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Remedies for pseudoreplication

Russell B. Millar∗, Marti J. Anderson

Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand

Abstract

Pseudoreplication is the failure of a statistical analysis to properly incorporate the true structure of randomness present in the
data. It has been well documented and studied in the ecological literature but has received little attention in the fisheries literature.
Avoiding pseudoreplication in analyses of fisheries data can be difficult due to the complexity of the statistical procedures required.
However, recent developments in statistical methodology are decreasing the extent to which pseudoreplication has to be tolerated.
Seven examples are given here, beginning with simple design-based remedies and progressing to more challenging examples
including the model-based remedies of mixed-effects modelling, generalized linear mixed models, state-space models, and
geostatistics.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Pseudoreplication is the incorrect modelling of ran-
omness, and is a notoriously rampant affliction in
cological field experiments (Hurlbert, 1984; Heffner
t al., 1996). However, it is not widely recognized that
seudoreplication is also a widespread affliction in the
nalysis of fisheries data. This may be because the ter-
inology of manipulative field experiments is not al-
ays terribly meaningful in the fisheries context, and
ecause the complex and nonlinear structure of many
sheries models requires a different kind of remedy for
seudoreplication.

∗ Corresponding author. Tel.: +64 9 373 7599;
ax: +64 9 373 7000.

E-mail address:r.millar@auckland.ac.nz (R.B. Millar).

The seven examples herein demonstrate
pseudoreplication can be eliminated (or at l
ameliorated) by appropriate consideration of
structure of the randomness inherent in the data.
common feature of these examples is lack of inde
dence in the data, in the sense that the observa
cannot be truly considered a simple random sam
from the population of interest. The first two a
simple design-based remedies of a generic natur
pseudoreplication is avoided by basing inference
groupings of the data that can be considered a si
random sample. This simple approach is insuffic
to handle the more complex structure of the data
sented in the remaining five examples. In particu
Examples 3–6 employ the concept of random effec
a remedy for pseudoreplication, albeit in very differ
ways.
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A mixed-effects model is one that includes both
fixed and random effects. The so-called fixed effects
could correspond to the effect of treatments, but more
generally are parameters associated with the system
under study (e.g. average density, growth rate, instan-
taneous rate of natural mortality). Mixed-effects mod-
els use the concept of random effects to emulate the
randomness inherent in the data. State-space models
also use random effects, but in the context of time se-
ries data. The complex details of fitting mixed-effects
and state-space models are not covered here, and can
be found in the referenced literature.

Mixed-effects and state-space models have been in
use for several decades, but until recently have been
largely restricted to the context of normal linear models
due to the computational difficulty of applying them
more generally. Thus, these models have not previously
been of great practical relevance to the field of quan-
titative fisheries modelling, where it has been much
easier to turn a blind eye to pseudoreplication or at best
to use an ad-hoc fix. However, since the early 1990s,
the understanding of such models and the software for
fitting them has improved to the point where they can
now be applied to many fisheries models. This is espe-
cially true of fisheries models that are fitted under the
Bayesian paradigm (Punt and Hilborn, 1997) because
the Bayesian software uses Monte Carlo computer
methods that do not require simplifying assumptions
for tractability (e.g.Meyer and Millar, 1999). Indeed,
there are many historical data-sets in the statistical liter-
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failure to acknowledge the sequential measurement of
multiple observations on the same treatment replicate.
Many of Hurlbert’s examples of simple pseudoreplica-
tion arise due to observations not being independent in
space (due to clustering, say), and this will be denoted
here as simple-spatial pseudoreplication. Simple
pseudoreplication, in its various forms, is extremely
common and its consequence is effectively an inap-
propriate inflation of the ‘effective sample size’, and
this can lead to underestimates of standard errors and
spurious statistical significance (i.e. an inflated Type
I error rate). Sacrificial pseudoreplication works in
the opposite direction—it sacrifices statistical power
(i.e. inflates the Type II error rate) because it fails to
recognize pairing or grouping structure in the data.

