Available online at www.sciencedirect.com

rerencs Ghormeor: ISHERIES

ELSEVIER Fisheries Research 70 (2004) 397-407
www.elsevier.com/locate/fishres
Remedies for pseudoreplication
Russell B. Millar, Marti J. Anderson
Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand
Abstract

Pseudoreplication is the failure of a statistical analysis to properly incorporate the true structure of randomness present in the
data. It has been well documented and studied in the ecological literature but has received little attention in the fisheries literature.
Avoiding pseudoreplication in analyses of fisheries data can be difficult due to the complexity of the statistical procedures required.
However, recent developments in statistical methodology are decreasing the extent to which pseudoreplication has to be tolerated.
Seven examples are given here, beginning with simple design-based remedies and progressing to more challenging examples
including the model-based remedies of mixed-effects modelling, generalized linear mixed models, state-space models, and
geostatistics.
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1. Introduction The seven examples herein demonstrate how
pseudoreplication can be eliminated (or at least
Pseudoreplication is the incorrect modelling of ran- ameliorated) by appropriate consideration of the
domness, and is a notoriously rampant affliction in structure of the randomness inherent in the data. The
ecological field experimentd(ribert, 1984; Heffner = common feature of these examples is lack of indepen-
et al., 199%. However, it is not widely recognized that dence in the data, in the sense that the observations
pseudoreplication is also a widespread affliction in the cannot be truly considered a simple random sample
analysis of fisheries data. This may be because the ter-from the population of interest. The first two are
minology of manipulative field experiments is not al- simple design-based remedies of a generic nature and
ways terribly meaningful in the fisheries context, and pseudoreplication is avoided by basing inference on
because the complex and nonlinear structure of many groupings of the data that can be considered a simple
fisheries models requires a different kind of remedy for random sample. This simple approach is insufficient
pseudoreplication. to handle the more complex structure of the data pre-
sented in the remaining five examples. In particular,
"+ Corresponding author. Tel.: +64 9 373 7599: Examples 3—6 employ thg cqncept of.rgndom effects as
fax: +64 9 373 7000. aremedy for pseudoreplication, albeit in very different
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A mixed-effects model is one that includes both failure to acknowledge the sequential measurement of
fixed and random effects. The so-called fixed effects multiple observations on the same treatment replicate.
could correspond to the effect of treatments, but more Many of Hurlbert’'s examples of simple pseudoreplica-
generally are parameters associated with the systemtion arise due to observations not being independent in
under study (e.g. average density, growth rate, instan- space (due to clustering, say), and this will be denoted
taneous rate of natural mortality). Mixed-effects mod- here as simple-spatial pseudoreplication. Simple
els use the concept of random effects to emulate the pseudoreplication, in its various forms, is extremely
randomness inherent in the data. State-space modelcommon and its consequence is effectively an inap-
also use random effects, but in the context of time se- propriate inflation of the ‘effective sample size’, and
ries data. The complex details of fitting mixed-effects this can lead to underestimates of standard errors and
and state-space models are not covered here, and calspurious statistical significance (i.e. an inflated Type
be found in the referenced literature. | error rate). Sacrificial pseudoreplication works in

