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Abstract

We introduce the concept of the Mahalanobis distance to bioclimatic modeling. Specifically, we argue that climatic

envelopes defined by the Mahalanobis distance produce more accurate predictions of species distribution than standard

rectilinear envelopes (e.g. those produced by BIOCLIM). We base our hypothesis on three rationales: (1) the climatic

envelope generated by the Mahalanobis distance is oblique, and therefore, may cope with correlations and interactions

among the climatic variables; (2) the Mahalanobis envelope is elliptic, and therefore, better reflects the principle of

central tendency as expressed by niche theory; (3) Mahalanobian predictions are based on the whole data rather than on

the outermost observations, and are therefore, less sensitive to outliers. We test our hypothesis using data on the

distribution of 192 species of woody plants in Israel. Validation tests based on four measures of accuracy (sensitivity,

specificity, overall accuracy and the Kappa statistic) support our hypothesis, and suggest that Mahalanobis models

produce predictions that are significantly more accurate than those produced by corresponding rectilinear models.

Additional simulation experiments demonstrate that the superiority of Mahalanobian models cannot be related to their

elliptic shape, or their ability to cope with correlations among the climatic variables. Accordingly, our conclusion is that

the prime advantage of Mahalanobian models originates from the fact that their climatic envelopes are defined using all

the observations, as opposed to rectilinear envelopes that are founded on the outermost observations.
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1. Introduction

Models predicting the distribution of organisms

may contribute to our understanding of factors

controlling patterns of species distribution, as well

as for planning of conservation and management

programs (Franklin, 1995; Iverson and Prasad,

1998; Bolliger et al., 2000; Godown and Peterson,
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2000; Karl et al., 2000; Pearce and Ferrier, 2001).

One class of predictive models that has been

applied for a variety of scientific and practical

purposes is termed climatic envelope models

(CEMs). These models generate predictive maps

of species distribution using data on the climatic

characteristics of the sites where the species were

recorded (Nix, 1986; Busby, 1986). CEMs involve

two conceptual steps. The first step is the projec-

tion of the recording sites from the map into a

multidimensional space defined by a set of climatic

variables. The purpose of this step is to identify the

climatic niche (also termed ‘climatic envelope’ or

‘climatic profile’) of the target species. The second

step is the projection of the climatic niche from the

multidimensional climatic space back into a two

dimensional geographic space (i.e. a map). This

step is also termed ‘homoclime matching’ (Lin-

denmayer et al., 1991; Brereton et al., 1995) since a

grid of the study area is scanned for locations with

similar conditions to those of the species’ climatic

profile.

CEMs have been applied for many purposes

including the analysis of factors affecting distribu-

tion patterns of plants and animals (Walker and

Cocks, 1991; Shao and Halpin, 1995), reconstruc-

tion of palaeoclimatic conditions and biogeogra-

phical processes (McKenzie and Busby, 1992;

Kershaw, 1997), assessment of potential floristic

and faunal responses to alternative scenarios of

climate change (Brereton et al., 1995; Eeley et al.,

1999), classification of wildlife habitats (Skidmore

et al., 1996), exploration of potential areas for

reintroduction of endangered species (Pearce and

Lindenmayer, 1998), estimation of the spreading

potential of pests and invasive plants (Honig et al.,

1992; Sindel and Michael, 1992; Martin, 1996),

identification of potential planting regions (Booth

et al., 1988; Richardson and McMahon, 1992),

and design of efficient field surveys (Lindenmayer

et al., 1991). Most of these applications were

carried out using the Australian software BIOCLIM

(Nix, 1986; Busby, 1991). In addition to the

enveloping algorithm, BIOCLIM provides compre-

hensive tools for climatic interpolation (Hutchin-

son, 1995), analysis of data integrity, and

visualization.

The most important advantage of CEMs is their
ability to cope with ‘presence only’ data (as

opposed to presence�/absence or quantitative

data). This property is of considerable importance

since much of our knowledge concerning the

distribution of organisms is based on presence-

only information, which is not readily amenable

for standard statistical models (Dettmers and Bart,

1999; Peterson et al., 2001). Additional advantages
of CEMs are intuitive simplicity, clear theoretical

basis (niche theory), applicability to different taxa,

and straightforwardness of operation (Busby,

1991; Carpenter et al., 1993).