Hurlbert’s definitions of pseudoreplication are
somewhat limited in the context of fisheries models.
Many fisheries experiments are mensurative (i.e. non-
manipulative) and complex, and cannot be expressed
using the vernacular of experimental design (i.e. using
terms such as ‘treatment’ and ‘experimental unit’). For
this reason, the terms temporal pseudoreplication and
spatial pseudoreplication will be used here in a gen-
eral sense, without assuming them to be special cases
of simple pseudoreplication. Here, the working defini-
tion of pseudoreplication will be the use of inferential
statistics when, at some level of the design or model,
independence is incorrectly assumed.

In the first two examples, the experimental design
is relatively straightforward and pseudoreplication
c en-
d sed
i ond
e epli-
c the
b aced
q sents
a atial
p d at
d tude
o ge
d rest.
E ysis
( is
a and
6 final
e dy to
a

ture that have received comprehensive mixed-ef
nalysis within the Bayesian paradigm, but have
roved too difficult for the equivalent classical mixe
ffects analysis (Meyer and Millar, 1999; Millar
004).

Hurlbert (1984)defined pseudoreplication as ‘t
se of inferential statistics to test for treatment eff
ith data from experiments where either treatment
ot replicated (though samples may be) or experim

al units are not statistically independent’. Hurlb
dentified three common forms of pseudoreplicat
imple, sacrificial, and a third which he called temp
ut here will be called simple-temporal to distingu

t from more general forms of temporal pseudorepl
ion. Simple pseudoreplication occurs when an ana
ails to acknowledge that multiple observations h
een taken on a single replicate of a treatm
imilarly, simple-temporal pseudoreplication is
an be avoided simply by identifying the indep
ent experimental units and applying design-ba

nference solely to these. In particular, in the sec
xample (two-stage sampling), spatial pseudor
ation is remedied by considering transects as
asic experimental unit rather than the evenly-sp
uadrats on the transects. The third example pre

design-based random-effects remedy to sp
seudoreplication when the data are collecte
ifferent spatial scales. In this example, the magni
f variability in multivariate community assembla
ata at different spatial scales was of direct inte
xample 4 looks at sequential population anal

SPA). It includes a temporal random effect and
n example of a state-space model. Examples 5
use generalized linear mixed models, and the

xample briefly motivates geostatistics as a reme
void pseudoreplication in spatial data.
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Example 6 is covered in greatest depth and includes
analyses of data from a size selectivity experiment. It
demonstrates that simple pseudoreplication may not
necessarily be detected by naive goodness of fit tests,
and that incorrect inference would result.

The sequential population analysis in Example 4 is
a particularly potent reminder of the unfortunate con-
sequences of pseudoreplication. Indeed, the following
excerpt fromMyers and Cadigan (1995a)shows that
pseudoreplication compromised the ability of SPA to
provide sound inference about the abundance of cod
on the Grand Bank of Newfoundland. This was once
the largest cod fishery in the world, but collapsed in the
early 1990s.

An analysis of traditional catch-at-age data in con-
junction with research surveys, which assumed that
research survey estimation errors of abundance by age
and year were independent, led assessment biologists
to the conclusion that the collapse was caused by
an increase in natural mortality in the first half of
1991. We constructed a statistical model to test this
hypothesis. The results do not support the hypothesis
. . .. We also demonstrate that the usual assumption
that estimation errors from research trawl surveys
are independent is not valid, and can lead to invalid
inference and unreasonable estimates of abundance.
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6. Size selectivity analysis (simple).
7. Abundance surveys (spatial).