Mixed-effects and state-space models have been inthe opposite direction—it sacrifices statistical power
use for several decades, but until recently have been(i.e. inflates the Type Il error rate) because it fails to
largely restricted to the context of normal linear models recognize pairing or grouping structure in the data.
due to the computational difficulty of applying them Hurlbert’'s definitions of pseudoreplication are
more generally. Thus, these models have not previously somewhat limited in the context of fisheries models.
been of great practical relevance to the field of quan- Many fisheries experiments are mensurative (i.e. non-
titative fisheries modelling, where it has been much manipulative) and complex, and cannot be expressed
easier to turn a blind eye to pseudoreplication or at best using the vernacular of experimental design (i.e. using
to use an ad-hoc fix. However, since the early 1990s, terms such as ‘treatment’ and ‘experimental unit’). For
the understanding of such models and the software for this reason, the terms temporal pseudoreplication and
fitting them has improved to the point where they can spatial pseudoreplication will be used here in a gen-
now be applied to many fisheries models. This is espe- eral sense, without assuming them to be special cases
cially true of fisheries models that are fitted under the of simple pseudoreplication. Here, the working defini-
Bayesian paradignPunt and Hilborn, 199/mecause  tion of pseudoreplication will be the use of inferential
the Bayesian software uses Monte Carlo computer statistics when, at some level of the design or model,
methods that do not require simplifying assumptions independence is incorrectly assumed.
for tractability (e.g.Meyer and Millar, 1999 Indeed, In the first two examples, the experimental design
there are many historical data-sets in the statistical liter- is relatively straightforward and pseudoreplication
ature that have received comprehensive mixed-effectscan be avoided simply by identifying the indepen-
analysis within the Bayesian paradigm, but have yet dent experimental units and applying design-based
proved too difficult for the equivalent classical mixed- inference solely to these. In particular, in the second
effects analysis Mleyer and Millar, 1999; Millar, example (two-stage sampling), spatial pseudorepli-
2009. cation is remedied by considering transects as the

Hurlbert (1984)defined pseudoreplication as ‘the basic experimental unit rather than the evenly-spaced
use of inferential statistics to test for treatment effects quadrats on the transects. The third example presents
with data from experiments where either treatments are a design-based random-effects remedy to spatial
not replicated (though samples may be) or experimen- pseudoreplication when the data are collected at
tal units are not statistically independent’. Hurlbert different spatial scales. In this example, the magnitude
identified three common forms of pseudoreplication, of variability in multivariate community assemblage
simple, sacrificial, and a third which he called temporal data at different spatial scales was of direct interest.
but here will be called simple-temporal to distinguish Example 4 looks at sequential population analysis
it from more general forms of temporal pseudoreplica- (SPA). It includes a temporal random effect and is
tion. Simple pseudoreplication occurs when an analysis an example of a state-space model. Examples 5 and
fails to acknowledge that multiple observations have 6 use generalized linear mixed models, and the final
been taken on a single replicate of a treatment. example briefly motivates geostatistics as a remedy to
Similarly, simple-temporal pseudoreplication is the avoid pseudoreplication in spatial data.
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Example 6 is covered in greatest depth and includes 6. Size selectivity analysis (simple).
analyses of data from a size selectivity experiment. It 7. Abundance surveys (spatial).
demonstrates that simple pseudoreplication may not
necessarily be detected by naive goodness of fit tests,2.1. Example 1: paired t-test
and that incorrect inference would result.

The sequential population analysis in Example 4 is One of the standard traps for undergraduate students
a particularly potent reminder of the unfortunate con- is the mistake of analyzing paired data as though they
sequences of pseudoreplication. Indeed, the following were unpaired. In the case of normally distributed data,
excerpt fromMyers and Cadigan (1995ahows that  this would be the use of a two-samleest instead of
pseudoreplication compromised the ability of SPA to a pairedt-test. The two-sampletest is not valid be-
provide sound inference about the abundance of cod cause the pair of observations made on an experimental
on the Grand Bank of Newfoundland. This was once unit (i.e. subject) are not independent. Moreover, the
the largest cod fishery in the world, but collapsed in the two-samplet-test sacrifices statistical power because
early 1990s. differences between the experimental units will inflate

the estimates of the standard error within each treat-
An analysis of traditional catch-at-age data in con- ment group and thus may obscure between-treatment
junction with research surveys, which assumed that effects. Indeed, in the terminology biurlbert (1984)
research survey estimation errors of abundance by age this is an example of sacrificial pseudoreplication.
and year were independent, led assessment biologists The pairedt-test assumes that the within-pair dif-
to the conclusion that the collapse was caused by ferences in measurements are a simple random sam-
an increase in natural mortality in the first half of ple and applies a one-sampi¢est to these differ-
1991. We constructed a statistical model to test this ences. This design-based remedy is particularly ele-
hypothesis. The results do not support the hypothesisgant, because it avoids the need to model the actual
.... We also demonstrate that the usual assumption data (the pairs of measurements from each experimen-
that estimation errors from research trawl surveys talunit) and therefore eliminates any need to explicitly
are independent is not valid, and can lead to invalid modelbetween-subjectvariability. The modelis simply
inference and unreasonable estimates of abundance. that the differences are an i.i.d. sample from a normal
distribution.