1.1. Limitations of CEMs

In spite of their wide use, CEMs have some

noticed limitations. Three major limitations that
have been recognized in previous studies are (1)

inability to cope with correlations and interactions

among the climatic factors, (2) assignment of equal

suitability for all climatic combinations within the

boundaries of the climatic envelope, and (3)

sensitivity to outliers (Busby, 1991; Walker and

Cocks, 1991; Carpenter et al., 1993; Shao and

Halpin, 1995; Martin, 1996).
The first problem (i.e. disregarding possible

interactions between climatic variables) stems

from the rectilinear nature of the climatic envel-

ope, that is, from the fact that the climatic niche of

the species within the multidimensional space is

bounded by straight lines/surfaces. This envelop-

ing approach may overestimate the distribution

boundaries of the modeled species if climatic
variables are correlated (Skidmore et al., 1996).

As an illustration, consider the climatic envelope

in Fig. 1a. Due to the obvious correlation between

the climatic variables, it seems reasonable to cast

some combinations from the rectilinear envelope.

Ignoring such correlation can result in overestima-

tion of the distribution range.

The second limitation of CEMs is the fact that
all climatic combinations within the boundaries of

the climatic envelope are considered equally sui-

table for the modeled species (Shao and Halpin,

1995). Ecological theory, in contrast, asserts that

species are distributed unequally along environ-

mental gradients, with a tendency towards an

O. Farber, R. Kadmon / Ecological Modelling 160 (2003) 115�/130116



optimal value (Whittaker, 1975; Austin and Smith,

1989). Shao and Halpin (1995) proposed a mod-

ification of the enveloping algorithm that can be

used to overcome this limitation. Specifically,

instead of constructing a rectilinear envelope,

they applied an enveloping algorithm that fits an

elliptic envelope to the distributional data.

Although the model proposed by Shao and Halpin

(1995) was based on various combinations of two

climatic variables, their enveloping algorithm can

be easily extended into a multidimensional climatic

space. In this study we term the climatic envelope

fitted by Shao and Halpin (1995) an upright

elliptic envelope, since the axes of the ellipse used

to define the climatic niche of the species are

parallel to the climatic axes.

The third limitation of CEMs (sensitivity to

outliers) originates from the fact that the bound-

aries of the climatic envelope are defined by the

outermost observations (Fig. 1b). To reduce the

impact of outlying observations on model predic-

tions, users of CEMs often ‘chop’ the outermost

values of each climatic variable by using only a

certain percentile range of the data (Busby, 1991;

Kershaw, 1997). For example, using the 5th�/95th

percentiles, 10% of the values for each climatic

index (5% from each side) are automatically

discarded, and only the remaining observations

are used to construct the climatic envelope (Fig.

1b). Yet, while such a procedure may improve the

performance of CEMs by reducing the probability

of making false predictions of presence, it may also

cause deterioration in predictive accuracy by

increasing the rate of incorrect predictions of

absences (Walker and Cocks, 1991; Eeley et al.,

1999). In other words, there exists a tradeoff

between errors of overestimation (commissions)

and errors of underestimation (omissions). This

tradeoff has rarely been analyzed in detail, and the

literature provides examples for CEMs based on

percentile ranges of 50% (Eeley et al., 1999), 80%

(Law, 1994; Shao and Halpin, 1995), 90% (Nix,

1986; Sindel and Michael, 1992; Brereton et al.,

1995), and 100% (i.e. the entire range, Podger et

al., 1990; Richardson and McMahon, 1992; Sykes

et al., 1996; Box et al., 1999).

It should also be noted that the standard

procedure for outliers removal may prove

inefficient in cases of observations that are rela-

tively isolated along several climatic variables,

but do not have extreme values on any particular

variable (Fig. 1c). Although we would tend to

classify such observations as outliers, they would

not be excluded by the standard percentiles-range

method.

Fig. 1. Schematic illustrations of some limitations of rectilinear

models. Circles represent the distribution of observations in a

climatic space defined by two hypothetical variables. Gray

circles are observations recognized as outliers. (a) In cases of

correlations or interactions between climatic variables, the

rectilinear model tends to overestimate the domain of climatic

combinations represented by the data. (b) The boundaries of

the climatic envelope are determined by the outermost data,

and are therefore, sensitive to outliers. Using a certain

percentile range (e.g. 5�/95%) can reduce the impact of such

outlying observations on model predictions. (c) Removal of

outliers using the percentiles�/range method may prove inade-

quate if observations are outliers in a multidimensional sense

without being outliers (marginal) in any single dimension.
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1.2. A Mahalanobian approach for bioclimatic

modeling

In this study we present an alternative approach

for bioclimatic modeling, which allows for oblique

positioning of an elliptic envelope within a multi-

dimensional climatic space. The climatic envelope

we propose is defined by climatic combinations

having equal Mahalanobis distance (see below) to

a vector of ‘optimal’ climatic conditions, with the

‘optimum’ being defined as the mean climatic

conditions of all the observations available for

the target species. An underlying assumption is

that the modeled species is distributed optimally

along niche axes, and that any deviation from the

mean (optimal) conditions is associated with lower

suitability. Such assumption is in accordance with

niche theory, which suggests the existence of

optimal environmental conditions for a species in

addition to maxima and minima, outside which
the species cannot exist (Hutchinson, 1959; Whit-

taker, 1975). Thus, unlike the rectilinear approach,

which relies on boundaries of distribution, the

Mahalanobis distance technique relies on multi-

variate mean and co-variance matrix. Fig. 2

summarizes the conceptual differences between

the two modeling approaches.