2.1. Example 1: paired t-test

One of the standard traps for undergraduate students
is the mistake of analyzing paired data as though they
were unpaired. In the case of normally distributed data,
this would be the use of a two-samplet-test instead of
a pairedt-test. The two-samplet-test is not valid be-
cause the pair of observations made on an experimental
unit (i.e. subject) are not independent. Moreover, the
two-samplet-test sacrifices statistical power because
differences between the experimental units will inflate
the estimates of the standard error within each treat-
ment group and thus may obscure between-treatment
effects. Indeed, in the terminology ofHurlbert (1984),
this is an example of sacrificial pseudoreplication.

The pairedt-test assumes that the within-pair dif-
ferences in measurements are a simple random sam-
ple and applies a one-samplet-test to these differ-
ences. This design-based remedy is particularly ele-
gant, because it avoids the need to model the actual
data (the pairs of measurements from each experimen-
tal unit) and therefore eliminates any need to explicitly
model between-subject variability. The model is simply
that the differences are an i.i.d. sample from a normal
distribution.

2.2. Example 2: two-stage sampling of shellfish
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. Examples

The first example is generic and is not based
ny particular application. The remaining six exa
les are from the fisheries related literature and
rimary purpose is to demonstrate that fisheries
igns and models commonly make questionable
umptions of independence, and to show how the
sis can be implemented to eliminate or amelio
seudoreplication.

The seven examples are:

. Paired data (sacrificial).

. Two-stage intertidal sampling of shellfish (spati

. Community assemblage analysis at different sp
scales (simple-spatial).

. Sequential population analysis (simple, tempor

. Comparison of fish density inside and outside a
rine reserve (simple).
Morrison et al. (1999)implemented a two-stag
ampling scheme for intertidal shellfish and app
t to several beaches in the Auckland region of N
ealand. At each beach, the first stage was the ran
llocation of transects and the second stage wa
igging of four 0.1 m2 quadrats at 10 m intervals alo
ach transect. (The first stage of sampling was stra
ccording to prior knowledge of shellfish density,

his will not be considered here.)
The quadrats are clearly not a simple random s

le from the beach, because the inclusion of a qua
n the sample guarantees that there will be at
ne other quadrat within a 10 m radius.Morrison
t al. (1999)appropriately noted that the quadrats
seudoreplicates and that the transects are the ba
erimental unit. Their inference was based on the
rage density within the transect. This also mitig



400 R.B. Millar, M.J. Anderson / Fisheries Research 70 (2004) 397–407

criticisms about the non-randomness of the system-
atic sampling of quadrats within each transect because,
for the purpose of inference, the ‘observations’ con-
sist of a simple random sample of measured transect
densities.

2.3. Example 3: underwater visual counts of fish

Anderson and Millar (2004)used a multilevel ex-
perimental design to survey fish abundance on inshore
reefs off the north-eastern coast of New Zealand. The
primary objectives were to assess differences in species
assemblages between urchin-grazed barrens and kelp
habitats at different spatial scales, and thus the habi-
tats can be considered treatments. Four locations, sepa-
rated by hundreds of kilometers, were sampled (Fig. 1).
Within each location, fish were counted at each of four
different randomly located sites, separated by hundreds
to thousands of metres. At each site, the two habitats
were sampled: kelp forests (i.e. areas characterised by
relatively dense cover of the kelpEcklonia radiata)
and ‘barrens’ (i.e. areas characterised by little or no
macro-algal cover and dominated by the grazing urchin
Evechinus chloroticus). Within each habitat, divers on
SCUBA did a visual survey by swimming ten (hap-
hazardly chosen) 25 m transects and identifying and
recording the number of each species of fish observed
within a distance of 2.5 m on either side of the transect.

The sampled transects are clearly not a simple ran-
dom sample of all possible 25 m transects that could
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For approximately normally distributed data, the
above design can be formally analyzed using a multi-
way mixed-effects ANOVA with location, site, and
transect as appropriately specified random-effects and
habitat as a fixed effect, and with appropriate interac-
tion terms. However, the primary focus ofAnderson
and Millar (2004)was to model the multivariate as-
semblage data recorded from each transect. A mixed-
effects ANOVA-type model was deployed, but using
design-based permutation to partition the variability in
a dissimilarity matrix, rather than using a model based
on assumptions of multivariate normality (Anderson,
2001a, 2001b). They found that variability in species
assemblages was highest at the scale of individual tran-
sects, and that variability from site to site and from
location to location was comparable. Moreover, the ef-
fect of habitat was not uniform and it varied between
locations and between sites within locations.