2. Examples 2.2. Example 2: two-stage sampling of shellfish

The first example is generic and is not based on  Morrison et al. (1999)mplemented a two-stage
any particular application. The remaining six exam- Sampling scheme for intertidal shellfish and applied
ples are from the fisheries related literature and their it to several beaches in the Auckland region of New
primary purpose is to demonstrate that fisheries de- Zealand. At each beach, the first stage was the random
signs and models commonly make questionable as-allocation of transects and the second stage was the
sumptions of independence, and to show how the anal-digging of four 0.1 i quadrats at 10 m intervals along
ysis can be imp|emented to eliminate or ameliorate each transect. (The first Stage Ofsampling was stratified

pseudoreplication. according to prior knowledge of shellfish density, but
The seven examp|es are: this will not be considered here.)
The quadrats are clearly not a simple random sam-
1. Paired data (sacrificial). ple from the beach, because the inclusion of a quadrat
2. Two-stage intertidal sampling of shellfish (spatial). in the sample guarantees that there will be at least

3. Community assemblage analysis at different spatial one other quadrat within a 10m radiuslorrison
scales (simple-spatial). et al. (1999)appropriately noted that the quadrats are

4. Sequential population analysis (simple, temporal). pseudoreplicates and that the transects are the basic ex-

5. Comparison of fish density inside and outside a ma- perimental unit. Their inference was based on the av-
rine reserve (simple). erage density within the transect. This also mitigates
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criticisms about the non-randomness of the system-  For approximately normally distributed data, the
atic sampling of quadrats within each transect because,above design can be formally analyzed using a multi-
for the purpose of inference, the ‘observations’ con- way mixed-effects ANOVA with location, site, and
sist of a simple random sample of measured transecttransect as appropriately specified random-effects and

densities. habitat as a fixed effect, and with appropriate interac-
tion terms. However, the primary focus Ahderson
2.3. Example 3: underwater visual counts of fish and Millar (2004)was to model the multivariate as-

semblage data recorded from each transect. A mixed-

Anderson and Millar (2004)sed a multilevel ex-  effects ANOVA-type model was deployed, but using
perimental design to survey fish abundance on inshore design-based permutation to partition the variability in
reefs off the north-eastern coast of New Zealand. The a dissimilarity matrix, rather than using a model based
primary objectives were to assess differences in specieson assumptions of multivariate normalitpr{derson,
assemblages between urchin-grazed barrens and kelf2001a, 2001 They found that variability in species
habitats at different spatial scales, and thus the habi- assemblages was highest at the scale of individual tran-
tats can be considered treatments. Four locations, sepasects, and that variability from site to site and from
rated by hundreds of kilometers, were sampled.(2). location to location was comparable. Moreover, the ef-
Within each location, fish were counted at each of four fect of habitat was not uniform and it varied between
differentrandomly located sites, separated by hundredslocations and between sites within locations.
to thousands of metres. At each site, the two habitats
were sampled: kelp forests (i.e. areas characterised by, 4 Example 4: sequential population analysis
relatively dense cover of the kelpcklonia radiatg
and ‘barrens’ (i.e. areas characterised by Ii_ttle orno Nay is the number of fish of age at the start
macro-algal cover and dominated by the grazing urchin s yeary andCay is the catch (assumed known) taken

Evechinus chloroticys Within each habitat, divers on  qyring year, then a typical sequential population dy-
SCUBA did a visual survey by swimming ten (hap- namics model is of the form

hazardly chosen) 25m transects and identifying and
recording the number of each species of fish observed N, , = R, (1)
within a distance of 2.5 m on either side of the transect.