Mathematically, the Mahalanobis distance be-
tween a vector x and a set S of vectors (matrix) is

defined as:

D2� (
¯
x�

¯
m)T C�1(

¯
x�

¯
m)

where m is the mean vector and C is the covariance

matrix of S (Clark et al., 1993). The ‘T ’ super-

script denotes the transpose operator. The rows

(vectors) of S stand for observations and the
columns for climatic indices. S , therefore, repre-

sents the climatic conditions of the sites were the

species was recorded. The vector m represents the

‘optimum’ conditions, and x is a vector indicating

climatic conditions of a particular site.

In general, the Mahalanobis distance is used to

compute the distance between two centroids (Le-

gendre and Legendre, 1998). Our application can,
therefore, be considered as a special case where

one centroid degenerates to a point. The correla-

tions between climatic variables are reflected and

compensated for by non-zero entries in off-diag-

onal portions of the covariance matrix (Clark et

al., 1993). In cases of two or three dimensions,

points with equal Mahalanobis distance lie on an

ellipse or an ellipsoid, respectively. In general,
equal Mahalanobis distances (D2) imply equal

similarities to the mean vector m (Seber, 1984).

When applied to species prediction, an under-

lying assumption of the Mahalanobis distance

technique is that the mean vector represents

optimal conditions for the species. Therefore,

when the selection function is normally distribu-

ted, Mahalanobis distances are approximated by
the x2 distribution with n�/1 degrees of freedom (n

is the number of explanatory variables or the

number of rows in S ). Using this approximation,

corresponding P -values can be assigned to poten-

tial sites (Clark et al., 1993). For many species,

however, the assumption of normal distribution is

Fig. 2. Schematic chart of rectilinear vs. Mahalanobian models.

Starting with a set of observations characterized by N climatic

indices, both models define potential climatic envelopes in two

steps (Compute and Find) and the climatic combinations

constrained by these envelopes are projected to geographic

space as predictive maps.
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not satisfied (Austin and Smith, 1989). In such
cases Mahalanobis distances can still be used to

clasify potential sites into quantiles (Knick and

Dyer, 1997; Knick and Rotenberry, 1998) and the

conversion to P -values serves merely to recode the

Mahalanobis distances into a [0..1] scale (Clark et

al., 1993).

1.3. Objectives of the study

This study was designed to test the hypothesis

that CEMs applying the Mahalanobis distance as

an enveloping algorithm, perform better (i.e.

produce more accurate predictive maps) than

models based on the rectilinear envelope. This

hypothesis was based on the following rationales:

(1) the climatic envelope generated by the Maha-
lanobis distance is oblique, and, therefore, may

cope with correlations and interactions among the

climatic variables; (2) the climatic envelope is

elliptic, and, therefore, better reflects the principle

of central tendency as expressed by niche theory;

(3) model predictions are based on the whole data

rather than on the outermost observations, and

are, therefore, less sensitive to outliers.
We concentrated on woody plants as target

species for our analysis. The floristic data we had

(see Section 2) allowed us to use independent data

for calibration and validation and to base our

estimates of accuracy on high-quality reference

data. This is an important advantage since data

availability is a major obstacle for validating

predictions of distribution models in general and
CEMs in particular (Box et al., 1993; Fielding and

Bell, 1997; Manel et al., 1999).

2. Methods

2.1. Climatic data

Three climatic factors were used to construct the
CEMs in this study: mean annual rainfall, mean

daily temperature of the hottest month (August),

and average minimum temperature of the coldest

month (January). These variables are known to

have important effects on plant distribution

(Woodward, 1987) and have been widely used in

previous applications of bioclimatic models
(Busby, 1986; Richardson and McMahon, 1992;

Skidmore et al., 1996; Box et al., 1999; Eeley et al.,

1999). The sources of the rainfall and temperature

data and the methodologies used to produce the

climatic maps are described in previous papers

(Kadmon and Heller, 1998; Kadmon and Danin,

1999; Kurtzman and Kadmon, 1999). For the

purpose of this study, all climatic maps were
standardized into a uniform spatial resolution of

1 km.