2.4. Example 4: sequential population analysis

If Na,y is the number of fish of agea at the start
of yeary andCa,y is the catch (assumed known) taken
during yeary, then a typical sequential population dy-
namics model is of the form

Na0,y = Ry (1)

Na,y = Na−1,y−1 e−m − Ca−1,y−1 e−m/2, a > a0
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ave been swum over kelp or barren habitat off the
oast of New Zealand. Instead, sampling takes pla
hree levels (i) firstly, a sample of locations, (ii) with
ach location a sample of sites, and (iii) within e
ite a sample of transects (stratified by habitat ty
uantification of the relative magnitude of the spa

ariability inherent in these three levels of sampl
nd any interaction between habitat effect and sp
cale, were both fundamental research objective
nderson and Millar (2004). Hence the analysis need

o formally incorporate the three levels of spatial v
bility, and the effects of habitat and interactions.
nalysis that ignored the design (say, by simply c
ining the species assemblage data across all tran

or each habitat) would not only be guilty of simp
seudoreplication but would also be failing to util

nformation the data contain about spatial variabilit
ssemblages.
(2)

herem is the natural mortality,a0 is the age of re
ruitment, andRy is the recruitment in yeary. Eq.(2) is
erived from assuming that fishing occurs in the mid
f the year.

The data are a rectangular table of relative numb
t-age, Ia,y. For example, Table 1 ofMyers and
adigan (1995a)lists the average catch-per-surv

ow of Grand Banks cod for age-classesa = 3, . . ., 12
nd survey yearsy = 1978,. . ., 1993. For simplicity, i
ill be assumed here that the survey takes place a
tart of the year (this is not a crucial assumption,
yers and Cadigan (1995a)). Then, the data are typ

ally modelled as lognormally distributed accordin
he equation

a,y = QNa,y eεa,y (3)



R.B. Millar, M.J. Anderson / Fisheries Research 70 (2004) 397–407 401

Fig. 1. Map of northeastern New Zealand, showing the locations and sites sampled byAnderson and Millar (2004). [Reprinted with permission
from Elsevier.]

where parameterQ denotes the ‘relative catchability’
of the survey gear, andεa,y are assumed to be i.i.d.
normal.

The sequential population analysis is modelling a
table of relative numbers-at-age, with age and year in-
dexing the rows and columns of the table. In this sense,
age and year can be considered pre-assigned row and
column treatments, with the effects of these treatments
modelled via Eqs.(1) and (2). Equivalently, it may be
more natural to consider cohort and year as the treat-
ments, because each additional year adds another level
to both the year ‘treatment’ and cohort ‘treatment’.

It can therefore be argued that a SPA suffers simple
pseudoreplication because, for year (i.e. treatment)
y, it is the same set of survey tows that is used to
calculate the average catch-per-survey-tow for each
age-class, ages 3–12 in the case of the Grand Banks
cod. Consequently, the data,Ia,y, within each year will
be positively correlated.Myers and Cadigan (1995b)
confronted this pseudoreplication by explicitly
incorporating a random year effect into Eq.(3)

Ia,y = QNa,y eεa,y+εy (4)
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and they provided a computational algorithm for
obtaining maximum likelihood estimates of the model
parameters.

Temporal pseudoreplication arises because it is the
same cohort (i.e. treatment) that is sampled over a num-
ber of years. Eq.(2) is a structural formula describing
the expected decline in size of a cohort due to catch
and natural mortality, but process variability will cause
the actual cohort size to deviate from that expected.
Moreover, the effect of any deviation in (2) necessarily
impacts on the size of the cohort in subsequent years,
which in turn will cause temporal correlation in the data
Ia,y.