The sampled transects are clearly not a simple ran- . 2
dom sample of all possible 25 m transects that could Nay = Nag-1y-1€ " — Ca-1y-1€ » a4 =>4ap
have been swum over kelp or barren habitat off the NE 2)
coast of New Zealand. Instead, sampling takes place at
three levels (i) firstly, a sample of locations, (ii) within  wherem is the natural mortalityag is the age of re-
each location a sample of sites, and (jii) within each cruitment, andR, is the recruitment in year. Eq.(2) is
site a sample of transects (stratified by habitat type). derived from assuming that fishing occurs in the middle
Quantification of the relative magnitude of the spatial of the year.
variability inherent in these three levels of sampling, The data are a rectangular table of relative numbers-
and any interaction between habitat effect and spatial at-age, loy. For example, Table 1 oMyers and
scale, were both fundamental research objectives of Cadigan (1995al)ists the average catch-per-survey-
Anderson and Millar (2004Hence the analysisneeded tow of Grand Banks cod for age-classes 3,.. ., 12
to formally incorporate the three levels of spatial vari- and survey yearg=1978,. .., 1993. For simplicity, it
ability, and the effects of habitat and interactions. An will be assumed here that the survey takes place at the
analysis that ignored the design (say, by simply com- start of the year (this is not a crucial assumption, see
bining the species assemblage data across all transectdlyers and Cadigan (1993a)rhen, the data are typi-
for each habitat) would not only be guilty of simple cally modelled as lognormally distributed according to
pseudoreplication but would also be failing to utilize the equation
information the data contain about spatial variability in
assemblages. lay = QNgy € ®)
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Fig. 1. Map of northeastern New Zealand, showing the locations and sites sampladdngon and Millar (2004]Reprinted with permission
from Elsevier.]

where paramete® denotes the ‘relative catchability’ It can therefore be argued that a SPA suffers simple
of the survey gear, and, , are assumed to be i.i.d. pseudoreplication because, for year (i.e. treatment)
normal. y, it is the same set of survey tows that is used to

The sequential population analysis is modelling a calculate the average catch-per-survey-tow for each
table of relative numbers-at-age, with age and year in- age-class, ages 3-12 in the case of the Grand Banks
dexing the rows and columns of the table. In this sense, cod. Consequently, the datg,, within each year will
age and year can be considered pre-assigned row ande positively correlatedviyers and Cadigan (1995b)
column treatments, with the effects of these treatments confronted this pseudoreplication by explicitly
modelled via Egs(1) and (2) Equivalently, it may be incorporating a random year effect into §g)
more natural to consider cohort and year as the treat-
ments, because each additional year adds another level
to both the year ‘treatment’ and cohort ‘treatment’.  la.y = QNa,y €7 (4)
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and they provided a computational algorithm for northwestdirection, areas 3-8 being inside the reserve,
obtaining maximum likelihood estimates of the model and areas 9 and 10 being outside of the reserve in the
parameters. southeast direction. Each boat present was assigned to
Temporal pseudoreplication arises because it is the fish in a specified area in the morning, and assigned to
same cohort (i.e. treatment) that is sampled over a num-a different area in the afternoon. The skippers were told
ber of years. Eq(2) is a structural formula describing  to choose sites ‘haphazardly’ within the assigned area,
the expected decline in size of a cohort due to catch and to fish from that location for 30 min. This permitted
and natural mortality, but process variability will cause a maximum of six sites within an area to be fished by

the actual cohort size to deviate from that expected.

Moreover, the effect of any deviation in (2) necessarily

a boat in any given morning or afternoon session.
A total of 22 boats were involved, but the actual

impacts on the size of the cohort in subsequent years,boats participating on each of the 4 days was never

whichinturnwill cause temporal correlation in the data
Ia’y-

The temporal correlation can be modelled by
including random error terms in the population
dynamics equation (2). This form of model is called

exactly the same. Only one boat participated through-
out the entire study and 15 boats fished on only 1 day.
Boats fishing on a single day therefore fished in only

two areas, with one exception where the skipper inad-
vertently crossed an area boundary and fished a third

a state-space model. Maximum likelihood fits of area.