2.2. Floristic data

The floristic data used to develop the CEMs

were compiled from the database of the Israel

Nature and Parks Authority (INPA). This data-

base consists of geo-referenced observations (spa-
tial accuracy9/100 m) collected by researchers,

biologists and technical stuff of the INPA in both

protected and unprotected sites, over most regions

of Israel. Further data were obtained from ex-

tensive phyto-sociological studies of the Negev

Desert (Danin et al., 1975). Following McKenney

et al. (1998), only species with more than 50

presence observations were selected for the analy-
sis. The median number of observations per

species in the final dataset was 159 and the overall

dataset contained 129 species represented by

32 414 observations that were distributed over

3606 sampling points covering the main climatic

gradients of Israel (Fig. 3).

The validation tests were carried out using an

independent database consisting of lists of species
recorded by A. Danin for squares of 5�/5 km

covering about 95% of the study area. This grid

database has already been used successfully to

identify patterns of floristic variation in Israel

(Danin and Plitmann, 1987; Kadmon and Danin,

1997, 1999). To maximize the reliability of the

validation process, 96 squares (5�/5 km each)

were carefully selected from the overall grid
database to fulfill three criteria: (1) maximal

number of species recorded per square, (2) thresh-

old distance between neighboring squares, and (3)

uniform coverage of the study area. Criterion 1

assures that only well-sampled cells are used, and

hence permits inference of absence if the species
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has not been included in the list. Criterion 2

reduces the effect of spatial autocorrelation and

criterion 3 guarantees that varieties of climatic
combinations are represented. The geographical

distribution of the selected validation squares is

shown in Fig. 3.

2.3. Modeling procedure

For each of the 129 woody species, predictive

maps were created using both the standard recti-

linear approach and the Mahalanobian approach
(Fig. 2). Considering previous studies indicating

that predictions of rectilinear CEMs may depend

on the percentile range used to remove outliers

(Skidmore et al., 1996; Eeley et al., 1999), pre-

dictive maps of such models were constructed

using percentile ranges of 100% (the min-max

range), 90, 80, 70, 60, and 50%. The basic
procedure applied for constructing the rectilinear

models consisted of five steps: (1) assembling the

presence observations of the relevant species, (2)

determining the climatic characteristics of each

observation, (3) removing outliers by choosing a

percentile range, (4) constructing a rectilinear

climatic envelope based on the distribution of the

remaining observations within the climatic space,
and (5) projecting the climatic envelope back to

the geographic space. The output of this process

was raster maps (spatial resolution�/1 km2) based

on six different percentile ranges for each of the

129 species (a total of 774 maps).

Predictive maps based on the Mahalanobis

distance were produced as follows. For a given

species, the mean vector (m ) and the correlation
matrix (C) were first calculated from a matrix

whose rows represent the sites where the species

was recorded and the columns represent the

corresponding values of the three climatic indices.

Next, each 1�/1 km2 grid cell in the study area was

assigned with a Mahalanobis distance using m and

C. Cells with Mahalanobis distance less than a

predefined threshold (d) were considered as poten-
tially suitable for the species and were included in

the prediction. Since the rectilinear prediction is

dichotomous (presence or absence) while the

Mahalanobis prediction covers a continuous range

of values, this procedure enabled us to compare

the two methods. Note that the value of d is

positively correlated with the area (volume) of the

ellipse (ellipsoid). Hence, as d increases, so in-
creases the chance that suitable climatic combina-

tions would be included in the prediction.

However, the chance to include superfluous com-

binations also increases. Based on a preliminary

survey of this tradeoff, d was set to 4 in all models.

Under the assumption of normality, this threshold

corresponds to a probability of 0.86.

The manner by which the two types of predictive
maps were created is demonstrated in Figs. 4 and 5

using the plant Phlomis brachyodon (an Irano-

Turanian semi-shrub) as an example. First, the

geographic observations of the species were

mapped within the climatic space (Fig. 4). Within

this space, two enveloping approaches were ap-

plied: rectilinear and Mahalanobian. Next, the

Fig. 3. Maps of the point observations used to develop the

models (left) and the grid cells used for validation (right). The

two maps are based on different databases. Note that the

validation squares are spatially more uniform than the ob-

servations and better represent the overall study area.
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climatic combinations of each envelope were

projected back into the geographical space to

form two maps of potential distribution, each

representing a different modeling approach (Fig.
5). Note that, for visualization purposes, the

climatic space presented in Fig. 4 is limited to

two dimensions. The resultant maps however,

(Fig. 5), as all predictive maps in this study, were

constructed using three climatic indices (mean

annual rainfall, minimal temperature of January

and mean temperature of August).