The temporal correlation can be modelled by
including random error terms in the population
dynamics equation (2). This form of model is called
a state-space model. Maximum likelihood fits of
state-space models are challenging, but if sufficient
simplifying assumptions are made then they can be
fitted using the Kalman filter (e.g.Sullivan, 1992;
Freeman and Kirkwood, 1995; Kimura et al., 1996).
Bayesian stock assessment modelling does not require
the simplifying assumptions, notwithstanding the
difficulty of obtaining a reliable posterior sample if the
model is overly complex. For example,Meyer and Mil-
lar (1999)describe methodology for fitting nonlinear
and nonnormal state-space surplus production models,
while Millar and Meyer (2000a)provide more detail of
the underlying theory.Millar and Meyer (2000b)fit a
Bayesian state-space sequential population analysis to
t
h
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northwest direction, areas 3–8 being inside the reserve,
and areas 9 and 10 being outside of the reserve in the
southeast direction. Each boat present was assigned to
fish in a specified area in the morning, and assigned to
a different area in the afternoon. The skippers were told
to choose sites ‘haphazardly’ within the assigned area,
and to fish from that location for 30 min. This permitted
a maximum of six sites within an area to be fished by
a boat in any given morning or afternoon session.

A total of 22 boats were involved, but the actual
boats participating on each of the 4 days was never
exactly the same. Only one boat participated through-
out the entire study and 15 boats fished on only 1 day.
Boats fishing on a single day therefore fished in only
two areas, with one exception where the skipper inad-
vertently crossed an area boundary and fished a third
area.

The CPUE data cannot be considered a simple ran-
dom sample. Rather, it could be said that a ‘random’ se-
lection of recreational boats was made, and used on four
‘randomly’ chosen days. Had the data been balanced
with respect to allocation of boats over treatments (re-
serve and non-reserve) and dates then it may have been
possible to devise an elegant reprieve from pseudorepli-
cation (e.g. Example 1), but the data are extremely un-
balanced here. Thus,Millar and Willis (1999)used a
generalized linear mixed model (GLMM) to model the
CPUE data as (overdispersed) Poisson with the four
dates and 22 boats treated as random effects. That is,
the four dates were considered a random sample of
p ndom
s

ly
d ion
t ra-
t ,
M -
M
o
S true
m ’s
(

2

sh-
i o
o s or
he cod data ofMyers and Cadigan (1995a)and show
ow to incorporate the random year effect in Eq.(4).

.5. Example 5: comparison of fish density inside
nd outside a marine reserve

Willis and Babcock (1997)used the catch-per-un
ffort (CPUE) of volunteer recreational fishers a
easure of the relative density of snapper (Pagrus au
atus) within and adjacent to the Leigh Marine Rese
n the northeast coast of New Zealand. The obje
f this study was to estimate the ratio of snapper
ity between the reserve and adjacent non-reserve
Millar and Willis, 1999).

Fishing from small boats was conducted on th
ays of 15 June, 29 June, 7 and 15 December in 1
he region of interest was partitioned into ten ar
ith areas 1 and 2 being outside of the reserve in
ossible dates and the boats were considered a ra
ample of all recreational fishing boats.

Maximum likelihood fits of GLMM’s are extreme
ifficult because calculation of the likelihood funct

ypically requires high dimensional numerical integ
ion (McCulloch and Searle, 2001). For this reason
illar and Willis (1999)used the SAS macro GLIM
IX ( Littell et al., 1996) to fit the GLMM using a form
f pseudolikelihood (Wolfinger and O’Connell, 1993).
oftware is now becoming available that can do
aximum likelihood fits of simpler forms of GLMM

see Example 6 below).