state-space models are challenging, but if sufficient  The CPUE data cannot be considered a simple ran-
simplifying assumptions are made then they can be dom sample. Rather, it could be said that a ‘random’ se-
fitted using the Kalman filter (e.gSullivan, 1992; lection of recreational boats was made, and used on four
Freeman and Kirkwood, 1995; Kimura et al., 1996 ‘randomly’ chosen days. Had the data been balanced
Bayesian stock assessment modelling does not requirewith respect to allocation of boats over treatments (re-
the simplifying assumptions, notwithstanding the serve and non-reserve) and dates then it may have been
difficulty of obtaining a reliable posterior sample ifthe possible to devise an elegantreprieve from pseudorepli-
model is overly complex. For exampMegyer and Mil- cation (e.g. Example 1), but the data are extremely un-
lar (1999)describe methodology for fitting nonlinear balanced here. Thu$jillar and Willis (1999)used a

and nonnormal state-space surplus production models,generalized linear mixed model (GLMM) to model the
while Millar and Meyer (2000aprovide more detailof ~ CPUE data as (overdispersed) Poisson with the four
the underlying theonyMillar and Meyer (2000bjit a dates and 22 boats treated as random effects. That is,
Bayesian state-space sequential population analysis tathe four dates were considered a random sample of
the cod data oMyers and Cadigan (1995ahd show possible dates and the boats were considered a random
how to incorporate the random year effect in ). sample of all recreational fishing boats.

Maximum likelihood fits of GLMM’s are extremely
difficult because calculation of the likelihood function
typically requires high dimensional numerical integra-
tion (McCulloch and Searle, 20p1For this reason,
Millar and Willis (1999)used the SAS macro GLIM-
effort (CPUE) of volunteer recreational fishers as a MIX (Littell etal., 199§ to fit the GLMM using a form
measure of the relative density of snapgeadrus au- of pseudolikelihood\Wolfinger and O’Connell, 1993
ratus) within and adjacent to the Leigh Marine Reserve Software is now becoming available that can do true
on the northeast coast of New Zealand. The objective maximum likelihood fits of simpler forms of GLMM’s
of this study was to estimate the ratio of snapper den- (see Example 6 below).
sity between the reserve and adjacent non-reserve areas
(Millar and Willis, 1999. 2.6. Example 6: size selectivity data

Fishing from small boats was conducted on the 4
days of 15 June, 29 June, 7 and 15 December in 1996. Experimentsto estimate the size-selectivity of a fish-
The region of interest was partitioned into ten areas, ing gear typically involve multiple deployments of two
with areas 1 and 2 being outside of the reserve in the or more variants of the gear. In the case of trawls or

2.5. Example 5: comparison of fish density inside
and outside a marine reserve

Willis and Babcock (1997)sed the catch-per-unit-
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traps this might be an experimental gear and a cover or Table 1 _
control gear. For gillnets, several nets of differing mesh School prawn catches summed over 19 replicate deployments of a
size are typically fished simultaneously. The data con- S°vered codend

sist of the lengths of all fish caught (or a subsample if Carapace length (mm) Codend catch Cover catch
the number caught is large) in each of the gear variants 6 0 3
from each deployment. 7 0 0
Analysis of size-selectivity data generally proceeds 9 g 3
by fitting some form of selection curve using maxi- g 5 10
mum likelihood. For example, the symmetric logistic 11 6 48
curve has become the default standard for trawl se- 12 10 56
lectivity, notwithstanding the need to verify goodness 13 31 95
of fit. The asymmetric Richards curve is typically em- 313 ‘11;2
ployed ifthe logisticindicates lack of fit. The likelihood  1¢ 904 970
function for the curves is derived using the assumption 17 1227 824
that the length frequency data are Poisson distributed, 18 1090 450
which is implicitly assuming independence of fish. The 19 567 136
SELECT methodology oMillar (1992) showed that 1286 13
maximum likelihood fits can most easily be achieved 5 15 0
by (loosely speaking) modelling the difference in catch 23 2 0

between the gear variants, rather than needing to model
the catches themselves.