2.4. Validation procedure

All predictive maps were created at a spatial

resolution of 1 km2, which was the resolution of

the climatic maps. In order to make the predictive

maps spatially compatible with the validation
squares, they were downscaled to a grid of 5�/5

km. A grid cell of 25 km2 was marked as ‘predicted

presence’ for a given species if the species was

predicted to occur in at least one of the 1 km2 cells

that are bounded by it. Otherwise, the square was

considered as ‘predicted absence’.

Each predictive map was checked at the 96

validation squares and the results were summar-

ized in an error matrix (Table 1) from which four

measures of accuracy were calculated: sensitivity,

specificity, overall accuracy, and the Kappa sta-

tistic (Table 2; Fielding and Bell, 1997; Legendre

and Legendre, 1998). Sensitivity is defined as the

probability of correctly predicting a presence,

whereas specificity is the probability of correctly

predicting an absence (Fielding and Bell, 1997).

The advantage of sensitivity and specificity is that

they are not dependent on the prevalence of the

species. This, however, is not the case with overall

accuracy, which tends to ascribe high accuracies

for rare species (Fielding and Bell, 1997; Manel et

al., 1999). The Kappa statistic (Cohen, 1960)

compensates for this bias by evaluating the accu-

racy of prediction relative to the accuracy that

might have resulted by chance alone (Monserud

and Leemans, 1992).

Fig. 4. Mahalanobis vs. rectilinear envelopes produced for the

semi-shrub P. brachyodon . The points represent observations of

P. brachyodon in a climatic space defined by two variables:

mean annual rainfall and mean annual temperature. The

rectilinear envelope was produced using the standard (BIOCLIM)

approach with a percentile range of 90%. The elliptic envelope

was generated using the Mahalanobis distance technique.

Fig. 5. Predictive maps produced for the semi-shrub P.

brachyodon. The map on the left shows the prediction of the

Mahalanobian model. Darker tones indicate higher potential

suitability, i.e. greater similarity to the mean climatic condi-

tions. The map on the right shows the prediction of a rectilinear

model based on a percentile range of 90%. Both predictions

were generated using the same observations (middle). Crosses

indicate known presences of P. brachyodon based on the

validation database. Note that for this species, the rectilinear

model tends to exaggerate the potential distribution of the

species.

O. Farber, R. Kadmon / Ecological Modelling 160 (2003) 115�/130 121



2.5. Software tools

ESRI ARCVIEW (ESRI, 1998) was used for GIS

analyses and map production. MathWorks MA-

TLAB (MathWorks, 1999) was used for numerical

simulations, mathematical analyses and graph

production. Standard statistical analyses were

performed using SPSS (SPSS, 1999).

3. Results

Fig. 6 compares the performance of the two

modeling approaches by showing the median

values (n�/192 species) obtained for the four

measures of accuracy (overall accuracy, Kappa,

specificity and sensitivity). The values obtained for

the rectilinear model are shown as functions of the

percentile range, whereas those obtained for the

Mahalanobian model are represented by a dashed

reference line. As expected, predictive accuracy of

the rectilinear model was sensitive to the percentile

range used to select the observations. Yet, for all

percentile ranges, the Mahalanobian model re-

vealed higher values of both overall accuracy and

Kappa, than the rectilinear one (Fig. 6a, b).

Similar patterns were obtained using the mean

values of the two measures (not shown).

Table 1

An error matrix used to evaluate the accuracy of model predictions

The components a , b , c and d , stand for frequencies of cases representing the four possible outcomes of a comparison between a

predictive map and a validation dataset.
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Examination of the results obtained for specifi-

city (the probability to correctly predict an ab-

sence) and sensitivity (the probability to correctly

predict a presence) helps to understand these

results. In the case of the rectilinear model,

specificity was a decreasing function of the per-

centile range, and crossed the line representing the

Mahalanobian model at a percentile range of

about 85% (Fig. 6c). The values obtained for

sensitivity exhibited an opposite trend, i.e. a

monotonically increasing function that crossed

the Mahalanobian curve at a percentile range of

about 85% (Fig. 6d). Below the crossing point, the

gain in sensitivity achieved by the Mahalanobian

model was higher than the corresponding decrease

in specificity (compare Fig. 6c, d). Above the

crossing point, the decrease in sensitivity was lower

than the gain in specificity. As a consequence,

values of overall accuracy and Kappa obtained for

the Mahalanobian model were higher than those

obtained for the rectilinear model over the whole

spectrum of percentile ranges.