.6. Example 6: size selectivity data

Experiments to estimate the size-selectivity of a fi
ng gear typically involve multiple deployments of tw
r more variants of the gear. In the case of trawl
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traps this might be an experimental gear and a cover or
control gear. For gillnets, several nets of differing mesh
size are typically fished simultaneously. The data con-
sist of the lengths of all fish caught (or a subsample if
the number caught is large) in each of the gear variants
from each deployment.

Analysis of size-selectivity data generally proceeds
by fitting some form of selection curve using maxi-
mum likelihood. For example, the symmetric logistic
curve has become the default standard for trawl se-
lectivity, notwithstanding the need to verify goodness
of fit. The asymmetric Richards curve is typically em-
ployed if the logistic indicates lack of fit. The likelihood
function for the curves is derived using the assumption
that the length frequency data are Poisson distributed,
which is implicitly assuming independence of fish. The
SELECT methodology ofMillar (1992) showed that
maximum likelihood fits can most easily be achieved
by (loosely speaking) modelling the difference in catch
between the gear variants, rather than needing to model
the catches themselves.

Selectivity studies typically suffer from simple
pseudoreplication on at least two levels. The first arises
because the treatment (deployment of the gear) is not
replicated at the level of individual fish. The Poisson
assumption inherent in the likelihood is implicitly say-
ing that the fate of each fish (i.e. capture or escape)
is independent of every other fish. One possible viola-
tion of this independence assumption arises from the
schooling behaviour of fish. This form of pseudorepli-
c and
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Table 1
School prawn catches summed over 19 replicate deployments of a
covered codend

Carapace length (mm) Codend catch Cover catch

6 0 3
7 0 0
8 0 2
9 0 7

10 2 10
11 6 48
12 10 56
13 31 95
14 74 175
15 313 478
16 904 970
17 1227 824
18 1090 450
19 567 136
20 186 19
21 48 0
22 15 0
23 2 0

perimental square-mesh stow net that was deployed
with a fine mesh cover to capture all prawns that es-
caped through the codend (Macbeth et al., in press).
The resulting retention proportions were well fitted
by an asymmetric Richards selection curve (Fig. 2,
Table 2) and, with just two exceptions, the deviance
residuals were less than unity in magnitude. No symp-
toms of pseudoreplication are evident. The fit gives
an estimated carapace length of 50% retention,l50, of
16.2 mm with a standard deviation of just 0.06 mm.

A very different story becomes apparent if the
catches from the individual deployments are examined.
The fitted selection curve and estimated standard devi-
ations are necessarily the same as those obtained from
the fit to the summed data, however it is now clear
that massive extra-Poisson variation is present (Fig. 2,
Table 2). Indeed, the deviance residuals exceeded 5

Table 2
Goodness of fit statistics for the Richards selection curve fitted by
maximum likelihood to the school prawn data

Summed data Individual hauls data

Pearsonχ2 3.0 995.2
d.o.f. 7 99
Overdispersion n.s. 10.1

Only length classes with expected catch exceeding 3 were included.
n.s. denotes not significantly different from unity.
ation is very common in analyses of count data,
esults in extra-Poisson variation. Fortunately, the m
itude of the extra-Poisson variation can be estim

rom goodness of fit diagnostics, and an overdisper
orrection applied (e.g.Millar and Fryer, 1999).

In the majority of selectivity analyses, the len
requency data from all deployments of the gears
ummed and these total length frequencies are
odelled. This is the cause of the second level of sim
seudoreplication. It has been observed in many st

hat selectivity can vary immensely from deploym
o deployment of fishing gear, despite all possible
empts to replicate experimental conditions. This f
f pseudoreplication cannot be adequately amelio
y applying the standard overdispersion correction
xample,Table 1shows carapace length frequency d
f school prawn (Metapenaeus macleayi). These dat
ere summed over 19 replicate deployments of an
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Fig. 2. Selectivity curve fitted by maximum likelihood to the observed retention proportions, and the resulting residual plot. Left column: fit to
the retention proportions obtained from summing the catch data over the 19 replicate deployments. Right column: fit to the retention proportions
observed in each deployment. Note that the fitted selectivity curve is the same in both cases.