Selectivity studies typically suffer from simple perimental square-mesh stow net that was deployed
pseudoreplication on at least two levels. The first arises With a fine mesh cover to capture all prawns that es-
because the treatment (deployment of the gear) is notcaped through the codent¥gcbeth et al., in pregs
replicated at the level of individual fish. The Poisson The resulting retention proportions were well fitted
assumption inherent in the likelihood is implicitly say- by an asymmetric Richards selection cur¥g( 2,
ing that the fate of each fish (i.e. capture or escape) Table 2 and, with just two exceptions, the deviance
is independent of every other fish. One possible viola- residuals were less than unity in magnitude. No symp-
tion of this independence assumption arises from the toms of pseudoreplication are evident. The fit gives
schooling behaviour of fish. This form of pseudorepli- an estimated carapace length of 50% retentigy of
cation is very common in analyses of count data, and 16.2 mm with a standard deviation of just 0.06 mm.
results in extra-Poisson variation. Fortunately, themag- A very different story becomes apparent if the
nitude of the extra-Poisson variation can be estimated catches from the individual deployments are examined.
from goodness of fit diagnostics, and an overdispersion The fitted selection curve and estimated standard devi-
correction applied (e.dvillar and Fryer, 1999 ations are necessarily the same as those obtained from

In the majority of selectivity analyses, the length the fit to the summed data, however it is now clear
frequency data from all deployments of the gears are that massive extra-Poisson variation is preseig. (2,
summed and these total length frequencies are thenTable 3. Indeed, the deviance residuals exceeded 5
modelled. This is the cause of the second level of simple
pseudoreplication. It has been observed in many studiesTable 2
that selectivity can vary immensely from deployment Goodness of fit statistics for the Richards selection curve fitted by
to deployment of fishing gear, despite all possible at- maximum likelihood to the school prawn data

tempts to replicate experimental conditions. This form Summed data Individual hauls data
of pseudoreplication cannot be adequately ameliorated pearsony? 3.0 9952

by applying the standard overdispersion correction. For d.of. _ 7 99
exampleTable 1shows carapace length frequency data Overdispersion n.s. 10

of school prawn I(/Ietapena_eus maclegyiThese data  oniy length classes with expected catch exceeding 3 were included.
were summed over 19 replicate deployments of an ex- n.s. denotes not significantly different from unity.
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Fig. 2. Selectivity curve fitted by maximum likelihood to the observed retention proportions, and the resulting residual plot. Left column: fit to
the retention proportions obtained from summing the catch data over the 19 replicate deployments. Right column: fit to the retention proportions
observed in each deployment. Note that the fitted selectivity curve is the same in both cases.

in magnitude on 13 occasions and the overdispersion  Mixed-effects modelling of between-haul variation
factor, calculated as the ratio of the goodness-of4it  is addressed biryer (1991)andMillar et al. (2004)
statistic divided by degrees of freedom, is estimated to Both of these mixed-effects approaches allow selectiv-
be 10.1Millar et al. (2004)used the squareroot of this ity parameters (e.g. length of 50% retention) to vary
overdispersion factor as an ad-hoc correction to the es-randomly from haul to haul, but they differ in their
timated standard deviations. Thus, the estimated stan-implementation.Fryer (1991)applied linear normal
dard deviation ofsg was increased by a multiplicative  mixed models to the estimated selectivity parameters
factor of 3.2. That is, from 0.06 to 0.2 mm. obtained from individual fits from each deployment. In
The form of the between-deployment variability can contrastMillar et al. (2004)uses the SAS procedure
be inspected by performing individual selectivity fits NLMIXED (SAS Institute Inc., 1990to fit a GLMM
to the catch data from each deploymefigy. 3 shows directly to all the individual haul data.
the estimatedsg's and selection ranges (SR, the dif-
ference between the lengths of 25% and 75% retention 2.7. Example 7: biomass surveys
probability) from individual selection curve fits to the
19 replicate deployments. If the treatment effect (i.e. ~ Some biomass surveys use randomized sampling lo-
selectivity) was the same in each deployment then, be- cations, and are often stratified by a relevant environ-
cause they each contain the true unknown selectivity mental variable, such as depth if a trawl survey (e.g.
parameter with a priori probability 0.95, the 95% con- Doubleday, 198)L This design-based approach ensures
fidence intervals should overlap (with perhaps one or that the catches at each sampling location are indepen-
two exceptions). This appears plausible for SR, but is dent because the sampling locations are randams(
clearly not the case for tHgg parameter. and de Gruitjer, 1997 Thus, the sample mean (by strata
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Fig. 3. Estimated selection curve parameters, and 95% confidence intervals, from 19 replicate deployments of a stow net in a school prawn
fishery.