Using the median (or mean) values may blur the

results of the analysis due to high among-species

variability in the various measures of accuracy.

Therefore, the two modeling approaches were

further compared on a per-species basis, by

calculating the difference in accuracy between the

Mahalanobian and rectilinear models. For this

comparison, the ‘best’ percentile range (5th�/95th)

was chosen to represent the rectilinear model. The

results are shown in Fig. 7. The bar corresponding

to zero in all histograms represents the number of

species for which equal or nearly equal accuracy

was obtained for both models. Bars lefts to zero

show the number of species for which the recti-

Fig. 6. Accuracy assessment of predictive maps produced by rectilinear (solid lines) vs. Mahalanobis (dashed lines) models. Four

measures of accuracy are shown as ordinates: Overall accuracy (a), Kappa (b), Specificity (c), and Sensitivity (d). The plots show

median values of the four measures, based on predictive maps produced for 129 species. In all plots, the abscissa represents the

percentile range used to construct the rectilinear envelope.
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linear model was more accurate, whereas bars to

the right indicate cases for which the Mahalano-

bian model was more accurate. The distance of a

bar from zero represents the magnitude of the

difference in accuracy between the two modeling

approaches.

Examination of the histograms indicates that

the Mahalanobian model was superior in many

cases, but equal, or even inferior to the rectilinear

model in other cases. For example, 37 species (�/

29%) showed an improvement of about 0.1 in

Kappa when modeled by the Mahalanobian

model, but 17 species (�/13%) showed a deteriora-

tion of similar rate (Fig. 7b). Yet, a paired t-test

based on the values of Kappa obtained for the 129

species verified that the Mahalanobian model was

significantly more accurate (P B/0.001) than the

rectilinear one.

Further insights for these results were obtained

by comparing the histograms of specificity and

sensitivity (Figs. 7c and 7d). For 66 species, the

sensitivity of prediction was higher with the recti-

linear model, and for 34 the sensitivity was equal

or nearly equal. However, for 105 species, speci-

ficity was higher with the Mahalanobis model.

Thus, the disadvantage of the Mahalanobian

model in terms of sensitivity was more than

compensated by its gain in specificity.

To supplement the above analyses, McNemar’s

test (Huberty, 1994; Fielding and Bell, 1997) was

Fig. 7. Species-level comparisons between the Mahalanobis and rectilinear models. For each species, the four measures of accuracy

(Overall accuracy, Kappa, Specificity and Sensitivity) were calculated based on prediction maps of the two models. The abscissa

represents the difference between the accuracy of the Mahalanobis model and that of the rectilinear model. The ordinate is the number

of species in each difference category.
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applied for each species separately to examine

which model prediction was more accurate in

relation to the validation set. For two species,

the predictions of the rectilinear model were
significantly more accurate (at a�/0.05), whereas

for 36 species the Mahalanobian model was

significantly more accurate. Non-significant re-

sults were obtained for the remaining 91 species.

4. Discussion

4.1. Concepts and limitations

The prediction of a CEM, termed climatic

potential niche, should not to be confused with

the climatic fundamental niche, which comprises
the climatic combinations that the species can

tolerate within a multidimensional space (Whit-

taker, 1975; Guisan et al., 1999). Frequently, the

potential niche is a subset of the fundamental

niche because the observations upon which the

CEMs are constructed do not cover the entire

climatic range of the species. This may happen
either because the species was not sampled under

certain climatic combinations within the study

area, or because its distribution extends beyond

the study area.

The climatic potential niche should neither be

confused with the realized niche (Hutchinson,

1959; Austin, 1999), which is usually smaller due

to the effect of dispersal limitations, competition,
edaphic factors, microhabitat conditions, anthro-

pogenic disturbances etc. Conceptually, the cli-

matic potential niche can be viewed as an

interpolation of the presence data, lying ‘some-

where’ between the realized and fundamental

niches.

The distinction between the fundamental, po-

tential, and realized niches is important for the
interpretation of the validation tests. Obviously,

predictive maps can only be validated through

comparison with maps of actual distribution. In

the case of CEM predictions, this validation

procedure assumes that climate is a dominant

factor in determining species distribution. Under

this assumption, we treat the potential niche as an

approximation to the realized niche, and use the
later to validate the former. Although this assump-

tion is reasonable for relatively large spatial scales

(Box et al., 1993; Huntley et al., 1995), it never-

theless becomes problematic for local scales in

which non-climatic factors are likely to have

crucial impact on species distribution (Pulliam,

2000).