in magnitude on 13 occasions and the overdispersion
factor, calculated as the ratio of the goodness-of-fitχ2

statistic divided by degrees of freedom, is estimated to
be 10.1.Millar et al. (2004)used the squareroot of this
overdispersion factor as an ad-hoc correction to the es-
timated standard deviations. Thus, the estimated stan-
dard deviation ofl50 was increased by a multiplicative
factor of 3.2. That is, from 0.06 to 0.2 mm.

The form of the between-deployment variability can
be inspected by performing individual selectivity fits
to the catch data from each deployment.Fig. 3 shows
the estimatedl50’s and selection ranges (SR, the dif-
ference between the lengths of 25% and 75% retention
probability) from individual selection curve fits to the
19 replicate deployments. If the treatment effect (i.e.
selectivity) was the same in each deployment then, be-
cause they each contain the true unknown selectivity
parameter with a priori probability 0.95, the 95% con-
fidence intervals should overlap (with perhaps one or
two exceptions). This appears plausible for SR, but is
clearly not the case for thel50 parameter.

Mixed-effects modelling of between-haul variation
is addressed byFryer (1991)andMillar et al. (2004).
Both of these mixed-effects approaches allow selectiv-
ity parameters (e.g. length of 50% retention) to vary
randomly from haul to haul, but they differ in their
implementation.Fryer (1991)applied linear normal
mixed models to the estimated selectivity parameters
obtained from individual fits from each deployment. In
contrast,Millar et al. (2004)uses the SAS procedure
NLMIXED ( SAS Institute Inc., 1999) to fit a GLMM
directly to all the individual haul data.

2.7. Example 7: biomass surveys

Some biomass surveys use randomized sampling lo-
cations, and are often stratified by a relevant environ-
mental variable, such as depth if a trawl survey (e.g.
Doubleday, 1981). This design-based approach ensures
that the catches at each sampling location are indepen-
dent because the sampling locations are random (Brus
and de Gruitjer, 1997). Thus, the sample mean (by strata
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Fig. 3. Estimated selection curve parameters, and 95% confidence intervals, from 19 replicate deployments of a stow net in a school prawn
fishery.

if applicable) of the observed densities provides an un-
biased estimator of the biomass density, and the sample
variance (by strata if applicable) is an appropriate es-
timator of the true sampling variability of this mean.
Several model-based extensions to this approach exist
and these typically involve using latitude, longitude and
other relevant environmental information to introduce
a structural model for the expected density over the
survey region (e.g.Smith, 1990; Evans et al., 2000) for
the purpose of obtaining a more statistically efficient
estimate of biomass.

Random surveys can be criticized as being ineffi-
cient because they do not guarantee ‘even’ coverage
over the survey region. Systematic biomass surveys of-
fer an alternative whereby sampling locations are (typi-
cally) arranged on regularly spaced and pre-determined
grid points. This type of design can also be advanta-
geous in terms of implementation. However, the obser-
vations at each sampling location are now no longer a
random sample from the population of all possible sam-
pling locations, and hence are not independent. Lack
of randomness also applies to survey data that are col-
lected over a continuous track, as is often the case with
acoustic data. Analyzing such data using design-based
inference would be pseudoreplication.

Systematic biomass surveys can be analyzed in
many ad-hoc ways, a number of which appear to work
quite well (Wolter, 1984). The more formal approach
is to use model-based analysis. This form of spatial
analysis was primarily developed within the field of
g n as
g that
o the
a tion
f

sibly the most widely used geostatistical method in fish-
eries. More recently, the transitive method (Petitgas,
1993; Bez, 2002) has been demonstrated as an alter-
native that is applicable to samples taken on regularly
spaced grids.