if applicable) of the observed densities provides an un- sibly the mostwidely used geostatistical method in fish-
biased estimator of the biomass density, and the sampleeries. More recently, the transitive methdeetitgas,
variance (by strata if applicable) is an appropriate es- 1993; Bez, 200Rhas been demonstrated as an alter-
timator of the true sampling variability of this mean. native that is applicable to samples taken on regularly
Several model-based extensions to this approach existspaced grids.
and these typically involve using latitude, longitude and
other relevant environmental information to introduce
a structural model for the expected density over the 3. Discussion
survey region (e.gsmith, 1990; Evans et al., 20pfr
the purpose of obtaining a more statistically efficient Examples 3-6 introduced mixed-effects models (in-
estimate of biomass. cluding state-space models) for capturing the structure
Random surveys can be criticized as being ineffi- of randomness in a wide variety of fisheries data, and
cient because they do not guarantee ‘even’ coverageExample 7 briefly mentioned techniques for coping
over the survey region. Systematic biomass surveys of- with non-random biomass surveys. These examples are
fer an alternative whereby sampling locations are (typi- typical of quantitative fisheries analysis, and share the
cally) arranged on regularly spaced and pre-determined property that the data are not an independent sample
grid points. This type of design can also be advanta- from the population of interest. A naive analysis of
geous in terms of implementation. However, the obser- such data would therefore commit pseudoreplication.
vations at each sampling location are now no longer a  Fitting mixed-effects models can be challenging
random sample from the population of all possible sam- in all but the simple case of linear models and
pling locations, and hence are not independent. Lack normal errors llcCulloch and Searle, 2001How-
of randomness also applies to survey data that are col-ever, software is increasingly becoming available for
lected over a continuous track, as is often the case with more complex mixed-effects models. This includes
acoustic data. Analyzing such data using design-basedthe SAS procedure NLMIXED SAS Institute Inc.,
inference would be pseudoreplication. 1999 and the SAS macros GLIMMIX and NLIN-
Systematic biomass surveys can be analyzed in MIX (Littell et al., 1996. The NLMIXED procedure
many ad-hoc ways, a number of which appear to work is preferred because it fits the model using a nu-
quite well (Wolter, 1984. The more formal approach  merical approximation to the true likelihood, whereas
is to use model-based analysis. This form of spatial GLIMMIX and NLINMIX use a modified likelihood
analysis was primarily developed within the field of method that can have poor properties in some situa-
geological science, and hence is routinely known as tions (Millar and Willis, 1999. However, NLMIXED
geostatistics. The central notion of geostatistics is that is restricted to models with just one random effect.
of an underlying spatial supermodel, and to regard the The freely available R languagérfonymous, 2003
actual population being sampled as a single realization http://www.r-project.org/ has user-provided software
from that spatial model. Kriginggressie, 199)lis pos- packages that include functions gimmPQL, nlme, and
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GLMM. Functions gimmPQL and nime are similar in  statistical significance if two or more gear variants are
implementation to GLIMMIX and NLINMIX, respec-  being compared. In these experiments, the total num-
tively, and function GLMM is similar in implemen-  ber of deployments typically numbers in the tens, and
tation to NLMIXED. The freely available WinBUGS the replication at this level needs to be considered for

software Gpiegelhalter et al., 199%ttp://www.mrc- valid statistical inference.

bsu.cam.ac.uk/bugstan be used to fit a wide variety Clearly, careful thought is needed in the analysis

of Bayesian mixed-effects models, and many such ex- of fisheries data to avoid pseudoreplication when lack
amples are included with its documentation. of independence occurs at some level of the design or