Two other factors that may have influenced the
results of our analyses are the number (and

identity) of climatic variables used to construct

the CEMs, and the threshold number of 50

observations used to select species for the analyses.

Since the main aim of our analysis was to compare

(and interpret) predictive maps generated by

different modeling approaches, we based our

models on a limited number of climatic variables
that have previously been recognized as important

determinants of plant distribution patterns. Yet,

since previous applications of CEMs were usually

based on larger sets of climatic indices, it might be

argued that our results are not applicable to CEMs

in general. To evaluate this argument we ran

additional simulations in which we varied the

Table 2

Measures of predictive accuracy calculated from a 2�/2 error

matrix (Table 1)

Measure Formula

Overall accuracy /

a � d

n
/

Kappa statistic /

ða � d

n
Þ� (a � b)(a � c) � (c � d)(d � b)

n2

1 �
(a � b)(a � c) � (c � d)(d � b)

n2

/

Sensitivity /

a

a � c
/

Specificity /

d

b � d
/

Overall accuracy is the rate of correctly classified cells. The

Kappa statistic normalizes the overall accuracy by the accuracy

that might have occurred by chance alone. Sensitivity is the

probability that the model will correctly classify a presence, and

Specificity is the probability that the model will correctly

classify an absence. In all formulas n�/a�/b�/c�/d .
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number and identity of variables used to construct
the climatic envelopes. The results obtained from

these simulations (not shown) were in agreement

with those obtained for the original models. For

example, doubling the number of variables used to

construct the rectilinear models resulted in a 6%

increase in average predictive accuracy. This result

is consistent with Peterson and Cohoon (1999)

who found convergence of model performance
with 4�/5 climatic variables, and can be attributed

to the existence of high correlations between the

climatic factors.

Further simulations were performed to evaluate

whether the threshold number of 50 observations

per species was sufficient to obtain reasonable

predictions. These simulations were based on 54

species having more than 200 observations. For
each species, a trial number of observations, n ,

was determined (n�/10, 20, 50, 75, 100, 150 and

200), and 150 random sets (repetitions) of n

observations were selected, each time creating a

predictive map based upon the selected observa-

tions. This process generated 56 700 maps (54

species�/7 sample sizes�/150 repetitions). The

accuracy of each map was determined using the
validation dataset, and the mean value of Kappa

was calculated for each sample size (n ). The results

indicated that 50 observations were sufficient to

approximate the asymptotic value of Kappa.

Doubling the number of observations from 50

to100 led to a corresponding increase of 2.4% in

predictive accuracy, while further increase in the

number of observations did not improve the
accuracy of model predictions. These results justify

the threshold number of observations used to

select the species for our analysis.

4.2. Rectilinear versus Mahalanobian modeling

In theory, the ability to incorporate climatic

correlations into the modeling algorithm is a major

advantage of the Mahalanobian model over the
rectilinear one. We use the term Correlation here

to indicate a mathematical relation (positive or

negative) between climatic indices of the sites

where a species was recorded. Such correlation

does not necessarily imply interaction, which is the

mutual effect of two (or more) factors in determin-

ing the likelihood of a species’ occurrence at a site.

For example, due to historical reasons, the dis-

tribution range of a species can be confined to an

area in which rainfall and temperature are strongly

correlated, but clearly this correlation does not

signify interaction. Genuine interaction may oc-

cur, for example, when lower rainfall is compen-

sated for by lower evaporation at a site with lower

temperatures (Nix, 1986; Busby, 1991; Huntley et

al., 1995). In cases where the observed correlation

does not reflect genuine interaction, the Mahala-

nobian model is likely to produce inadequate

climatic envelopes, with a possible distortion of

the species’ climatic requirements. This problem is

of particular significance in cases where predic-

tions of CEMs are extrapolated into areas where

climatic correlations are different from those

characterizing the area where the model was

developed.

Linear CEMs are known to overestimate species

distribution (Walker and Cocks, 1991; Skidmore

et al. , 1996). However, it is important to distin-

guish between two types of overestimation. The

first occurs when a climatically suitable area is

restricted from the species due to non-climatic

factors. For example, competition or limited dis-

Fig. 8. Schematic representation of the four modeling ap-

proaches compared in Table 3.
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persal ability may prevent a species from utilizing
its fundamental niche (Pulliam, 2000). The second

overestimation may result when inappropriate

climatic combinations (viz. beyond the climatic

tolerance of the species) are included in the

prediction. Such overestimation, unlike the for-

mer, indicates a ‘true’ modeling error. The first

type of overestimation can be corrected by in-

corporating additional environmental variables
into the analysis (Austin et al., 1990; Eeley et al.,

1999; Wright et al., 2000). The second overestima-

tion can be rectified by producing ‘tighter’ climatic

envelopes in which extraneous climatic combina-

tions are excluded from the prediction. In recti-

linear CEMs, this is done by removing outlying

observations from the dataset before the climatic

envelope is determined. The Mahalanobian model
rectifies such overestimation by using an algorithm

that fits an ellipsoid, rather than a rectilinear

hyperspace, to the climatic data (Fig. 4). In this

study, removal of outliers improved the accuracy

of rectilinear models, but nevertheless, the Maha-

lanobian models produced significantly more ac-

curate predictions (Fig. 6).

