ice 37 −0·39 0·68 −0·79 0·01 −0·58 0·56 −0·98 −0·18
depth (> 20–50 m) × ice 131 −0·60 0·55 −0·88 −0·32 −0·61 0·55 −0·88 −0·33
depth (> 50 m) × ice 392 −0·31 0·73 −0·65 0·02 −0·29 0·75 −0·61 0·03

Model abbreviations: glac is distance to nearest glacier front; depth is sea bottom depth; coast is distance to the coast (km); no_ice is absence 
of sea ice; and ice is presence of sea ice.
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increases in the risk of leaving were found for increased
depths; see Table 2). The presence of  sea ice also affected
habitat use in this species, with animals showing increased
risk of leaving in ice-covered waters (Table 2). However, areas
of deeper water, far from glaciers had lower probabilities of
leaving when ice-covered compared to ice-free areas (Table 2).
The β coefficients for mixed-effects and fixed-effects models
(Table 2) show good consistency and the same model structure
was selected according to AICc. The variance component
attributed to individual variability (b) was 0·087 in this data
set, meaning that the individual-specific relative risk of
leaving was on average only 34% (1·34 times) higher or lower
than the average risk (e√0·087 ≈ 1·34). Animals tagged in the
same year might belong to the same social group (see tagging
dates in Table S1). In order to verify whether the low inter-
individual variability documented was a result of group
behaviour, the same CPH model was fitted using year as
random effect. The variance component attributed to year
was 0·095; year-specific relative risk of  leaving was thus
1·36 times higher or lower than the average risk (e√0·095 ≈ 1·36).
Variability between years (~social groups) and between
individuals was therefore approximately the same.

HABITAT-USE PREDICTIONS

Predictions of habitat-use intensity can be made based on the
CPH models. Figure 2 depicts predicted habitat-use intensities

for white whales within coastal waters of Svalbard, based on
water depth, distance to the nearest glacier front and distance
to the coast. Ice is assumed to be absent. Habitat-use inten-
sities are given as probabilities of being in the surrounding
15 km for more than 24 h. As expected from the CPH model,
higher probabilities are observed in shallow areas, close to
glacier fronts. Figure 3 presents the complete survival curves
(probabilities of being in the same 15 km radius area for more
than 1 to 350 h), for white whales in two areas located at
distinct distances from glacier fronts.

Discussion

The modelling approach presented in this study quantifies
habitat use based on an animal’s response to conditions it has
actually experienced, thus avoiding the difficulties of defining
availability. This analytical framework is especially useful for
animals inhabiting heterogeneous, dynamic environments,
where conditions available globally are unlikely to be known
by animals. In such systems, short-term experience of the
actual conditions seems to be the ultimate factor influencing
small-scale movement patterns (Fauchald 1999; Fortin 2003;
Hays et al. 2006). In other, more stable and predictable
systems, long-term experience can lead animals to use areas
repeatedly where food resources or mates have been abundant
before (e.g. Born et al. 2005). In such cases, methods that
compare used locations with unused, available ones may be
more appropriate.

In this study, we used FPTs as a means to assess habitat use,
based on the assumption that time spent in an area reflects the
presence of resources (e.g. food, resting platforms, cover that
provides predator protection, etc.) that makes that particular

Fig. 2. Predicted habitat-use intensities map for white whales,
displaying the estimated probabilities of an animal being in the
surrounding 15 km for more than 24 h. Predictions were based on the
depth, distance to the coast and distance to the nearest glacier front
of the central point of each grid. Grid size is 2·5 km. Glacier fronts are
shown in white.