One form of simple pseudoreplication that mixed- model. We have demonstrated a variety of ways that
effects models cannot remedy is extrapolation of infer- pseudoreplication can arise and suggested methodol-
ence to a population greater than the one sampled. Forogy for remedying it. This work is just the tip of an
example Millar and Willis (1999)estimated the den-  iceberg. Our hope is that it will have made the reader
sity of snapper inside the Leigh Marine Reserve to be aware of pseudoreplication in analyses of fisheries data,
11 times that in areas adjacent to the reserve (Exampleand prompted her to keep a wary eye out for it. Pseu-
5). This ratio cannot be used to infer an effect of ma- doreplication appears in far more guises than demon-
rine reservation, because the experiment was not repli- strated here.
cated, as only the Leigh Marine Reserve was used, nor
were any similar experiments conducted prior to estab-
lishment of the Leigh Marine Reserve. Similarly, size-
selectivity studies are typically conducted with a single
gear fro_m asingle boat, inalimited area, over ashort pe- Anderson, M.J., 2001a. A new method for non-parametric multivari-
riod of time. The deployments are therefore alongway  ate analysis of variance. Aust. Ecol. 26, 32—46.
from being representative of the (hypothetical) popu- Anderson, M.J., 2001b. Permutation tests for univariate or multivari-
lation of all possible deployments of the gear in the en- ate analysis of variance and regression. Can. J. Fish. Aquat. Sci.
tire fishery. Therefore, if the estimated selection curve 58, 626-639. . -

. . . . Anderson, M.J., Millar, R.B., 2004. Spatial variation and effects of
I_S used in stock assess_ments or discard StUdle_S of the habitat on temperate reef fish assemblages in north eastern New
fishery then pseudoreplication has been committed. Zealand. J. Exp. Mar. Biol. Ecol. 305, 191-221.

The reader who has made it thus far may be wonder- Anonymous, 2003. R: A Language And Environment For Statistical
ing whether pseudoreplication is a sufficiently greatsin ~ Computing. R Development Core Team, Vienna.
as to warrant the extra effort of attempting the some- Bez, N 2002. Global_fis_h abundz_alr_me estimation from re_gular sam-

. . . . . pling: the geo-statistical transitive method. Can. J. Fish. Aquat.
what comp_hcated rerneqlles herein. This will depend Sci. 59, 1921-1931.
on the particular application and whether there are suf- grys, p.J., de Gruitjer, J.J., 1997. Random sampling or geostatisti-
ficient data to permit a successful fit. For example, cal modelling? Choosing between design-based and model-based
our experience with size-selectivity data suggests that ~ sampling strategies for soil. Geoderma 80, 1-44 (with discus-
mixed-effects models can usually be used provided that _ Sion):

fficient fish ar htin h deplovment. Th t hCressie,N.A.C.,1991.StatisticsforSpatiaI Data. Wiley, New York.
Suicie share caug each deployment. [he calc Doubleday, W.G. (Ed.), 1981. Manual on Groundfish Surveys in the

is usually sufficiently large in trawl experiments, but Northwest Atlantic, NAFO Sci. Coun. Studies, vol. 2. NAFO.

seldom so in gillnet or hook experiments. In such cases, Evans, G.T., Parsons, D.G., Veitch, P.J., Orr, D.C., 2000. A local-
ad-hoc remedies may exist, including those demon- influence method of estimating biomass from trawl surveys, with
strated in Example 6, and the variance formulae of Monte Carlo confidence intervals. J. Northw. Atl. Fish. Sci. 27,

. . .. 133-138.
Wolter (1984)as a S|mpler alternative to geostatistics. Freeman, S.N., Kirkwood, G.P., 1995. On a structural time series

T_he properties ob_seryed in E)fample 6 are typical method for estimating stock biomass and recruitment from catch
of simple pseudoreplication. Pooling of the catch data  and effort data. Fish. Res. 22, 77-98.
(Table 9 explicitly ignores the possibility of variabil- Fryer, R.J., 1991. A model of between-haul variation in selectivity.
ity in replicate deployments of the treatment (i.e. trawl CES J. Mar. Sci. 48, 281-290.

. Heffner, R.A., Butler, M.J., Reilly, C.K., 1996. Pseudoreplication
codend). The total number of fish measured may num- " .. Ecology 77, 2558-2562.

ber in the thousands, and this results in implausibly Hyripert, s.H., 1984. Pseudoreplication and the design of ecological
small estimates of standard error and possible spurious field experiments. Ecol. Monogr. 54, 187-211.
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