4.3. Interpretation of the results

This study was motivated by the assumption
that Mahalanobian modeling has three principal

advantages over rectilinear modeling: the ability to

cope with climatic correlations, the ability to take

into account central tendency in species responses

to climatic gradients, and the ability to take into

account the climatic characteristics of all observa-

tions in determining the boundaries of the climatic

envelope. Our results support the hypothesis that

Mahalanobian models are superior to rectilinear

ones, but they do not prove that this superiority a

consequence of these underlying theoretical ad-

vantages.

To examine this question, we developed two

additional types of models. The first model was

based on an elliptic envelope without a tilt (Fig.

8b). This envelope was enclosed within the recti-

linear envelope. The straightforward formulation

of this upright elliptic envelope can be found in

Shao and Halpin (1995). The second model was

based on an oblique rectilinear envelope (Fig. 8c).

To construct this envelope, principal components

analysis (PCA) was used to establish a new 3D

coordination system whose tilt represents the

correlation between the climatic indices. In both

models (as in the ordinary rectilinear model), the

5th�/95th percentiles range was used to cast out-

lying values.
If the ability to cope with climatic correlations

was the underlying reason for the superiority of

the Mahalanobian model, one would expect that

the oblique rectilinear model (Fig. 8c) would be as

accurate as the Mahalanobian model. Alterna-

tively, if the improvement in accuracy was due to

the elliptic shape, which emphasizes central ten-

dency, than the upright elliptic model (Fig. 8b)

should be as accurate as the Mahalanobian model.

If both mechanisms contributed to the superiority

of the Mahalanobian model, predictions based on

both the upright elliptic envelope and the oblique

rectilinear envelope should be more accurate than

Table 3

Accuracy assessment of predictive maps produced for 129 species of woody plants

Measure of accuracy Modeling approach

Oblique elliptic (Mahalanobian) Upright elliptic Oblique rectilinear Upright rectilinear

Overall accuracy 0.82 0.77 0.79 0.78

Kappa 0.48 0.39 0.37 0.41

Specificity 0.86 0.78 0.86 0.78

Sensitivity 0.70 0.73 0.55 0.74

The distribution of each species was predicted using four different modeling approaches (see Fig. 8 for details). The performance of

each modeling approach is expressed by the mean values of four measures of accuracy (overall accuracy, Kappa, specificity and

sensitivity).
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those based on the standard (upright) rectilinear
model. But if the superiority of the Mahalanobian

model is related to the fact that it uses all the

available data, then neither the upright elliptic

envelope, nor the oblique rectilinear envelope

should enhance predictive accuracy relative to

the standard rectilinear model.

To distinguish between these alternatives, we

applied an upright elliptic model (Fig. 8b) and an
oblique rectilinear model (Fig. 8c) for each of the

129 species. Table 3 compares the accuracy of

predictions generated by these models with the

results obtained for the standard (rectilinear)

model and the Mahalanobian model. Surprisingly,

the performance of the two new models (expressed

by overall accuracy and Kappa) was significantly

lower than that of the Mahalanobian model.
Furthermore, in terms of Kappa (which is the

most informative measure of accuracy), the per-

formance of the new models was lower even in

relation to the rectilinear model! Further simula-

tions (not shown) revealed that models based on

oblique ellipses (i.e. applying Shao and Halpin

(1995) technique to the PCA-transformed data)

were still less accurate than Mahalanobian models,
albeit the shape of the climatic envelope was

similar.

These findings suggest (but not prove) that the

superiority of the Mahalanobian model originated

from its ability to consider the entire distributions

of the climatic indices. The boundaries of non-

Mahalanobian envelopes (Fig. 8b�/d) are deter-

mined by the percentile range, that is, by the
outermost values of the climatic indices. In con-

trast, the Mahalanobian envelope (Fig. 8a) deter-

mines the suitability of a climatic combination

according to its dissimilarity with the ‘optimal’

climatic vector whose value is determined by all

the observations. We conclude that this difference

was the main reason for the observed superiority

of the Mahalanobian model.
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