Fig. 3. Survival curves, with 95% confidence intervals, showing the
estimated probabilities of white whales remaining in the surrounding
15 km for more than 1 to 350 h. The uppermost curve refers to areas
located up to 5 km from the nearest glacier front and the other to
areas located at distances greater than 20 km. Distance to the coast,
depth and ice are, respectively, 500 m, 10 m and absent in both cases.
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area preferred for some unit of time (see Fauchald & Tveraa
2003 and Buskirk & Millspaugh 2006). An interesting,
alternative measure of  habitat-use intensity is Utilization
Distributions (UDs, Marzluff et al. 2004; Millspaugh et al. 2006).
UDs are calculated through kernel or other point-density
modelling methods, which use the number of points in an area
and a smoothing function to estimate the probability of using
each area. The use of kernel methods can be advantageous
over FPTs for study areas where habitat conditions are very
patchy, because telemetry errors can lead to erroneous classi-
fication of the habitat conditions actually used by animals.
However, the problem of defining availability is still present
when using UDs if  all grid points within the home range
(study area or other spatial area under consideration) are
treated as available (Millspaugh et al. 2006). In addition,
since FPTs are a direct measurement of habitat-use intensities
and not an estimated probability, they are not dependent on the
parameters used to produce the UDs, such as the smoothing
factor in the kernels. Different smoothing factors used in the
kernels can result in very different habitat-use probabilities
and home range limits for the same data set (see Worton 1989;
Getz & Wilmers 2004; Millspaugh et al. 2006). Additionally,
kernel methods, at least those based on Euclidean distances,
perform poorly in areas where the study species are located
along edges (such as coast lines), corridors, or in areas
encircling unusable habitats (such as islands for most marine
animals and lakes for terrestrial species, see Getz & Wilmers
2004). In such conditions and in cases where long and fast
movements are interrupted with Area Restricted Searches
(ARS; Benhamou 1992), FPTs are expected to provide a better
measure of habitat-use intensities.

FPTs have been used previously to model habitat use, using
Compositional Analysis (Pinaud & Weimerskirch 2005) and
GLMs (Suryan et al. 2006). The first technique is useful when
investigating the effect of single, categorical variables on
FPTs. The use of GLMs gives the possibility of integrating
random effects (see Pinheiro & Bates 2000), similar to the
present study. However, the nature of FPT data (and any other
time–event variable) is such that they are likely to severely
violate the requirements of  linearity of  the predictors and
parametric distribution of the residuals. A possible approach
might be to transform FPTs into a binary variable and model
this new variable (that now has a binomial distribution) with
a binomial GLM with an appropriate link function. In this
case, models would compare areas of high FPT (intensive use)
and low FPT (transitory areas), in a way that is similar to
what is usually done with presence–absence data obtained
from surveys or telemetry data (e.g. Cañadas et al. 2005; Gillies
et al. 2006). The main disadvantage of binary classification of
a continuous time variable is, of course, loss of information.
There is also a potential problem with subjectivity in choice
of classification criteria. Additionally, no proper estimates of
displacement risks are obtained in these analyses.

The inclusion of a random-effect term in CPH models
(Pankratz, de Andrade & Therneau 2005) represents a powerful
tool for dealing with data collected from individuals whose
intrinsic behaviours differ. By quantifying this individual-

level heterogeneity in terms of random effects, the model
more appropriately reflects the structure of the data. For
instance, the problem of unbalanced sample sizes, because of
the typical uneven number of  observations obtained per
individual in telemetry studies, is overcome. Without taking
the inherent individual-level variability into account, animals
having more locations could bias the results. However, the
development of mixed-effects CPH models is very recent and
in many ways, it is still in its infancy. Future developments
that would be very welcome include options for including
random β coefficients (i.e. random slope models) and temporal
covariance terms. A preliminary precautionary measure to
deal with serially correlated data is to ensure that the temporal
resolution of  the data is sufficiently coarse so as to yield
independent residuals. Moreover, estimations of  survival
functions from random-effects CPH models are not yet
implemented in available software. However, in the present
study, the high degree of  consistency of  coefficients of
models with and without random effects, allowed us to use the
fixed-effects model for approximate predictions of popula-
tion space use.

The modelling of  FPTs with CPH models in this study
enabled us to measure the responses of ringed seals and white
whales to a set of habitat variables. Depending on the species
and context, such responses can reflect distinct biological
preferences and needs. The strong preference for areas
containing glacier fronts by ringed seals and white whales, for
example, is likely to be related to the high productivities of
these areas (see Lydersen et al. 2001) and the concomitant
availability of food for these predators in these locations. The
temporal changes observed for ringed seal habitat use, with
decreased risks of leaving being observed as winter approached,
reflect the need for ringed seals to construct and maintain
breathing holes as the fast ice forms in the coastal waters of
Svalbard. In the case of white whales, sea ice formation along
the shore seems to displace them from the coast to areas
where there is open water.

In addition to providing inferences about habitat selection
based on the estimated parameters, CPH models can also be
used for predicting population space use, given the sample of
individuals included and the spatio-temporal sampling
frame. Such predictions can be particularly useful for applied
purposes, for example, as a basis for species conservation
plans and reserve selection. Although this novel combination
of methods was exemplified here for two marine mammals, it
is expected to have wide applicability in studies of habitat use
of other highly mobile animals both in marine and terrestrial
systems.
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