3. Discussion

Examples 3–6 introduced mixed-effects models (in-
cluding state-space models) for capturing the structure
of randomness in a wide variety of fisheries data, and
Example 7 briefly mentioned techniques for coping
with non-random biomass surveys. These examples are
typical of quantitative fisheries analysis, and share the
property that the data are not an independent sample
from the population of interest. A naive analysis of
such data would therefore commit pseudoreplication.

Fitting mixed-effects models can be challenging
in all but the simple case of linear models and
normal errors (McCulloch and Searle, 2001). How-
ever, software is increasingly becoming available for
more complex mixed-effects models. This includes
the SAS procedure NLMIXED (SAS Institute Inc.,
1999) and the SAS macros GLIMMIX and NLIN-
MIX ( Littell et al., 1996). The NLMIXED procedure
is preferred because it fits the model using a nu-
merical approximation to the true likelihood, whereas
GLIMMIX and NLINMIX use a modified likelihood
method that can have poor properties in some situa-
t
i ect.
T
h re
p and
eological science, and hence is routinely know
eostatistics. The central notion of geostatistics is
f an underlying spatial supermodel, and to regard
ctual population being sampled as a single realiza

rom that spatial model. Kriging (Cressie, 1991) is pos-
ions (Millar and Willis, 1999). However, NLMIXED
s restricted to models with just one random eff
he freely available R language (Anonymous, 2003;
ttp://www.r-project.org/) has user-provided softwa
ackages that include functions glmmPQL, nlme,

http://www.r-project.org/
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GLMM. Functions glmmPQL and nlme are similar in
implementation to GLIMMIX and NLINMIX, respec-
tively, and function GLMM is similar in implemen-
tation to NLMIXED. The freely available WinBUGS
software (Spiegelhalter et al., 1999; http://www.mrc-
bsu.cam.ac.uk/bugs/) can be used to fit a wide variety
of Bayesian mixed-effects models, and many such ex-
amples are included with its documentation.

One form of simple pseudoreplication that mixed-
effects models cannot remedy is extrapolation of infer-
ence to a population greater than the one sampled. For
example,Millar and Willis (1999)estimated the den-
sity of snapper inside the Leigh Marine Reserve to be
11 times that in areas adjacent to the reserve (Example
5). This ratio cannot be used to infer an effect of ma-
rine reservation, because the experiment was not repli-
cated, as only the Leigh Marine Reserve was used, nor
were any similar experiments conducted prior to estab-
lishment of the Leigh Marine Reserve. Similarly, size-
selectivity studies are typically conducted with a single
gear from a single boat, in a limited area, over a short pe-
riod of time. The deployments are therefore a long way
from being representative of the (hypothetical) popu-
lation of all possible deployments of the gear in the en-
tire fishery. Therefore, if the estimated selection curve
is used in stock assessments or discard studies of the
fishery then pseudoreplication has been committed.

The reader who has made it thus far may be wonder-
ing whether pseudoreplication is a sufficiently great sin
as to warrant the extra effort of attempting the some-
w end
o suf-
fi ple,
o that
m that
s atch
i but
s ses,
a on-
s e of
W ics.

ical
o ata
( l-
i awl
c um-
b ibly
s rious

statistical significance if two or more gear variants are
being compared. In these experiments, the total num-
ber of deployments typically numbers in the tens, and
the replication at this level needs to be considered for
valid statistical inference.

Clearly, careful thought is needed in the analysis
of fisheries data to avoid pseudoreplication when lack
of independence occurs at some level of the design or
model. We have demonstrated a variety of ways that
pseudoreplication can arise and suggested methodol-
ogy for remedying it. This work is just the tip of an
iceberg. Our hope is that it will have made the reader
aware of pseudoreplication in analyses of fisheries data,
and prompted her to keep a wary eye out for it. Pseu-
doreplication appears in far more guises than demon-
strated here.
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